分段计费及方案决策问题经典例题含答案七上

合集下载

3.4.4分段计费问题与方案决策问题

3.4.4分段计费问题与方案决策问题
因此,考虑 t 的取值时,两个主叫限定时间 150 min和 350 min是不同时间范围的划分点.
新知探究
当 t 在不同时间范围内取值时,方式一和方式二的 计费如下表:
主叫时间t /分 方式一计费/元 方式二计费/元
t 小于150
58
88
t 等于150
58
88
t 大于150且小于 350 58+0.25(t-150)
新知探究
列表分析



审 题
设 未 知
数 表 示



借助数轴
分类讨论
要找不等关系 先找等量关系
列 方 程
费 用 相 同
更 优 惠
如何比较两个 代数式的大小?
新知探究
例 小明和小强为了买同一种火车模型,决定从春节开 始攒钱.小明原有200元,以后每月存50元;小强原有 150元,以后每月存60元.设两人攒钱的月数为x(个) (x为整数). (1)根据题意,填写下表:
课堂小测
解:(1)甲店需付款10+10×0.7=17元;乙商店需付款20×0.8=16元, 17元>16元,故到乙商店购买省钱. (2)设买x本时到两个商店付的钱一样多. 依题意列方程:10+(x-10)×70%=80%x, 解得x=30. 故买30本时到两个商店付的钱一样多. (3)设最多可买a本, 则甲商店10+(a-10)×70%=29.6,解得a=38; 乙商店80%a=29.6, 解得a=37. 38>37,故最多可买38本.
课堂小结
1. 解决电话计费问题需要明确“哪种计费方式更省 钱”与“主叫时间”有关.
2. 方案决策问题的关键是能够根据已知条件找到 合适的分段点,然后建立方程模型分类讨论,从 而得出整体选择方案.

初一上册数学阶梯收费问题5道及答案

初一上册数学阶梯收费问题5道及答案

1.(大庆中考)某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能是为()A、5.5 公里B.6.9公里C.7.5公里D.8.1公里解:设武社车行驰的路程可能为x公里16(x-3)+5=11.4解得:X=7因为不足一公里按一公里计算,则6.9公里符合题意,故选B例题1:金秋十月,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为80元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如表:(1)如果他批发60千克太湖蟹,则他在A 家批发需要________元,在B家批发需要_______元;(2)如果他批发x(150<x≤200)千克太湖蟹,则他在A家批发需要______元,在B家批发需要______元(用含x的代数式表示);(3)现在他要批发190千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.分析:我们主要来分析下第二问中在B家批发需要花费的费用。

在B家批发了x千克的太湖蟹,那么怎么付费呢?是不是因为x在150~200千克之间,我们就选择表格中的第三档,按照零售价的七五折付费,为0.75x 呢?当然不是,如果你是这么做的话,说明没有理解阶梯计费的规则。

那么,到底应该怎么做呢?这个x千克应该分几个阶梯进行付费呢?因此,在解阶梯类题目时,先要分清楚所给的数据分几个阶梯,每个阶梯中的费用是多少,再将所有费用加起来即可。

例题2:某地区居民生活用电,规定按以下标准收取电费:(1)某户七月份用电123千瓦时,共交电费57.2元,求a;(2)若该用户八月份的平均电费为为0.45元,则八月份共用多少千瓦时?应交电费多少元?分析:(1)用123×0.5与57.2比较可得出该户七月份用电超出基本用电量,再根据0.5×基本用电量+0.5×80%×超出基本用电量部分=应交电费,即可得出关于a 的一元一次;(2)设八月份共用电x千瓦时,根据0.5×基本用电量+0.5×80%×超出基本用电量部分=电费均价×用电量,即可得出关于x的一元一次方程.例1:甲、乙两个学生到集市上购买苹果,苹果的价格如下:甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126 元,则甲班第一次、第二次分别购买苹果多少千克?(3)若两班两次共付费196 元,则丙班第一次、第二次分别购买苹果多少千克? 【分析】(1)分别求出甲乙两班的费用求差即可解决问题;(2)分两种情形构建方程即可解决问题;(3)分五种情形,构建方程即可解决问题;【解答】解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128- 120=8,答:乙班比甲班少付8元.(2〉设甲班第一次购买苹果x千克,甲班第二次购买苹果(48- x)千克,由题意:48一x>x,即x<24,①当48- x≤30,即18≤x<24 时,3x+3 ( 48- x) =126,不合题意;②当x<18时,3x+2.5(48-x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90一x)千克,①当x≤30 时,90 - x ≥60,3x+2(90- x) =196,x=16,②当30<x<40时,90- x>50,2.5x+2 (90-x) =196,x=32,③当40≤x<50 时,40<90- x≤50,2.5x+2.5(90- x)=196,不合题意,④当50≤x≤60时,30≤90一x≤40,2x+2.5 (90- x)=196,x=58,当x>60时,90 - x<30,2x+3 ( 90 - x) =196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74 千克;32千克和58千克;58千克和32千克;74千克和16千克;例2:根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:(1)求上表d、30的看瓦时的部分(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费277.5元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于0.62元/千瓦时?【分析】(1)利用居民甲用电100 千瓦时,交电费60 元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费122.5元,求出b 的值即可;(2)首先判断出用电是否超过300 千瓦时,再根据收费方式可得等量关系:前150 千瓦时的部分的费用+超过150 千瓦时,但不超过300 千瓦时的部分的费用+超过300 千瓦时的部分的费用=交费277.5元,根据等量关系列出方程,再解即可;(3)根据当居民月用电量y≤150 时,0.6≤0.62,当居民月用电量y满足150<y≤300时,0.65y-7.5≤0.62y,当居民月用电量y满足y>300 时,0.9y-82.5≤0.62y,分别得出即可.【解答】解(1 ) a=60÷100=0.6,150×0.6+50b=122.5,解得b=0.65.(2)若用电300千瓦时,0.6×150+0.65×150=187.5<277.5,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则0.6×150+0.65×150+0.9 (x -300)=277.5,解得x=400答:该户居民月用电400千瓦时.(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y 超过150,但不超过300,则0.62y=0.6×150+0.65 (y -150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9 (y -300),解得y = 294 9.此时y <300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250千瓦时.。

人教版 七年级上册 一元一次方程 分段计费和方案选择【解析】

人教版 七年级上册 一元一次方程 分段计费和方案选择【解析】

分段计费和方案选择小结:解决此类问题的关键是能够根据已知条件找到合适的分段点,然后建立方程模型分类讨论,从而得出整体选择方案.例1公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?例2 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.练习1.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?2.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?3.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?5、广州市为鼓励市民节约用水,作出如下规定:陈刚家11月份缴水费31元,他家11月实际用水多少m3?6、某地电话拨号入网有两种收费方式,用户可任选一种:A、计时制:3元/时;B、包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用:A、计时制:B、包月制:(2)一个月内上网时间为多少小时,两种上网方式的费用相同?7、某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5米3污水排出,为了净化环境,工厂设计了两种处理污水的方案。

分段计费问题和方案设计问题(分点训练巩固训练拓展训练答案解析)

分段计费问题和方案设计问题(分点训练巩固训练拓展训练答案解析)

人教版数学七年级上册第三章一元一次方程3.4实际问题与一元一次方程第3课时分段计费问题和方案设计问题知识梳理分点训练知识点1 分段计费问题1. 某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,每立方米收费2元;若超过20 m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()A. 38 m3B. 34 m3C. 28 m3D. 44 m32. 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电不超过100度,每度按0.50元收费;超过100度不超过200度,超过部分每度按0.65元收费;超过200度,超过部分每度按0.75元收费.(1)若居民甲在6月份用电100度,则他这个月应缴纳电费元;若居民乙在7月份用电200度,则他这个月应缴纳电费元;若居民丙在8月份用电300度,则他这个月应缴纳电费元;(2)若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?知识点2 方案设计问题3. 联通公司推出两种手机收费方案.方案一:月使用费36元,本地通话费0.1元/分;方案二:不收月租费,本地通话费为0.6元/分.设小明的爸爸一个月通话时间为x分钟,他一个月通话时间为时,选择方案一比方案二优惠.4.某玩具工厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等?(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?课后提升巩固训练5. 某出租车的收费标准是:起步价7元(只要行驶距离不超过3 km,都需付款7元),超过3 km 时,超过的部分,每千米收费2.4元(不足1 km按1 km计算).现从A地到B地共支出车费19元.那么,他行驶的最大路程是()A. 9 kmB. 8 kmC. 7 kmD. 5 km6. 某同学花了30元钱购买图书馆会员证,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过()A. 8次B. 9次C. 10次D. 11次7. 一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,子女按半价优惠.”乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的收费.”若这两家旅行社的票价相同,那么()A. 甲比乙优惠B. 乙比甲优惠C. 甲与乙相同D. 与原来票价相同8. “双十一”,某商场推出了一促销活动:一次购物少于198元的不优惠;超过198元(含198元)的按9折付款,小明买了一件衣服,付款198元,则这件衣服的原价是元.9. 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费元;若一次乘坐这种出租车付费20元,则乘车路程是千米.10. 用A4纸在某打印社复印文件,不超过20页时,每页收费0.12元;超过20页时,超过部分每页收费为0.09元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元,复印数量为时,图书馆的收费比较低.11. 某商店举行商品促销活动,将定价为3元的商品,以下列方式优惠销售;若购买不超过10件,按原价付款,若一次性购买10件以上,超过的部分打八折,某顾客一次性消费65元全部用于购买此种商品,则他购买了件.12. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元以后,超出部分按8折优惠;在乙超市累计购买商品超过200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x≥300)(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)某顾客分别到两家超市买了相同的货物,并且所付费用也相同.你知道这位顾客在两家超市共花了多少钱吗?请列出方程解答.13. 为增强居民节约用水意识,某市对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:一户居民一个月用水量记为x(立方米) 水费单价(元/立方米)x≤22a超出22立方米的部分a+1.1 某户居民四月份用水10立方米时,缴纳水费23元.(1)求a的值;(2)若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.拓展探究综合训练14. 某省公布的居民用电阶梯电价听证方案如表:第一档电量第二档电量第三档电量月用电量210度(包括210度)以下,每度价格0.52元月用电量210至350度(包括350度),每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需缴电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)依此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?。

七年级数学分段计费问题和方案问题

七年级数学分段计费问题和方案问题

第4课时分段计费问题和方案问题要点感知1 分段计费问题:总费用=未超标部分的费用_______超标部分的费用.预习练习1-1 根据规定,稿费收入一次超过800元的部分,以14%的税率纳税.张老师编写了一本《数学童话》,缴纳税款420元,则这本书原来的稿费是_______元.1-2 某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费,某用户在5月份用电100度,共交电费56元,求a的值.要点感知2 方案问题:方案一的数量=方案二的数量.预习练习2-1 “地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-262-2 下表是某地移动公司推出的两种话费收费方式:方式一方式二月租费20元/月0本地通话费0.10元/分0.20元/分本地通话________分钟时,两种收费方式一样.知识点1 分段计费问题1.某种出租车的车费是这样计算的:路程在4千米以内(含4千米)为10元,到达4千米以后,每增加一公里加1元5角,某人乘坐出租车交了16元,则这个乘客乘坐该出租车行驶的路程为( )A.5千米B.6千米C.7千米D.8千米2.某市按以下标准收取水费:用量不超过20吨,按每吨1.2元收费,超过20吨则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( )A.20元B.24元C.30元D.36元3.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份用水量.知识点2 方案问题4.(2013·绵阳)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个5.一家电信公司给顾客提供两种上网收费方式:方式A以每分钟0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以每分钟0.05元的价格按上网所用时间计费.当上网所用时间为多少分钟时,两种上网方式的费用一样?6.用一根绳子绕一个圆柱形油桶.若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?7.为鼓励节约用电,某地对用户用电收费标准作如下规定:如果每月每户用电不超过100度,那么每度电价按0.55元收费;如果超过100度,那么超过部分每度按1元收费.某户居民在三月需缴纳电费105元,则他共用电( )A.105度B.125度C.150度D.160度8.小聪从家到学校,如果每分钟走100米,就会迟到3分钟;如果每分钟走150米,就会早到3分钟,问小聪每分钟走多少米才能按时到校?设小聪按时到校要x分钟,则可列方程为________________.9.(2013·济南)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.10.新的工资分配方案规定:每位销售人员的工资总额=基本工资+奖励工资,每位销售人员的月销售定额为10 000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如下表所示:销售额奖励工资比例超过10 000元但不超过15 000元的部分5%超过15 000元但不超过20 000元的部分8%20 000元以上的部分10%已知销售员本月领到的工资总额为800元,请问销售员本月的销售额为多少元?11.某班要刻录一批电脑光盘,若到电脑公司刻录,每张需要8元;若班内自己刻录,除租用刻录机需要120元外,每张还需要成本4元.(1)刻录多少张光盘时,到电脑公司刻录与班内自己刻录所需费用一样?(2)刻录多少张光盘时,到电脑公司刻录较合算?(3)刻录多少张光盘时,班内自己刻录较合算?挑战自我12.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于今年4月1日开始全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制.下面是该县医疗机构住院病人累计分段报销表:[例:某住院病人花去医疗费900元,报销金额为500×20%+400×30%=220(元)](1)农民刘老汉在4月份因脑中风住院花去医疗费2 200元,他可以报销多少元?(2)刘老汉在6月份因脑中风复发再次住院,这次报销医疗费4 790.25元,刘老汉这次住院花去医疗费多少元?参考答案课前预习要点感知1+预习练习1-1 3 8001-2 根据题意得:0.50a+(100-a)×(1+20%)×0.5=56.解得a=40.答:a的值为40.预习练习2-1 D 2-2200当堂训练1.D2.C3.若该用户每月用水量为15立方米,则需支付水费为15×(1.8+1)=42(元)<58.5元,所以该户一月份用水量超过了15立方米.设该户一月份用水量为x立方米,根据题意,得42+(x-15)×(2.3+1)=58.5.解得x=20.答:该户一月份用水量为20立方米.4.B5.设上网所用时间为x分钟时,两种上网方式的费用一样,根据题意,列方程得0.1x=0.05x+20.解得x=400.答:上网所用时间为400分钟时,两种上网方式的费用一样.6.设环绕油桶一周需x尺,由题意,得3x+4=4x-3.解得x=7.3x+4=25.答:这根绳子长为25尺,环绕油桶一周需7尺.课后作业7.C 8.100(x+3)=150(x-3)9.设大宿舍有x间,则小宿舍有(50-x)间,根据题意,得8x+6(50-x)=360. 解得x=30.所以50-x=20答:大宿舍有30间,小宿舍有20间.10.工资为800元,则销售额超过15 000元不超过20 000元.设本月的销售额为x元,由题意,有200+5 000×5%+(x-15 000)×8%=800. 解得x=19 375.答:销售员本月的销售额为19 375元.11.(1)设刻录x张光盘时,两种方式所需费用一样.则有8x=120+4x.解得x=30.答:刻录30张光盘时,到电脑公司刻录与学校自己刻录所需费用一样.(2)刻录小于30张光盘时,到电脑公司刻录较合算.(3)刻录大于30张光盘时,班内自己刻录较合算.12.(1)报销数额为500×20%+(2 000-500)×30%+(2 200-2 000)×35%=620(元).(2)设刘老汉这次住院的医疗费为x元,则根据题意,得500×20%+(2 000-500)×30%+(5 000-2 000)×35%+(10 000-5 000)×40%+(x-10 000)×45%=4 790.25.解得x=12 645.答:刘老汉这次住院花去医疗费12 645元.。

七年级数学上册一元一次方程分段计费与方案决策问题综合练习

七年级数学上册一元一次方程分段计费与方案决策问题综合练习

用方程解决生活中分段计费问题.
我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费,若每月用水量不超过
元收费.如果某户居民今年
你了解表格中这些数字的含义吗?
__70.5
时,选择__
明了学情:教师深入课堂了解学生是否读懂表格中表达的实际意义,体会两种方式的计费计算方法及如何
t的取值范围如何分
四、课堂小结、回顾新知
元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过
元钱用于上网,选用哪种上网方式比较合算.
=44(
元可以上网

1000。

人教版七年级上数学一元一次方程实际问题——分段计费

人教版七年级上数学一元一次方程实际问题——分段计费

一元一次方程实际问题 ——分段计费1、为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道的天然气价格进行调整,实行阶梯式收费,调整后的收费价格如下表示所示:(1)若甲用户3月份的用气量为125m 3,应缴费32.5元,求a 的值;(2)在(1)的条件下,若乙用户2、3月份共用气175m 3(3月份用气量低于2月份用气量),共缴费455元,则乙用户2、3月份的用气量各是多少?2、为了加强公民的节水意识,合理利用水资源。

某市采用价格调控手段达到节水的目的。

该市自来水的收费标准价格见下表。

某用户居民某月份用水8吨,则应收水费:()2068462=-⨯+⨯元。

注:水费按月结算。

(1)若该户居民2月份用水12.5吨,则应收水费 元;(2)若该户居民3、4月份共用水15吨(3月份的用水量少于5吨),共交水费44元,则该户居民3、4月份各用水多少吨?3、在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车,市客运公司规定:起步价为5元(不超过3km 收5元),超过3km ,每千米要加收一定的费用。

赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18km 。

上车时里程表 下车时里程表求行程超过3km 时,每千米收多少元?4、某市公布的居民用电阶梯电价听证方案如下: 例:若某户月用电量为400度,则需交的电费为()()()()23030.052.035040005.052.021035052.0210=+⨯-++⨯-+⨯元。

(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?5、某银行的个人所得税规定个人所得税如下所示:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税多的额;二、个人所得纳税率如下表:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少元?6、某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份交水费45元,则该用户5月份所用水量为多少立方米?7、根据国家发改委实施“阶梯电价”的相关文件要求,某市结合地方实际,决定实施收费标准如下表所示:例如:小明家用电100千瓦时,交电费60元。

培优二:(答案)七年级上第三章实际问题与一元一次方程(分段计费问题)

培优二:(答案)七年级上第三章实际问题与一元一次方程(分段计费问题)

七年级上第三章实际问题与一元一次方程(分段计费问题)一、例题精讲水费、电费等实行分段计费例1、为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?解:(1)当5月份用电量为x≤200度时,6月份用电(500﹣x)度由题意得:0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.(2)当5月份用电量为x>200度时,六月份用电量为(500﹣x)度由题意得:0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度。

商家为促销商品,实行分段计费216元,小明第一次购买苹果____ ____千克,第二次购买____ _______千克。

(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)解:.(1)16,24(2)设第一次购买x千克苹果,,第二次购买(100-x)千克苹果分三种情况考虑:1°:当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够100千克,不成立。

2°:当第一次购买苹果不超过20千克,第二次购买苹果超过40千克, 6x+4(100-x)=432解得:x=16100-16=84(千克)3°:第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克5x+4(100-x)=432解得:x=32100-32=68(千克)答:第一次购买16千克苹果,第二次购买84千克苹果或者第一次购买32千克苹果,第二次购买68千克苹果。

人教七年级上:一元一次方程实际问题--分段计费和方案选择(学生版)

人教七年级上:一元一次方程实际问题--分段计费和方案选择(学生版)

一元一次方程实际问题--分段计费与方案选择1.出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算).李红乘坐出租车下车时付给司机16元(不计等候付间),问李红乘坐租车行驶了多少千米?2.我市为鼓励节约用水,对自来水的收费标准作如下规定:每月用水不超过10吨,按4.5元一吨收费;超过10吨而不超过20吨,按8元一吨收费;超过20吨,按10元一吨,某月甲用户比乙用户多交水费37.5元,已知乙用户交水费31.5元.(1)甲乙两用户该月各用水多少吨?(2)用25吨水应交多少元?3.某地电话拨号入网有两种收费方式,用户可任选其一:(A)计时制,0.05元/分;(B)包月制,50元/月(只限一部宅电上网).此外,每种上网方式都得加收通讯费0.02元/分.(1)某用户平均每月上网x小时,请你帮他计算一下应该选择哪种收费方式合算.(2)若20x 时,则你帮他选用的收费方式应缴多少钱?4.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)(2)若黄老师家7月份交水费30元,问黄老师家7月份用水多少吨?5.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3元/立方米计费.(1)小华家四月份用水26立方米,五月份用水52立方米,请帮小华计算一下他家这两个月一共应交多少元水费?(2)小华家六月份交水费170元,请帮小华计算一下他家这个月用水量多少立方米?6.甲、乙两班学生到集市上购买苹果,苹果的价格如表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?7.依法纳税是每个公民应尽的义务,《中华人民共和国个人所得税》规定,公民全月工薪收入不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得税额,此项税款按下表分段累计算:(1)若黄先生三月份的工资为4500元,则他应该纳多少元的税?那么黄先生拿到手的工资是多少元?(2)黄先生今年4月份缴纳个人所得税税金125元,则黄先生该月的工资收入是多少元?8.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小刚家8、9月各用多少吨水?9.公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每销售一件产品增加推销费5元;方案二:不付底薪,每销售一件产品给推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?10.某地上网有两种收费方式,用户可任选其一:(A)计时制:2.8元/时;(B)包月制:60元/月.此外,每种收费方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种收费方式比较合算?(2)请你为用户设计一个方案,使用户能合理地选择收费方式.11.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元打九折,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当一次性购物总额是a元时,甲、乙两家超市实付款分别是多少?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.12.我市某个批发市场出售A、B两种商品并开展优惠促销活动,其中A商品标价为每件90元、B商品标价为每件100元.活动方式如下两种:活动一:A商品每件7折;B商品每件八五折;活动二:所购商品累计少于100件没有优惠,达到或超过100件全部八折.两个活动不能同时参加.(1)某客户购买A商品30件,B商品100件,选择哪种活动便宜?能便宜多少钱?(2)某客户购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍多4件;①B商品购进了件(用含x的代数式表示).②问:该客户如何选择才能获最大优惠?请说明理由.13.为培养学生良好的书写习惯,西大附中初一年级组织学生,每天抽出一些时间,开展“书为心画,字为心声”练字书写活动.活动初期,初一年级需要在文具店购买钢笔和字帖分发给学生练习,每购买一支钢笔,则需配备两本字帖搭配练习.甲乙两家文具店的标价相同,每支钢笔的价格比每本字帖的价格多20元,而且一支钢笔的价格刚好与三本字帖的价格相同.(1)钢笔和字帖的价格各是多少元?(2)已知初一年级有980名同学,现两家文具店的优惠如下:甲文具店:全场商品购物超过20000元后,超出20000元的部分打八五折;乙文具店:相同商品,“买十件赠一件”.请问在哪家文具店购买比较优惠?14.小商品批发市场内,某商品的价格按如下优惠:购买不超过300件时,每件3元;超过300件但不超过500件时,每件2.5元;超过500件时,每件2元.某客户欲采购这种小商品700件.(1)现有两种购买方案:①分两次购买,第一次购买240件,第二次购买460件;②一次性购买700件.问哪种购买方案费用较省?省多少元?说明理由.(2)若该客户分两次购买该商品共700件(第二次多于第一次),共付费1860元,则第一次、第二次分别购买该商品多少件?。

人教版 七年级上册 一元一次方程 分段计费和方案选择【解析】

人教版 七年级上册 一元一次方程 分段计费和方案选择【解析】

分段计费和方案选择小结:解决此类问题的关键是能够根据已知条件找到合适的分段点,然后建立方程模型分类讨论,从而得出整体选择方案.例1公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?例2 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.练习1.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?2.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?3.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?5、广州市为鼓励市民节约用水,作出如下规定:陈刚家11月份缴水费31元,他家11月实际用水多少m3?6、某地电话拨号入网有两种收费方式,用户可任选一种:A、计时制:3元/时;B、包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用:A、计时制:B、包月制:(2)一个月内上网时间为多少小时,两种上网方式的费用相同?7、某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5米3污水排出,为了净化环境,工厂设计了两种处理污水的方案。

七年级上册课分段计费问题与方案选择问题同步试题

七年级上册课分段计费问题与方案选择问题同步试题

分段计费问题与方案选择问题专项练习1.某人向北京打电话,通话3分钟以内话费为2元,超出3分钟部分按每分钟1.2元收费(不足1分钟按1分钟计),若某人付了8元话费,则此次通话平均每分钟花费( )A.1元B.1.1元C.1.2元D.1.3元2..参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()3.一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的4优5惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能4.为了鼓励市民节约用水,某区居民生活用水按阶梯式水价计费.居民在一年内用水在不同的定额范围内,执行不同的水价,其中水价=供水价格+污水处理费.具体价格如表:月份多了55.6元,则该居民家7月份属阶梯二的用水量为()A.22立方米B.18立方米C.13立方米D.12立方米5.某水果量贩店出售一批菠萝蜜,分两种销售方式:_________kg.6.某市按如下规定收取每月煤气费:用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分按每月1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气_______立方米.7.为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如表(注:水费按月结算,m3表示立方米):3×18+4×(23﹣18)=74(元).(1)若A居民家1月份共用水12m3,则应缴水费元;(2)若B居民家2月份共缴水费66元,则用水m3;(3)若C居民家3月份用水量为am3(a低于18m3,即a<18),且C居民家3、4两个月用水量共40m3,求3、4两个月共缴水费多少元?(用含a的代数式表示)(4)在(3)中,当a =17时,求C 居民家3、4两个月共缴水费多少元? 8.某地试行医保制度,并规定: 一、每位居民年初缴纳医保基金70元;二、居民个人当年看病的医疗费(以定点医院的医疗发票为准,年底按下表所示的方式结算)报销看病的医疗费用.承担的部分和年初缴纳的医保基金)记为y 元. (1)写出如下条件,y 的代数式(可含有,n x ). ①当0x n ≤≤时; ②当6000n x <≤时.(2)已知500n =,若该地居民周大爷某一年个人实际承担的医疗费用是5270元,那么他这一年看病所花费的医疗费共多少元?9.疫情期间,某蛋糕店采用“线上”销售模式,即提前一天线上下单,第二天无接触送货上门.为了吸引客户,在A 、B 两种蛋糕送达时,采用赠代金券的返利方式给顾客意外惊喜.已知返利方式有两种,每种方式返利后A 、B 两种蛋糕的实际利润如下表:蛋糕店每日限量销售A 、B 两种蛋糕共计30盒,且都能售完,每天只推出一种返利方式. (1)若采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,则A 、B 两种蛋糕各售出多少盒?(2)下完订单的当晚,店员M说:“明天无论采用哪种返利方式,销售A、B两种蛋糕的实际总利润都一样”,你觉得她的判断会成立吗?请说明理由.10.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:若制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?参考答案1.A【分析】通话3分钟以内话费为2元,由于付了8元,那么时间一定超过了3分钟,那么等量关系为:2元+超过3分钟的付费=8,可求出通话用的总时间,根据总花费÷总时间即可得出此次通话平均每分钟的花费.【详解】解:设此次通话x分,则2+(x-3)×1.2=8,得:x=8,则此次通话平均每分钟花费=8=1(元).8故选:A.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.2.D【解析】考点:一元一次方程的应用.分析:因为报销金额是1100元,根据分段报销,超过500~1000元的部分报销60%,超过1000~3000元的部分报销80%的情况,设住院医疗费是x元,根据题意可得等量关系:超过500~1000元的部分报销的钱+超过1000~3000元的部分报销的钱=1100元,根据等量关系列出方程求解即可.解:设住院医疗费是x元,由题意得:500×60%+80%(x-1000)=1100,解得:x=2000.答:住院费是2000元.故选D.3.A【解析】【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【详解】设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:4×3×a=2.4a(元),5∵2.2a<2.4a,∴甲比乙优惠.故选:A. 【点睛】本题考查列代数式. 4.D 【分析】根据题意,阶梯一、二、三阶段的水价,分别计算6、7月份用水量同在第一、二、三阶段时10方水的价格,得到7月份用水量跨二、三阶段,而六月份用水量在第二阶段,从而得到6月份用水量为8立方米,7月份用水量为18立方米,设7月份第二阶段用水量为x 立方米,则第三阶段用水量为(18-)x 立方米.根据题意列方程求解即可. 【详解】解:根据题意,阶梯一、二、三阶段的水价分别为:2.90/立方米、3.85/立方米、6.70元/立方米;若6、7月份用水量同在第一阶段,则两月水费差应为10 2.9029⨯=元; 若6、7月份用水量同在第二阶段,则两月水费差应为10 3.8538.5⨯=元; 若6、7月份用水量同在第三阶段,则两月水费差应为10 6.7067⨯=元;由于两实际水费差为55.6元,38.5<55.6<67,由题意可知,7月份用水量跨二、三阶段,而六月份用水量在第二阶段,易算出6月份用水量为(86.455.6) 3.85=8-÷立方米,则7月份用水量则为18立方米.设7月份第二阶段用水量为x 立方米,则第三阶段用水量为(18-)x 立方米. 列出方程:3.85 6.7(18)86.4x x +-=; 解得:12x =. 故选D . 【点睛】本题考查了一元一次方程的应用,根据题意确定6、7月份用水量所在阶梯,进而得到两个月的用水量是解题关键. 5.5kg 或10kg 【分析】设菠萝蜜的重量为xkg ,分总价小于50元和大于50元,两种情形求解 【详解】设菠萝蜜的重量为xkg ,则支出为6x 元,可剥果肉30%xkg ,当总价小于50元时,根据题意,得:0.3x×18=6x-3,解得x=5;当总价大于50元时,根据题意,得:0.3x×18=6x-6,解得x=10;故答案为:5或10【点睛】本题考查了一元一次方程的应用,学会运用分类思想,列一元一次方程求解是解题的关键.6.100.【详解】设12月份用了煤气x立方米,12月份的煤气费平均每立方米1.2元,那么煤气一定超过60立方米,等量关系为:60×1+超过60米的立方数×1.5=1.2×所用的立方数,把相关数值代入即可求得所用煤气的立方米数.解:设12月份用了煤气x立方米,由题意得,60×1+(x-60)×1.5=1.2x,解得:x=100,答:12月份该用户用煤气100立方米.故答案为100.7.(1)36;(2)21;(3)①当0<a<15时,共缴水费:187﹣4a;②当15≤a<18时,共缴水费:142﹣a;(4)当a=17时,C居民家3、4两个月共缴水费125元【分析】(1)A居民家1月份共用水3⨯=(元);12m,则按第一档缴费,31236(2)B居民家由于2月份缴水费66元,用水超过了3xm,根据缴费的形式得18m,设用水3到318(18)466x,然后解方程即可;(3)分类讨论:当15≤<,然后根据各段的缴费列代数式即可;a<,当1518a(4)当17a=时,求出代数式142a的值即可.【详解】解:(1)1218,∴应缴水费12336⨯=(元),故答案为:36;(2)设B 居民家2月份用水3xm ,3184(18)66x ,解得21x =. 故答案为:21.(3)①当15a <时,4月份的用水量超过325m 共缴水费:33184(2518)7(4025)1874a a a , ②当1518a ≤<时,4月份的用水量高于322m 且不超过325m 共缴水费:33184(4018)142a a a ,(4)当17a =时,C 居民家3、4两个月共缴水费14217125元. 【点睛】本题考查了一元一次方程的应用及列代数式,解题的关键是:找准等量关系,正确列出一元一次方程,注意分类讨论思想的理解运用.8.(1)①当0x n ≤≤时,70y =;②当6000n x <≤,0040()70y x n =-+;(2)他这一年看病所花费的医疗费共21000元. 【分析】(1)①当0x n ≤≤时,居民个人实际承担的医疗费用只有缴纳的医保基金70元;②当6000n x <≤时,个人承担超过 n 元但不超过 6 000 元的部分,为0040()x n -元,再加医保基金70元.(2)先令6000x =,检验一下此时y 的值,发现医疗费超过6000元,故需要按照第三档计算,由题意得()20%6000x -元即为5270减去医保基金再减去第二档的()40%6000500-元,列方程解之即可. 【详解】解:(1)①当0x n ≤≤时,70y = ②当6000n x <≤,0040()70y x n =-+; (2)设这一年他看病所花费的医疗费共x 元, 当6000x =时, 007055004022705270y =+⨯=<,00005270705500406000,600020x x --⨯∴>-=,21000x =答:他这一年看病所花费的医疗费共 21000 元.本题结合代数式,考查分段计费问题,解决此类问题,要根据不同的数额分到相应的档次进行计算.9.(1)A种蛋糕售出17盒,B种蛋糕售出13盒;(2)店员的判断不成立,见解析【分析】(1)设A种蛋糕售出x盒,则B种蛋糕售出(30−x)盒,根据“采用方式一返利,某天销售A、B两种蛋糕的实际利润共274元,”列出方程求解即可;(2)设A种蛋糕订了y盒,则B种蛋糕订出(30−y)盒,若店员的判断成立,根据“明天无论采用哪种返利方式,销售A、B两种蛋糕的实际总利润都一样”列方程求解,再根据y 只能取整数,即可得出答案.【详解】解:(1)设A种蛋糕售出x盒,则B种蛋糕售出(30−x)盒,根据题意得方程()x x+-=.10830274解得x=.17因此,3013-=.x答:A种蛋糕售出17盒,B种蛋糕售出13盒.(2)设A种蛋糕订了y盒,则B种蛋糕订出(30−y)盒,若店员的判断成立,则可列方程:()()+-=+-y y y y1083091130解得y=22.5y=不符合题意,因此店员的判断不成立.因为y只能取整数,所以22.5【点睛】本题考查了一元一次方程的应用,读懂题意找到等量关系式式解题的关键.10.第二种方案可以多得1500元的利润.【分析】方案一:根据制成奶片每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶片,(4-x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果.解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(9-4)×500=10500(元);方案二:设生产x天奶片,则生产(4-x)天酸奶,根据题意得:x+3(4-x)=9,解得:x=1.5,∴2.5天生产酸奶,加工的鲜奶3×2.5=7.5吨,则利润为:1.5×2000+3×2.5×1200=3000+9000=12000(元),∴12000-10500=1500.得到第二种方案可以多得1500元的利润.【点睛】此题考查了一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

初一数学上册一元一次方程分段计费问题解答

初一数学上册一元一次方程分段计费问题解答

初一数学上册一元一次方程分段计费问题解答1、某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能是( B) A.5.5公里 B.6.9公里 C.7.5公里 D.8.1公里2、某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a= 40 度.3、为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准量部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.问:该市规定的月用水标准量是多少吨?因为1.5×12=18<20,所以5月份用水量已超标.设该市规定的每户月用水标准量为x吨,则超标部分为(12-x)吨,依题意得1.5x+2.5(12-x)=20,解得x=10.答:该市规定的每户月用水标准量为10吨.4、电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里.设老张家到单位的路程是x公里,依题意得13+2.3(x-3)=8+2(x-3)+0.8x.解得x=8.2.答:老张家到单位的路程是8.2公里.5、某地上网有两种收费方式,用户可以任选其一:A计时制:1元/小时;B包月制:80元/月.此外,每一种上网方式都加收通讯费0.1元/小时.(1)某用户每月上网40小时,哪种上网方式较合算?因为A方式:40×(1+0.1)=44(元),而B方式:80+40×0.1=84(元),所以选择A方式比较合算.(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?设用户选择A方式用100元可以上网x小时,选择B方式用100元可以上网y小时.由题意,得(1+0.1)x=100,80+0.1y=100.解得x=1000/11,y=200.因为1000/11<200,所以选用B方式较合算.(3)请你为用户设计一个方案,使用户能合理地选择上网方式.设每月上网m小时,两种上网方式的消费额相等.由题意,得(1+0.1)m=80+0.1m.解得m=80.故当每月上网不足80小时,选A上网方式较合算;当每月上网80小时,两种上网方式的消费额相等;当每月上网超过80小时,选B上网方式比较合算.6、某景点的门票价格如表:50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1 118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1) 两个班各有多少名学生?两班共有816÷8=102(人).设七年级(1)班有x人,则12x+10(102-x)=1 118.解得x=49.则102-x=102-49=53.答:七年级(1)班有49人、七年级(2)班有53人.(2)团体购票与单独购票相比较,两个班各节约了多少钱?七年级(1)班节省的费用为(12-8)×49=196(元),七年级(2)班节省的费用为(10-8)×53=106(元).7、中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3 500元后的余额作为其每月应纳税所得额;二、个人所得税纳税率如下表:别求出甲、乙两人每月应缴纳的个人所得税;甲个人每月应纳税额:4 000-3 500=500(元);甲每月应缴纳的个人所得税:500×3%=15(元).乙个人每月应纳税额:(6 000-3 500)=2 500(元),乙每月应缴纳的个人所得税:1 500×3%+(2 500-1 500)×10%=145(元).答:甲、乙两人每月应缴纳的个人所得税分别为15元和145元.(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少?若丙每月工资收入额为1 500+3 500=5 000(元),则每月缴纳的个人所得税为(5 000-3 500)×3%=45(元);若丙每月工资收入额为4 500+3 500=8 000(元),则每月缴纳的个人所得税为1 500×3%+(8 000-3 500-1 500)×10%=345(元).因为45<95<345,所以丙纳税级数为2.设丙每月工资收入额应为x元,则1 500×3%+(x-3 500-1 500)×10%=95.解得x=5 500.答:丙每月工资收入额应为5 500元.。

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)分段计费问题知识点分段计费问题1.某市按如下规定收取每月煤气费:用户每月用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分每立方米按1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气立方米.2.平凉市出租车的收费标准是:起步价10元(行驶距离不超过2 km,都需付10元车费),超过2 km时,每增加1 km,加收2.6元.小陈乘出租车到达目的地后共支付车费49元,那么小陈坐车可行驶的路程最远是(不考虑其他收费)()A.15 km B.16 km C.17 km D.18 km3.参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:A.1 000元B.1 250元C.1 500元D.2 000元4.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)琪琪家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前琪琪家的电费是增多了,还是减少了?增多或减少了多少元?请说明理由;(2)琪琪家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?5例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?方案决策问题知识点方案决策问题1.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.2.下表是某地移动公司推出的两种话费收费方式:(1)设通话时间为x分钟,则方式一每月收费 )元,方式二每月收费元;(2)当本地通话分钟时,两种收费方式一样;(3)当通话时间为250分钟时,选择比较合算;当通话时间为150分钟时,选择比较合算.3.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润可达4 500元,经精加工后销售,每吨利润涨至7 500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?4.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1 118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?5.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:若交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,分别用含有x的式子表示出两种购物方案中的支出金额;(2)若某人计划在商都购买价格为5 880元的电视机一台,请分析选择哪种方案更省钱?(3)哪种情况下,两种方案下的支出金额相同?6.某地上网有两种收费方式,用户可以任选其一:A计时制:1元/小时;B包月制:80元/月.此外,每一种上网方式都加收通信费0.1元/小时.(1)某用户每月上网40小时,选择哪种上网方式比较合算?(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.。

初一数学应用题分段计费

初一数学应用题分段计费

分段计费问题题型一1、某商场规定营业员的工资包括基本工资和营业工资两个部分,某商场规定营业员的工资包括基本工资和营业工资两个部分,其中基本工资为其中基本工资为500元/月,销售工资是按营业员当月的营业总额的千分之五来计算的。

营业员甲为测算自己的营业工资,自己记录了11月份连续七天的营业情况,以2000元为标准,超过的记正数,不足的记负数,记录如下:400、300、-100、200、-300、500、-300;又根据国家税法规定,每月个人所得超过800元的部分为应纳税所得额,需缴纳一定的个人所得税。

上缴个人所得税是按下表累加计算的。

应纳税所得额税率不超过500元的部分5% 超过500元至2000元的部分8% 超过2000元至5000元的部分10% ……(1)请你帮助营业员甲测算出11月份的工资。

(2)该商场营业员乙到银行取工资时发现他10月份的工资比测算的工资少了89元,他先愣了一下,又知道是由于上缴了个人所得税,聪明的同学们,你能求出营业员乙10月份的工资吗?(3)该商场经理出台一奖励办法,办法规定:若月营业总额不超过6万元的按原来规定计算当月营业工资,若月营业总额超过6万元但不超过10万元,则超过6万元的部分另加千分之二来计算当月营业工资,若月营业总额超过10万元,则其中的10万元按上面的两个规定,超过10万元的部分另加千分之五来计算当月的营业工资,出台了这一奖励办法之后的某个月营业员丙上缴个人所得税51.4元,那么他这个月的营业总额为多少万元?2、公民每月工资、薪金等个人收入所得不超过800元不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:某人一月份应交纳个人所得税26.7826.78,那么他当月的工资、薪金或其他收入的总额介于:,那么他当月的工资、薪金或其他收入的总额介于:(1)800~900元之间(2)900~1200元之间(3)1200~1500元之间(4)1500~2000元之间(5)2000~5000元之间(6)5000元以上全月应纳税所得额税率不超过500元的部分5% 超过500元至2000元的部分10% 超过2000元至5000元的部分15% 超过5000元的20%3、杂技演员李明参加演出,税后收入是1920元.按个人所得税法规定,演出收入扣除800元后的余额部分,按20% 20% 的比例缴纳个人所得税.此次演出,税前应发李明多少钱?的比例缴纳个人所得税.此次演出,税前应发李明多少钱?的比例缴纳个人所得税.此次演出,税前应发李明多少钱?题型二:(电话计费、上网计费问题)根据下面的两种移动电话收费方式表,解答下列问题:(1)一个月内在本地通话200分钟和350分钟,方式一、方式二各需交费多少元?分钟,方式一、方式二各需交费多少元?(2)问本地通话时间多少分钟时,两种计费方式收费一样多。

实际问题与一元一次方程分段计费和方案决策问题++课件++2024—2025学年人教版数学七年级上册

实际问题与一元一次方程分段计费和方案决策问题++课件++2024—2025学年人教版数学七年级上册
答:12月份该用户用煤气100立方米.
方案选择问题
例2 某班将买一些乒乓球和乒乓球拍,现了解情况如下: 甲、乙两家出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副
定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠一盒乒 乓球,乙店全部按定价的9折优惠,该班需买球拍6副,乒乓球若干盒 (不小于6盒). (1)当购买乒乓球多少盒时两种优惠办法付款一样? (2)当购买20盒乒乓球时,你打算去哪家商店购买,为什么? (3)当购买40盒乒乓球时,你打算去哪家商店购买,为什么?
58
88
可以发现:
58 主叫时间超出限定时88间越
t大于150且小于350 58+长0.,25计(费t-越150多),并且随8着8 主叫
t=350 t大于350
58+时0.间25的(变35化0-1,50按)那=1种08方8式8 的计
费少也会变化.
58+0.25(t-150)
88+0.19(t-350)
用水量,每吨水按7元收费,王红一家三口八月交了36.2元,他们家超
过规定用水( ) C
A.9.8吨
B.5吨
C.2吨
D.3吨
2.某市居民生活用电基本价格为0.4元,若每月用电量超过a度,超出
部分按基价的70%收费.某户5月份用电84度,共交电费30.24元,则a 的值是( ) B
A.60
B.56
C.65
第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种
车多3辆,且刚好坐满.
(1)参加本次社会调查的学生共多少名?
(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使
每个同学都有座位,并且租车费最少,应该怎样租车.

人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)

人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)

人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)一、解答题1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?2.某省公布的居民电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电210度以下,每度价格0.52元月用电210度至350度,每度比第一档提价005元月用电350度以上,每度比第一档提价0.30元例:若某户用电量400度,则需交电费为:210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230元如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份用电量.3.(12分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,应交电费元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?4.某地为鼓励节约用水,水价实行阶梯计费制,其收费标准如下:(1)若某用户上月用水22m3,则应缴水费_____元(用含a的代数式表示).(2)若某用户上月用水36m3,缴水费131元,求a;(3)在(2)的条件下,设每月用水量xm3,请直接用x的代数式表示每月支出的水费.5.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费设某户每月用水量为x吨,应收水费为y元.设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨?6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度 a超过150度的部分 b2017年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=_____,b=_____;(2)试行“阶梯电价”收费以后,该市一户居民2017年8月份平均电价每度为0.9元,求该用户8月用电多少度?7.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由. 8.重百江津商场元月一日搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给于优惠超过200元,而不足500元优惠10%超过500元,而不足1000元其中500元按9折优惠,超过部分按8折优惠超过1000元其中1000元按8.5折优惠,超过部分按7折优惠某人两次购物分别用了134元和913元.(1)此人两次购物其物品如果不打折,值多少钱?(2)在此活动中,他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品是更节省还是亏损?说明你的理由.9.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?10.10.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?11.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?12.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.经洽谈,甲商场的优惠方案是:每购买10套队服,送1个足球;乙商场的优惠方案是:若购买队服超过80套,则购买足球打八折.(1)每套队服和每个足球的价格分别是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所需的费用.(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?13.春节期间,七年级(1)班的明明、丽丽等同学随家长一同到某公园游玩,如图是购买门票时,明明与他爸爸的对话,试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人?几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?(3)购完票后,明明发现七年级(2)班的张小涛等8个学生和他们的12个家长共20人也来购票,请你为他们设计出最省钱的购票方案,并求出此时的购票费用。

5.3.3方案决策问题和分段计费问题课件 2024-2025学年人教版数学七年级上册

5.3.3方案决策问题和分段计费问题课件 2024-2025学年人教版数学七年级上册
方案二更省钱? ∴当考察的学生人数等于40人时,两种方案车费一样多; ∵25×88%•x<25×20+25(x-20)80% 时,x<50,x-10<40 ∴当考察的学生人数少于40人时,选择方案一更省钱; ∵25×88%•x>25×20+25(x-20)80% 时,x>50,x-10>40 ∴当考察的学生人数多于40人时,选择方案二更省钱.
随堂练习
练习2 公园门票价格规定如下:
某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,不足50人,经估
算,如果两个班都以班为单位进行购票,则一共应付1240元,问:
(1)两个班各有多少个学生?
解:(1)设七年级(1)班x人, 13x+11(104-x)=1240,
购票张数 每张票的价格
按峰谷电价付费:50×0.56+150×0.36=82(元), 82<106, 所以按峰谷电价付电费合算;
随堂练习
练习4 某市城市居民用电收费方式有以下两种: 甲、普通电价:全天0.53元/度; 乙、峰谷电价:峰时(早8:00-晚21:00)0.56元/度;谷时(晚21:00-早8:00)0.36元 /度.(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方 式省了14元,求八月份的峰时电量为多少度? (2)设八月份的峰时电量为x度, 根据题意得:0.53×200-[0.56x+0.36(200-x)]=14, 解得x=100. 答:八月份的峰时电量为100度.
课后小结
1.“方案选择问题”与日常生活联系密切。解答“方案选择问题”的基本方法就是求 得每种方案的结果,再结合结果做出判断,注重的是培养把实际问题抽象转化成为 数学问题,以及提高分析决策的能力。 2.分段计费问题主要分为两类,一类是出租车付费问题,另一类是阶梯水电价问题。 解决一元一次方程之分段计费问题,关键是掌握画分段图,画分段图可以在线段图 上清楚直观地看到不同段收费标准。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分段计费与方案决策问题
要点1 分段计费问题:总费用=未超标部分的费用+超标部分的费用.
要点2 方案问题:方案一的数量=方案二的数量.
1.某工厂出售一种产品,其成本价为每件28元,若直接由厂家门市部出售,每件产品售价35元,其他费用每月2100元;若委托商店出售,出厂价每件32元.
(1)在这两种销售方式下,每月出售多少件时,两种销售方式所得利润相等?
(2)若销售量每月达到1 000件时,采用哪种销售方式获得利润较多?
解:(1)设每月出售x件时,所得利润平衡,由题意得
(35-28)x-2100=(32-28)x,
解得x=700.
答:每月出售700件时,所得利润平衡.
(2)若销售量每月达到1 000件时:
方式一的利润:(35-28)×1 000-2 100=4 900(元).
方式二的利润:(35-28)×1 000=4 000(元).
因为4 900>4 000,所以若销售量每月达到1 000件时,采用方式一获得利润较多.
2.“水是生命之源”,某市自来水公司为鼓励企业节约用水,按以下规定收取水费:如果每户每月用水不超过40吨,那么每吨水按1元收费;如果每户每月用水超过40吨,那么超过部分按每吨1.5元收费。

另外,每吨水加收0.2元的城市污水处理费.自来水公司收费处规定用户每两个月交一次用水费用(注:用水费用=水费+
城市污水处理费).某企业每月用水都超过40吨,已知今年三、四两个月一共交用水费用640元,问:
(1)该企业三、四两个月共用水多少吨?
(2)这两个月平均用水费用每吨多少元?
解:(1)设该企业三、四两个月共用水x吨,由题意,得40×1×2+1.5(x-40×2)+0.2x=640,
解得x=400.
答:该企业三、四两个月共用水400吨.
(2) 640÷400=1.6(元).
答:这两个月平均用水费用每吨1.6元.
3.下表是某移动公司推出的两种话费收费方式:
(1)设月通话时间为x min,则方式一每月收费________元,方式二每月收费______元;
(2)月通话时间为多少min时,两种收费方式一样;
(3)当月通话时间为250 min时,选择哪个方式比较合算.
4.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25
元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需购买球拍5副,乒乓球若干盒(不少于5盒).
(1)当购买乒乓球多少盒时,两种优惠办法付款一样?
(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?
解: (1)设该班购买乒乓球x盒,由题意,得
甲商店:100×5+25(x-5)=25x+375,
乙商店:0.9×100×5+25×0.9x=22.5x+450,
令:25x+375=22.5x+450,解得x=30.
答:该班购买乒乓球30盒时,两种优惠办法付款一样.
(2)购买20盒乒乓球时:
甲商店:25×20+375=875(元),
乙商店:22.5×20+450=900(元),
因为875<900,所以去甲商店购买更合算;
购买40盒乒乓球时:
甲商店:25×40+375=1 375(元),
乙商店:22.5×40+450=1 350(元),
因为1 350<1 375,所以去乙商店购买更合算.
5. 某省公布的居民用电阶梯电价听证方案如下:
度价格0.52元比第一档提价0.05元元
例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).
(1)如果按此方法计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;
(2)如果实行此方案,请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?
解:(1)月用电量为210度时,电费为210×0.52=109.2(元),月用电量为350度时,电费为210×0.52+(350-210)×(0.52+0.05)=189(元),故可得小华家5月份的用电量在第二档.
设小华家5月份的用电量为x度,由题意,得
210×0.52+(x-210)×(0.52+0.05)=138.84,解得x=262.
答:小华家5月份的用电量为262度.
(2)由(1)得,当a≤109.2时,小华家该月用电量属于第一档;
当109.2<a≤189时,小华家该月用电量属于第二档;
当a>189时,小华家该月用电量属于第三档.
6.某地上网有两种收费方法,用户可以任选其一:A计时制:1元/小时,B包月制:80元/月,此外,每一种上网方式都加收通讯费0.1元/小时.
(1)某用户每月上网40小时,选用哪种上网方式比较合算?
(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?
解:(1)如果用户每月上网40小时,则选择A 需支付40×(1+0.1)=44(元),选择B 需支付80+40×0.1=84(元).
因为44<84,所以选用A 方式比较合算.
(2)设用户选择A 方式用100元可以上网x 小时,选择B 方式用100元可以上网y 小时.
由题意,得(1+0.1)x =100,80+0.1y =100.
解得x =100011
,y =200. 因为100011
≈91<200,所以选用B 方式较合算. 挑战自我
7.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于今年4月1日开始全面实行新型农村合作医疗, 对住院农民的医疗费实行分段报销制.下面是该县医疗机构住院病人累计分段报销表:
[例:某住
院病人花去医疗费900
元,报销金额为500×
20%+400×30%=220(元)] (1)农民刘老汉在4月
份因脑中风
住院花去医疗费2 200元,他可以报销多少元?
(2)刘老汉在6月份因脑中风复发再次住院,这次报销医疗费4 790.25元,刘老汉这次住院花去医疗费多少元?
答案12.(1)报销数额为500×20%+(2 000-500)×30%+(2 200-2 000)×35%=620(元).
(2)设刘老汉这次住院的医疗费为x 元,则根据题意,得
500×20%+(2 000-500)×30%+(5 000-2 000)×35%+(10 000-5 000)×40%+(x-10 000)×45%=4 790.25. 解得x=12 645. 答:刘老汉这次住院花去医疗费12 645元.。

相关文档
最新文档