二次函数与相似三角形问题(含答案)解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在 轴上方的抛物线上是否存在一点M,过M作MG 轴于点G,使以A、M、G三点为顶点的三角形与 PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
练习5、已知:如图,在平面直角坐标系中, 是直角三角形, ,点 的坐标分别为 , , .
(1)求过点 的直线的函数表达式;点 , , ,
(2)在 轴上找一点 ,连接 ,使得 与 相似(不包括全等),并求点 的坐标;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
练习8、如图,抛物线经过 三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处。已知折叠 ,且 。
(1)判断 与 是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。
综合题讲解函数中因动点产生的相似三角形问题
例题如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。
⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为 )
⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
练习10、当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.
(3)在直线AC上方的抛物线上有一点D,使得 的面积最大,求出点D的坐标.
练习9、已知,如图1,过点 作平行于 轴的直线 ,抛物线 上的两点 的横坐标分别为 1和4,直线 交 轴于点 ,过点 分别作直线 的垂线,垂足分别为点 、 ,连接 .
(1)求点 的坐标;
(2)求证: ;
(3)点 是抛物线 对称轴右侧图象上的一动点,过点 作 交 轴于点 ,是否存在点 使得 与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
(3)在(2)的条件下,如 分别是 和 上的动点,连接 ,设 ,问是否存在这样的 使得 与 相似,如存在,请求出 的值;如不存在,请说明理由.
练习6、如图,已知抛物线与 交于A(-1,0)、E(3,0)两点,与 轴交于点B(0,3)。
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
练习3、在平面直角坐标系 中,已知二次函数 的图象与 轴交于 两点(点 在点 的左边),与 轴交于点 ,其顶点的横坐标为1,且过点 和 .
(1)求此Hale Waihona Puke Baidu次函数的表达式;(由一般式得抛物线的解析式为 )
(2)若直线 与线段 交于点 (不与点 重合),则是否存在这样的直线 ,使得以 为顶点的三角形与 相似?若存在,求出该直线的函数表达式及点 的坐标;若不存在,请说明理由;
(3)若点 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角 与 的大小(不必证明),并写出此时点 的横坐标 的取值范围.
练习4、如图所示,已知抛物线 与 轴交于A、B两点,与 轴交于点C.
(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
练习7、如图,已知抛物线y= x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y= x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是__,b=__,c=__;
(2)过 点作平行于 轴的直线 交 轴于 点,在抛物线对称轴右侧且位于直线 下方的抛物线上,任取一点 ,过点 作直线 平行于 轴交 轴于 点,交直线 于 点,直线 与直线 及两坐标轴围成矩形 .是否存在点 ,使得 与 相似?若存在,求出 点的坐标;若不存在,说明理由.
(3)如果符合(2)中的 点在 轴的上方,连结 ,矩形 内的四个三角形 之间存在怎样的关系?为什么?
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.
练习1、已知抛物线 经过 及原点 .
(1)求抛物线的解析式.(由一般式得抛物线的解析式为 )
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
例题2:如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况
2.函数中因动点产生的相似三角形问题一般有三个解题途径
①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
相关文档
最新文档