专题复习---解三角形(一)教学设计

合集下载

2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

2023届高三数学一轮复习专题  解三角形  讲义 (解析版)

单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。

教学过程既可以采用表格式描述,也可以采取叙事的方式。

如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。

表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。

问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。

重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。

3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。

再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。

3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。

“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。

环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。

28.2解直角三角形(第1课时)-教学设计

28.2解直角三角形(第1课时)-教学设计

28.2解直角三角形教学设计第1课时一、教学任务分析二、教学流程安排三、教学过程设计教学程序及教学内容师生行为设计意图 活动一:复习引入1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a bA b aA c bA c a A ====cot ;tan ;cos ;sin b aB abB c aB c b B ====cot ;tan ;cos ;sin(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.3.通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形。

教师引导学生进行锐角三角形相关知识回顾与复习。

要求学生了解解直角三角形的依据,通过复习,使学生便于应用。

活动二:探究新知通过课本中“比萨斜塔”倾斜的问题,引出结直角三角形,详见书本P85页. 进行探究1:(1)在直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求其余元素?思考与提问:我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?例题1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形. 解 ∵tanA=a b =62=3 ∴ 60B ∠=∴ 9030A B ∠=-∠=∴C=2b=22详见P86-88页,例2,例3,例4;教师提问,学生互动; (1)三边之间关系a 2 +b 2 =c 2 (勾股定理)(2)锐角之间关系∠A+∠B=90°. (3)边角之间的关系如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.引导学生思考分析完成后,让学生独立完成教师组织学生比较各种方法中哪些较好,选一种板演。

苏教版数学高一《解三角形》 精品教学设计 江苏省扬州市新华中学

苏教版数学高一《解三角形》 精品教学设计 江苏省扬州市新华中学
(1)求角C;(2)求 的面积S
例3、已知 是 的三边长,关于 的方程 (a>c>b)
的两根之差的平方等于4, 的面积 .
(1)求C;(2)求 的值
例4、在 中,内角A,B,C的对边分别为 ,已知 ,且 .
(1)求 的值;(2)设 求 的值.
第一章复习解三角形1
命题:潘鹏 陈荣 审核:常国庆 班级:姓名:
二、解答题:
11、在 中,已知 ,且 试判断三角形的形状.
12、如图,在直三棱柱 中, 分别是 的中点,点D在 上, .
求证:(1) //平面 ;(2)平面 平面 .
13、,已知 ,且 , , ,求 的长
14、在 中, , ,
(1)求 边的长;(2)记 的中点为 ,求中线 的长
选:在海岸A处,发现北偏西 的方向,距离2nmile的B处有一艘走私船,在A处北偏东 处的缉私船奉命以 nmile/h的速度追截走私船.此时正以10nmile/h的速度从B向北偏西 方向逃窜,问缉私船沿什么方向能最快追上走私船?
8、已知异面直线AB,CD都平行于平面 ,且AB,CD在 两侧,若AC,BD分别交 于M,N两点,若AM:MC=2:3,则BD:ND=
9、在 中, ,若利用正弦定理解三角形时有两个解,则 的取值范围是
10、在某塔底的水平面上一点测得塔顶的仰角为 ,由此向塔基沿直线行走30m后,测得塔顶仰角为 ,再向塔基前进 m后,又测得塔顶的仰角为 ,则塔高为____________
三边
余弦定理
注:第三种情形注意讨论解的个数
一解两解一解一解
二、基础训练:
1、在 中,若 ,则角B的大小是
2、在 中,若 ,则 是三角形
3、在 中,根据下列条件,确定 有两解的是

《解三角形》(复习课案例)

《解三角形》(复习课案例)

《解三角形》(复习课案例)发表时间:2011-11-18T15:23:06.347Z 来源:《少年智力开发报(课改论坛)》2011年31期作者:郝言阳[导读] 以往的教学中,常常是教师总结知识点和例题,学生模仿练习,靠大量习题的训练来完成,这样显然不利于学生主动探索自主学习,学生的思维得到了限制和压抑,不会有好的效果。

山东省莱阳第一中学数学组郝言阳一、教学设计1.学情分析:以往的教学中,常常是教师总结知识点和例题,学生模仿练习,靠大量习题的训练来完成,这样显然不利于学生主动探索自主学习,学生的思维得到了限制和压抑,不会有好的效果。

正如皮亚杰强调的“教师的工作不是‘教给’学生什么,而是努力构建学生的知识结构,并以种种方式刺激学生的欲望。

这样,学习对学生来说,就是一个‘主动参与’的过程”。

我们初步进行了让学生自己建构总结,学生较平时有了一些主动性,能独立思考总结,从过去被动的接受知识逐步过渡到主动探究索取知识,增强了学习数学的兴趣。

2.教材分析:《课标》把“解三角形”这部分内容安排在数学五的第一部分,位置相对靠后,在此内容之前学生已学习了三角函数、平面向量、直线和圆的方程等与本章有联系密切的内容,这使这部分的处理有了比较多的工具,某些内容可以处理得更加简洁。

比如对余弦定理的证明常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

3.课标要求:掌握正余弦定理,并能解决一些简单的三角形度量问题。

能够运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

在处理解三角形的实际应用问题中,获得综合运用解三角形的知识和方法解决实际问题的经验,发展创新意识。

4.设计思路:多媒体展示本章的知识网络及重要知识点,让学生自己加以对比补充。

②展示题目、小组讨论、教师环视:小组讨论时,教师要巡视教室,参与到学生的讨论中,并积极捕捉学生中出现的一些“意见”,尽量快速判断出教学中有利用价值的动态资源,并力求能巧妙地运用在教学活动中。

解三角形思维导图复习课教学设计

解三角形思维导图复习课教学设计

一轮复习解三角形教学设计临高中学吴金竹教学目标同步教学知识内容掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题个性化学习问题解决主要利用正、余弦定理解三角形、判断三角形的形状,求三角形的面积及解三角形的具体应用问题教学重点熟练运用正、余弦定理解三角形教学难点学会对知识进行整理达到系统化,提高分析问题和解决问题的能力教学过程教师活动一、知识点复习二、典型例题题型1 利用正、余弦定理解三角形【例1】在△ABC中,已知a=2,b=,A=45°,则满足条件的三角形有().A.1个B.2个C.0个D.无法确定在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=bc,且sin C=2sin B,则角A的大小为.题型2 与三角形面积有关的问题【例2】△ABC的内角A,B,C的对边分别为a,b,c,且(2b-c)cos A=a cos C.(1)求A 的值;(2)若a=2,求△ABC 面积的最大值; (3)若a=2,求△ABC 周长的取值范围.变式训练2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2ac sin B=a 2+b 2-c 2.(1)求角C 的大小;(2)若b sin (π-A )=a cos B ,且b=,求△ABC 的面积.【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。

(边化角)三、课堂练习:1、满足︒=45A ,c=6,a=2的ABC ∆的个数为m ,则m a 为2、已知a=5,b=35,︒=30A ,解三角形。

人教版下册四年级数学《复习三角形知识》教案

人教版下册四年级数学《复习三角形知识》教案

人教版下册四年级数学《复习三角形知识》
教案
教学目标
- 复习三角形的定义和性质
- 认识不同类型的三角形
- 掌握判断和画出不同类型三角形的方法
教学准备
- 教材:人教版下册四年级数学教材
- 教具:直尺、量角器、彩色铅笔
教学过程
导入
1. 利用多媒体展示图片,让学生回顾三角形的定义和性质。

复习三角形的定义和性质
1. 提问学生对三角形的定义和性质进行回答,鼓励学生积极参
与讨论。

2. 引导学生总结三角形的性质,例如三条边的长度关系、角的
和等于180度等。

认识不同类型的三角形
1. 利用多媒体展示不同类型的三角形图片,如等边三角形、等
腰三角形、直角三角形等。

2. 引导学生观察并讨论不同类型的三角形的特点,例如等边三
角形三条边相等、直角三角形有一个角为直角等。

判断和画出不同类型三角形的方法
1. 引导学生通过观察三角形的边长和角度来判断三角形的类型。

2. 提示学生使用直尺和量角器来画出不同类型的三角形,帮助
他们理解三角形的构成。

拓展练习
1. 分发练习册,让学生自主完成相关练习题,巩固所学的知识。

2. 教师巡视并及时解答学生的疑惑。

总结
1. 总结本节课所学的内容,强调三角形的定义、性质以及不同类型的三角形。

2. 鼓励学生通过课后练习巩固所学知识。

课后作业
1. 完成练习册上的相关练习题。

2. 复习并总结本节课所学的知识。

专题 解三角形之求边的比值的取值范围问题(教案)-高考数学二轮复习

专题 解三角形之求边的比值的取值范围问题(教案)-高考数学二轮复习

解三角形之求边的比值的取值范围问题教学设计一、设计思路解三角形是高考中的重点题型,对正弦定理和余弦定理的考查比较灵活,题型多变,多与三角形周长,面积有关;有时也会与平面向量,三角恒等变换,不等式等结合考查。

而三角形中的最值问题又是一个重点,其中最典型的就是对面积、周长的最值问题考查,但是近年来的题型一直在不断地创新,其中2018年北京卷文科卷、2022年全国一卷、2022年全国甲卷理科卷都考查了三角形中边的比值的取值范围问题,处理这个最值问题解决方法主要是通过消元建立目标函数后,可以利用重要不等式解决,也可以利用三角函数的有界性解决。

这种方法对学生的思维训练而言是很有价值的,所以笔者设计了这样一节微课,总结出解决此类问题的基本步骤和数学思想方法,希望对同学们有所帮助。

二、教学目标1、能运用正弦定理,消元等方法将边的比值问题转化为一元函数的值域问题;2、通过对此类问题的分析,对数学思想方法有更深的理解,培养严谨的数学逻辑思维。

三、核心素养数学运算、逻辑推理、直观想象、数学抽象四、教学重难点重点:将三角形边的比值转化为对角的正弦之比。

难点:掌握解三角形中处理范围问题的方法:转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)五、教学过程(一)解三角形公式回顾1.正弦定理及其应用:,其中为外接圆的半径 C B A c b a sin :sin :sin ::=CB A c b a 222222sin :sin :sin ::=2sin sin sin a b c R A B C===R ABCB C A b c a sin sin sin +=+2. 面积公式: S =12ab sinC =12bcsinA =12ac sinB3. 三角形中其他常用结论均为锐角。

、、是锐角三角形,则若,,C B A ABC C B A C B A C B A C B A C B A ∆=+=+-=+=+=++)3(2sin 2cos 2cos 2sin cos )cos(,sin )sin()2()1(π (二)例题精讲例题:在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设()1,m a =,()3sin ,cos n C b a C =-,//m n . (1)求角A ;(2)求bc 的取值范围. [设计意图]: 本题将引导学生利用正弦定理和消元思想将比值转变为一个一元的函数,从而将问题转化为求函数的值域(最值),但是要注意函数的定义域,即“元”的取值范围。

高三数学《解三角形》教学设计

高三数学《解三角形》教学设计

《解三角形》教学设计崇明中学汤杰【教学目标】1、掌握正弦、余弦定理的内容,灵活运用正、余弦定理解三角形问题。

2、学会分析问题,合理选用定理解决三角形问题,提升合情推理探索数学规律的数学思维能力。

3、在学习过程中激发学生学习兴趣,激发学生的探索精神。

【教学重点】正、余弦定理的灵活运用、解三角形中边角互化问题。

【教学难点】解三角形中的综合问题。

【教学过程】120,运用,学生课前完成,教师边角互化多向思维应用研究综合提升考点3、解三角形的实际问题研究例题2、如图,游客从某旅游景区的景点A处下山至C处有两种路径。

一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C。

现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为min/50m。

在甲出发min2后,乙从A乘缆车到B,再从B匀速步行到C。

假设缆车匀速直线运动的速度为min/130m,山路AC长为m1260,经测量:1312cos=A,53cos=C。

1)求索道AB的长;2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?考点3例题教师引导学生审清题意,要求学生先独立思考,然后请学生讲解自己的想法与做法。

教师板书解答过程。

旨在通过本例题让学生学会建立数学模型解决实际问题,让学生在解决问题过程中体验学习数学的乐趣,与此同时也提升了学生的分析解题的能力。

课堂小结通过本节课的学习,你有哪些收获?请让学生思考和总结,然后派代表回答。

及时进行总结,同时检查学生本节课的【教学设计说明】1、教材内容分析:解三角形是高考考察的重点考察内容,由近几年高考可以看出,解三角形是高考必考内容,选择、填空、解答题都有出现,所以本节课的重点就是如何解三角形,而正弦定理和余弦定理又是解三角形的工具。

所以通过本章学习,学生应该能够通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形,能够运用正弦定理、余弦定理及变形等知识解答有关三角形的综合问题。

《解三角形》教学设计-优秀教案

《解三角形》教学设计-优秀教案

45,C∠.求边长能够很好地激发学生的求知欲望。

在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。

探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。

通过这样的一些实验, 我们可以猜想。

学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。

让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。

多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。

环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。

在这个过程中, 也进一步促进学生数学思维思维品质的提升。

7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。

使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。

人教版数学九年级下册-28.2.1 解直角三角形-教案

人教版数学九年级下册-28.2.1  解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。

本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。

教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。

本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。

通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。

二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。

(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。

并让学生体验到学习是需要付出努力和劳动的。

三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。

四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。

2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。

高中数学教学课例《解三角形的应用(高三复习课)》课程思政核心素养教学设计及总结反思

高中数学教学课例《解三角形的应用(高三复习课)》课程思政核心素养教学设计及总结反思

线,三角形外角和问题,在两个三角形中,两两使用正
弦定理、余弦定理。
在关注学生发展核心素养的今天,对于教师而言,
课例研究综 这无疑是个巨大挑战,挑战源于教师要从“学科教学”

转向“学科教育”,从“知识核心时代”走向“核心素
养时代”,提升数学课堂的思维含量,构建“让学生爱
思考、会思考、享受思考”的情境教学课堂,为发展学 生的心智而教,这是必然要求,更是我们努力的方向。 本节课以高考试题为背景,通过师生互动,发现问题, 寻找解决问题的方法,我在编写三个题,让学生突破、 提升。1.在中,角的对边分别为,已知
高中数学教学课例《解三角形的应用(高三复习课)》教学 设计及总结反思
学科
高中数学
教学课例名
《解三角形的应用(高三复习课)》

解三角形的应用是高考考查的重点内容,主要考查 教材分析
正弦定理、余弦定理的应用。
掌握正弦定理、余弦定理,能运用正弦定理、余弦
教学目标 定理解三角形的相关问题。教学难点:利用正弦定理、
(1)求的值;(2)若,求面积的最大值. 2.如图中,已知点在边上,且,,, (1)求的长; (2)求 3.已知中,是边上的中线,且。 (1)求;(2)若,求的长。
余弦定理,结合三角恒等变换,均值不等式求解。
熟练使用正弦定理、余弦定理解三角形是学生必须
掌握的,对于ቤተ መጻሕፍቲ ባይዱ单的问题,求角、求边,求面积,一般
学生学习能 的学生都会,但是把它综合在三角形中,涉及到三角形
力分析 的角平分线,中线,三角形外角和的应用,学生感到比
较棘手。本内容的复习采用师生互动、自主学习的研究
教学过程
用多媒体出示近三年高考解三角形的试题,:

三角恒等变换与解三角形教学设计

三角恒等变换与解三角形教学设计

《三角恒等变换与解三角形》教学设计一、学情分析:(1)这是一节高三的一轮复习课,复习《三角恒等变换与解三角形》之前,已经提前预习了和、差、二倍角公式,正、余弦定理,部分同学具备分析问题的能力;(2)本班是理科班,数学基础良好,学生思维较活跃,能够运用所学知识解决实际问题;(3)根据学生特点制定了由浅入深地来复习三角恒等变换与解三角形这一课时的教学计划,同时通过实例提高学生的学习兴趣。

二、教学内容分析:《三角恒等变换与解三角形》既是高中数学的基本内容,又有较强的应用性。

为培养学生的应用意识,提高学生分析问题解决问题的能力,教学中应结合具体问题,教给学生解题的基本方法、步骤。

三、教学目标:1、课标要求:能够运用三角恒等变换与正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

2、(1)熟练掌握和差、二倍角公式,根据问题的条件灵活进行公式变形;会选择恰当的公式,根据问题的条件进行公式变形;加强对换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力。

运用正弦定理、余弦定理提高学生分析问题、解决问题的能力。

(2)通过三角变换,加强学生对换元、逆向思维等思想方法的认识。

通过解三角形在实际中的一些应用,开放多种思路,引导学生发现问题,培养学生分析问题、解决问题的能力;四、教学的重点和难点:重点:在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力。

难点:从中找到解决问题的关键。

五、教学策略选择与设计:重视提出问题、解决问题策略的指导。

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱,学生不能把所学的数学知识应用到实际问题中去,因此在教学中引导学生发现问题、提出问题是非常必要的。

针对这一节课的内容,以及学生特点,我制定了由浅入深的教学计划:首先,将所授内容分为三大类——正余弦定理的应用,解三角形与实际应用问题;其次,在每一类型中,有代表性地各选取一道例题,遵循由浅入深的原则进行顺序上的安排。

数学5第一章解三角形教学设计课题

数学5第一章解三角形教学设计课题

数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。

通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。

本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。

在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。

”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。

解直角三角形教学设计

解直角三角形教学设计

解直角三角形教学设计作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

教学设计应该怎么写呢?以下是店铺收集整理的解直角三角形教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

解直角三角形教学设计1教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。

教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。

教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。

教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8。

二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积.2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD =,求:(1)弦AB的长;(2)CD的长.解直角三角形教学设计2一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

沪科版数学九年级上册23.2《解直角三角形及其应用》(第1课时)教学设计

沪科版数学九年级上册23.2《解直角三角形及其应用》(第1课时)教学设计

沪科版数学九年级上册23.2《解直角三角形及其应用》(第1课时)教学设计一. 教材分析《解直角三角形及其应用》是沪科版数学九年级上册第23.2节的内容。

本节内容是在学生已经掌握了直角三角形的性质、锐角三角函数的概念和勾股定理的基础上进行学习的。

本节课的主要内容是让学生学会解直角三角形,并能运用解直角三角形的知识解决实际问题。

教材中通过丰富的实例,引导学生探究直角三角形的边角关系,培养学生的动手操作能力和解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形和锐角三角函数的概念有一定的了解。

但在解决实际问题时,还可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.知识与技能目标:让学生掌握解直角三角形的方法,并能运用解直角三角形的知识解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的动手操作能力和解决实际问题的能力。

3.情感态度与价值观目标:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。

四. 教学重难点1.教学重点:让学生掌握解直角三角形的方法,并能运用解直角三角形的知识解决实际问题。

2.教学难点:如何引导学生将实际问题转化为解直角三角形的问题,并运用相应的解决方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生自主探究解直角三角形的方法。

2.实例分析法:教师通过展示实例,让学生观察、操作,培养学生的动手操作能力。

3.小组合作法:学生分组讨论,共同解决实际问题,培养学生的合作意识。

六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、实例、习题等。

2.学生准备:学生需要预习相关内容,了解直角三角形的性质和锐角三角函数的概念。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量旗杆的高度、计算建筑物的斜边长度等,引导学生思考如何解决这些问题。

高中数学 第一章 解三角形教学设计 新人教A版必修5-新人教A版高二必修5数学教案

高中数学 第一章 解三角形教学设计 新人教A版必修5-新人教A版高二必修5数学教案

(新课标)2015-2016学年高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 本章我们共学习了哪些内容? 生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和类型(3)在有解时只有一解,R CcB b A a 2sin sin sin === 一边(4)已知两边及其中一边的对角类型(4)可有解、一解和无解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C (5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan 12tan2tan 2-=-=-=C CC . 师 思路非常清晰,请同学们思考本题共涉及到了哪些知识点? 生 正弦定理、余弦定理与三角形面积公式. 生 还有余切的二倍角公式. 师 你能总结这类题目的解题思路吗?生 拿到题目不能盲目下手,应该先找到解题切入口. 师 对,你讲得很好.生 正弦定理、余弦定理都要试试.【例3】 将一块圆心角为120°,半径为20 c m 的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA 上,或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值. 师 本题是应用题,怎么处理?生 由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论. 解:按图(1)的裁法:矩形的一边O P 在OA 上,顶点M 在圆弧上,设∠M OA =θ,则|MP|=20sinθ,|OP |=20co sθ, 从而S=400sinθco sθ=200sin2θ, 即当4πθ=时,S m a x =200.按图(2)的裁法:矩形的一边PQ 与弦AB 平行,设∠M O Q=θ,在△M O Q 中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin 2340120sin sin 20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到0.1°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为104.5°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为104.5°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .8.2C .10.3D .9.83.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) A.d 1>d 2B.d 1=d 2C.d 1<d 2D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:1.C 2.D 3.C 4.等腰5.70°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值X 围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习---解三角形(一)教学设计
小组探究
(2)若AD=1,DC=
2
2
,求BD和AC的
长.
教师提问:
问题1:由角平分线你能想到什么?由面积关系你又能想到什么?
教师板书:
1.图形中标示出相等的角
2.写出学生表达的面积形式(追问学生得出两种表达形式,分别能得
到AC与AB的比和BD与CD的比)
问题2:第(1)问中
sin B
sin C
如何转化?
请大家试着将第一问的过程完整的下来
板书如果有问题,可作点评
接下来看第二问
BD和AC哪一个更好求?
BD等于多少?
AC呢?
下面请小组内讨论
要求AC,通常情况下,我们将边放在三角形中解决,你认为该放在哪
个三角形中解决
在一个三角形中能够求出来么?
因为三角形中已知两边,无法求出另外一边
看题目中的已知条件(指出图中的三条已知边,以及第一问的结论)
可以根据角的关系建立方程
适当板书出来
解完这个题后,我们回过头来看看,你有什么收获?
学生回答
1.角相等,
角平分线到
角两边的距
离相等,(或
内角平分线
定理)
△ABD和△
ADC面积的
表达式
2.转化成
AC与AB的

一名学生板
书,其他同
学在下面完

学生答BD
BD=2CD=√2
△ABC或△
ADC
学生说出自
己的见解和
方法
学生回答:
追问学
生得出
两种表
达形式,
分别能
得到AC
与AB的
比和BD
与CD的

教师巡
视,个别
指导
停顿一

2分钟。

相关文档
最新文档