测井复习资料11

合集下载

测井资料解释——复习资料

测井资料解释——复习资料

一.概念1.储集层:在石油地质中,能够储积和渗滤流体的岩层称为储集层。

2.孔隙度:岩石本身的空隙体积和岩石体积的比值。

3.渗透性:岩石允许流体通过的能力,一般用渗透率表示。

4.渗透率:衡量流体通过相互连通的岩石孔隙空间难易程度的尺度。

5.达西定律(求渗透率):流体通过某一给定岩石的流量与岩石的横截面积和所施加的压力差成正比,而与岩石的长度和流体的粘度成反比,其比例系数为岩石的渗透率。

K=qul/AΔp。

q—流量,u—粘度,l —流体流过岩石的长度,A—流体流过岩石的横截面积;Δp—流体的压力差。

K—渗透率(达西)6.绝对渗透率:当岩心孔隙被一种流体100%饱和时,测量只有该种流体通过岩心时的岩石渗透率,称为岩心的绝对渗透率,用k表示。

7.有效渗透率:当有两种或两种以上流体通过岩石的孔隙时,对其中某一种流体测得的渗透率称为该种流体的有效渗透率,也称相渗透率,用k0、k w、k g、表示。

8.相对渗透率:同一岩石某种流体的有效渗透率和该岩石绝对渗透率的比值。

用k ro、k rw、k rg表示相对渗透率是饱和度的函数。

9.饱和度:某种流体所重填的孔隙体积占岩石岩石孔隙体积的百分数。

10.含水饱和度:岩石含水孔隙体积占岩石有效孔隙体积的百分数,用S w表示。

11.束缚水饱和度:岩石含束缚水孔隙体积占岩石有效孔隙体积的百分数,用S wi表示。

说明:含水饱和度等于束缚水饱和度的储层为油层。

12.润湿性:当两种非混合流体同时呈现于固相介质表面时,某一流体优先润湿这一固体表面的能力。

13.储集层厚度:储集层顶底界面之间的厚度。

14.油气层有效厚度:指在目前经济技术条件下能够产出工业性油气流的油气层得实际厚度,即符合含油气层标准的储集层厚度扣除不合标准的夹层剩下的厚度。

15.高侵:注入泥浆后,冲洗带电阻率R xo>R t原状地层,电阻率为泥浆滤液。

16.低侵:注入泥浆后,冲洗带电阻率R xo<R t原状地层,电阻率为泥浆滤液。

第11讲阵列感应测井

第11讲阵列感应测井

z2.物理基础与方法原理
常规感应测井仪线圈系 z各种浅探测测量结果都受到井眼不规则和井眼 附近的其它因素影响。所带来的后果,特别是由 于一系列井眼不规则导致的测量噪声,常常影响 处理后的深电阻率读值。 z针对常规感应测井中深感应探测特性和纵向分 辨率的不足,1987年HES在常规感应线圈系的基 础上对线圈系进行了重新设计,研制出高分辨率 感应测井HRI(High Resolution Induction)。
z1.发展历程
z感应测井先后经历:常规感应测井(包括简单 的双线圈系、复合六线圈系、双感应组合测井 等)、高分辨率感应测井、高分辨率阵列感应测 井等几个阶段。 z1985年,SLB推出相量双感应测井仪器,能测 量感应测井中的虚部信号。 z1985年,英国BPB公司首次实现“软件聚焦”思 想,推出了商用的阵列感应测井仪器AIS(Array Induction Sonde),线圈系为一个发射线圈和四 个接收线圈。
z1.发展历程
z1957年,A.Poupon提出了阵列感应和“软件聚焦” 的思想,由于技术的限制,当时在测井仪器上未 能实现。 z感应测井最初设计是应用在不能使用直流电测 井的环境,如油基泥浆井、没有泥浆的井、塑料 套管井等。 z生产实践逐渐证实,在淡水泥浆井、原状地层 电阻率较低的地层也有非常好的应用价值。
z2.物理基础与方法原理
z1949年,Doll把电磁感应现象引入测井中,阐述 了感应测井的基本原理。 z发射线圈中的交流电流在接收线圈中产生一次 感应电动势。发射线圈和接收线圈均在井内,线 圈周围的介质可看成是由无数个小单元环组成。 z发射线圈的交流电流必然要在井周围闭合的小 单元环中感应出涡流,此涡流产生的二次交变电 磁场在接收线圈中也必然产生二次感应电动势; 二次感应的电动势与地层的电导率有关。

《地球物理测井》Ch11.密度和岩性密度测井

《地球物理测井》Ch11.密度和岩性密度测井
1、康普顿效应与介质密度的关系 伽马射线与物质的相互作用包括: 光电效应 康普顿效应 电子对效应 吸收系数: 表征单位厚度的介质对伽马射线的吸收能力。 (10-1) (10-2) (10-3)
由上三式可见,只有康普顿效应与介 质密度关系比较简单。(10-2)式表明康 普顿散射引起的伽马射线减弱程度与介质 密度 或电子密度 成正比。 (10-2)式是对单一元素物质表示 的,对于多种化合物也同样遵循这一关 系,例如对于多中原子构成的矿物,其关 系为: (10-4)
一般而言,伽马光子会随着源距的增强而减小。 则有:
因一般储集层都有泥饼,密度测井都采用不同源距的两个伽 马射线探测器,以补偿泥饼对测量的影响,称为双源距补偿密 度测井。常用短源距为15-25cm,长源距35-40cm。
长源距 探测器
短源距 探测器
伽马源
图10-2 双源距补偿密度测井仪器结构
第二节 泥饼影响及密度测井仪刻度方法
不同岩性地层,其测井响应值(幅度)不同
岩性
砂岩 石灰岩 白云岩 硬石膏
声波时差 微秒/米 164~184 156 143 164 微秒/英尺 50~56 47.5 43.5 50 密 度
1、泥饼对计数率的影响(实验) (1)地层没有泥饼时,用长、短源距计数率 都可得到地层密度,而且两者结果一致。 (2)当存在泥饼时,长、短源距计数率将偏 离正常位置。
即长、短源距探测器计 数率(对数坐标)呈线 性关系,所确定的直线 称为“脊线”,其斜率为 AL/AS,该线与横轴的夹
图10-3 无泥饼时的实验曲线
考虑到以上特点,常将密度孔隙度与补偿中子 孔隙度重叠显示以此来区分岩性。
图10-5 某层系的LDT-CNL-GR曲线
3、划分裂缝带或气层

测井原理11-中子测井_图文

测井原理11-中子测井_图文
3 CNL曲线 测量ФCNL
三 中子伽马测井
中子伽马测井(NG)是沿井与记录中子伽马射线强度的 测井方法,NG一般与GR同时测量。 中子源造成的中子伽马射线强度空间分布比较复杂, 主要与地层减速特性,俘获特性以及仪器参数有关。
四 中子测井曲线及其应用
1:比较
影响
SNP CNL NG
少中

探测范围 低 高
测井原理11-中子测井_图文.ppt
主要内容 1 岩石的中子特性 2 连续中子源的中子测井 3 脉冲中子源的中子测井
第一节 中子源及岩石的中子特性
一 中子源 中子测井需要向地层发射快中子,通过中子与地层介质发生 多种核反应来探测地层的减速特性和俘获特性。 如:镅
二 岩石的中子特性 1 中子的分类 ①快中子 En>0.5mev ②中能中子 En=(0.1~0.5)mev
把充满气的孔隙用岩石骨架代替的假设下进行计算的, 计算表明 ,当附加的岩石骨架被挖掘并用气来代替地层具有较小的中子 特性减速,中子测井这种计算差异叫“挖掘效应”,
3)判断气层 在气层含氢指数远小于具有相同孔隙度的含油(水)层
,因此在气层中子伽马曲线显示高值,在中子孔隙度 显示低值
4)划分油水界面 高矿化度地层水时,油水中的氯 含量不同,含水NG高于含油。
二 曲线应用
1:划分油水层
2:监视油水或气水界面的移动
H=49%
c:岩性 中子测井仪器以石灰岩为标准进行刻度,其他岩性 岩石显示为一定数值井壁中子测井(SNP)探测超热中子也称超热中子测井。 1:超热中子通量的空间分布 单位体积中的中子数称中子密度 单位时间通过单位截面的中子数称为中子通量Ф。 在均匀无限大介质中,距离点状快中子源r处的超热中子通量。

测井复习题答案。自制

测井复习题答案。自制

三、简答题1、影响电阻率的因素是什么?答:岩石的矿物成分和分布形式,孔隙结构和孔隙度,孔隙中流体的性质,温度等。

2、什么样地质条件下容易产生周期跳跃?答:1:裂隙底层或破碎带,2:含气的未胶结的纯砂层。

3:声速非常高的岩层,4:井径扩大很厉害的底层3、三侧向测井的基本原理是什么?答:在主供电电极两侧加上两个屏蔽电极,并向屏蔽电极供以相同极性的电流,使其电位与主电极相等,迫使主电极电流不能在井眼中上下流动,而成水平片状进入地层,把井的分流作用和围岩的影响减到最小。

4、影响视电阻率的因素是什么?答:1,电极系参数的影响:一:电极系长度的影响,二:主电极长度的影响,2,井眼及地层参数的影响:一,井眼直径和泥浆的影响,二:层厚和围岩的影响,三:倾入带的影响。

5、声波速度测井有哪些应用?答案:1,声波速度测井在储集层研究中得应用:一:利用地层纵波速度确定孔隙度,二:划分岩性和地层对比,三:预测压力异常地层,2,声波速度测井在地震勘探中得应用,一:对所有有关的数据进行编辑加工整理,二:根据地震测井数据修正声波测井曲线,三:计算反射系数和构成合成地震记录。

6、七侧向测井的基本原理是什么?答:在原理上与三电极侧向测井时一样的,只是电极系结构上略有不同,分为深七电极侧向测井和浅七电极侧向测井。

7、自然伽马测井曲线有哪些应用?答:1,判断岩性和划分渗透性岩层。

2,确定储集层的泥质含量,3,地层对比,8、自然电位曲线的幅度和形状首先取决于自然电动势的大小,那么自然电动势的影响因素有哪些?答:1,温度的影响。

2,岩性的影响。

3,泥浆和地层水中电解质成分的影响,4,地层水和泥浆的矿化度比值的影响。

9、说明产生自然电位的主要原因?答:1,地层水含盐浓度和泥浆含盐浓度不同,引起离子的扩散作用和岩石颗粒对离子的吸附作用,2,地层压力与泥浆柱压力不同时,在地层孔隙中产生过滤作用。

10、放射性测井方法包括哪些?答:中子测井,自然伽马测井,伽马-伽马测井11、什么是密度测井,它的测量原理是什么?答:伽马-伽马测井是按一定方式排列的伽马射线源和探测器一起放入井下一起种,在井下仪器移动过程中由探测器记录源放出的伽马射线径的曾散射和吸收后的强度的方法,因为散射伽马射线强度与地层密度有关,所以又叫密度测井。

测井复习资料

测井复习资料

《测井方法与综合解释》综合复习资料一、名词解释1、热中子寿命2、含油气孔隙度3、一界面4、康普顿效应5、含油孔隙度6、有效渗透率7、泥质含量8、热中子俘获截面9、放射性核素10、光电效应11、孔隙度12、泥浆低侵二、填空题1、描述储集层的基本参数有___________、___________、___________和___________等。

2、地层中的主要放射性核素________________、_____________、_____________。

3、声波时差Δt的单位是___________,电导率的单位是___________。

碎屑岩的泥质含量越高,其GR测井值___________。

4、视地层水电阻率定义为Rwa=________,油气层的Rwa________Rw。

5、在快速直观显示图上,Φ- Φw 表示__________,Φxo-Φw 表示__________。

6、地层因素随地层孔隙度的增大而;岩石电阻率增大系数随地层含油气饱和度的增大而。

7、当Rw小于Rmf时,渗透性砂岩的SP曲线对泥岩基线出现__________异常。

8、地层所含流体的相对渗透率的取值范围。

石油的相对渗透率随石油粘度的降低而。

三、选择题1、地层声波时差与()成正比。

①地层厚度②地层含气孔隙度③地层电阻率④地层深度2、在同一解释井段内,如果1号砂岩与2号砂岩的孔隙度基本相同,但电阻率比2号砂岩高很多,而中子孔隙度明显偏低,2号砂岩是水层,两层都属厚层,那么1号砂岩最可能是()。

①致密砂岩②油层③气层④水层3、某井段一套砂岩地层,自下而上,SP异常幅度逐渐减小,自然伽马幅度逐渐增大,电阻率逐渐减小,最有可能的原因为()。

①地层含油饱和度逐渐降低②地层泥质含量逐渐增大③地层含油饱和度逐渐增大四、判断改错(在括号中画“√”或“×”,请标出错误并改正。

)1、淡水泥浆钻井时,无论是油气层还是水层,通常均为高侵剖面。

测井复习资料

测井复习资料

测井复习资料一、名词解释1.视电阻率:在地下岩石电性分布不均匀(有两种或两种以上导电性不同的岩石或矿石)或地表起伏不平的情况下,若仍按测定均匀水平大地电阻率的方法和计算公式求得的电阻率称之为视电阻率。

2.标准测井:在一个油田或地区内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全区的各口井中,用相同的测量技术条件相同的深度比例尺(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫表标准测井.3.周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化现象,这种现象叫做周波跳跃。

4.第一临界角:当第二种介质中的折射波的声速比第一种介质中入射波的声速大时,折射角大于入射角。

此时,存在一个临界入射角,在这个角度下,折射角等于90°。

这个临界入射角为第一临界角。

5.孔隙度:岩石孔隙体积占岩石总体积的百分数.6.渗透率:在压力差作用下,岩石允许流体通过的性质。

7.相对渗透率:有效渗透率与绝对渗透率的比值.8.含水饱和度:含水体积占孔隙体积的百分数。

9.挖掘效应:由于影响岩石减速能力的核素及其含量不仅有起主要作用的岩石空隙中的氢核,还有岩石骨架中的一些核素,当含天然气时,岩石骨架的一部分相当于被挖走了,即挖掉了一部分影响岩石减速能力的核素,因而岩石的减速能力下降,减速长度增长,中子测井读数下降,这种现象,称之为“挖掘效应"。

10.含氢指数:该物质所含的氢原子核数与同体积淡水中所含氢原子核数之比。

11.纵向微分几何因子:纵向上单位厚度水平无限大地层对测量结果的贡献。

12.横向微分几何因子:横向上单位厚度水平无限大地层对测量结果的贡献。

13.纵向积分几何因子:厚度为h的水平无限大地层对测量结果的贡献。

14.横向积分几何因子:15.声速测井:测量滑行波通过地层传播的时差 t的测井方法。

16.自然电位测井:沿井轴测量记录自然电位变化曲线,用以区别岩性,这种测井方法叫做自然电位测井。

测井复习题库

测井复习题库

测井复习题库测井复习题库导言:测井是地球物理学的一项重要技术,用于获取地下岩石和流体的信息。

它在石油勘探和生产中起着至关重要的作用。

为了更好地掌握测井的知识,我们可以通过复习题库来提高自己的理论水平和实践能力。

本文将为大家介绍一些测井复习题,帮助大家更好地理解测井的原理和应用。

一、基础知识题1. 什么是测井?2. 测井的主要目的是什么?3. 请列举几种常见的测井工具和仪器。

4. 请解释测井曲线中的GR、SP、RHOB、NPHI等代表的意义。

5. 请简要描述测井数据的处理流程。

二、测井原理题1. 请解释自然伽马测井的原理及其应用。

2. 请解释电阻率测井的原理及其应用。

3. 请解释声波测井的原理及其应用。

4. 请解释中子测井的原理及其应用。

5. 请解释密度测井的原理及其应用。

三、测井解释题1. 请根据测井曲线判断井段中是否存在油气层。

2. 请根据测井曲线判断井段中的岩石类型。

3. 请根据测井曲线计算井段中的孔隙度和饱和度。

4. 请根据测井曲线计算井段中的渗透率。

5. 请根据测井曲线判断井段中的地层压力和温度。

四、测井实践题1. 请设计一套测井方案,以确定目标区域的油气资源潜力。

2. 请解释测井数据的质量评价指标,并分析一组测井数据的可靠性。

3. 请解释测井数据的解释方法,并结合实例进行解释。

4. 请解释测井数据与地震数据的关联性,并说明其在勘探中的应用。

5. 请解释测井数据与生产数据的关联性,并说明其在生产中的应用。

结语:通过复习测井题库,我们可以更好地掌握测井的基础知识和原理,提高自己的解释能力和实践能力。

同时,通过测井实践题的训练,我们可以更好地应用测井技术解决实际问题。

希望大家能够充分利用测井复习题库,不断提高自己的测井水平,为石油勘探和生产做出更大的贡献。

测井复习

测井复习

一、名词解释:1 周波跳跃:在声速测井曲线上,对应于疏松含气砂岩层、裂缝带或破碎带及井眼严重垮塌等地段,常出现时差明显增大且有时变化无规律现象。

这是由于“周波跳跃”的影响造成的。

2 减速长度:用来描述快中子变为热中子的减速过程。

减速长度定义为由快中子减速成热中子所经过的直线距离的平均值,单位为厘米。

3 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。

物质对热中子俘获吸收能力越强,扩散长度Ld就越短。

4 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值,称为该岩石或矿物的含氢指数,用H表示。

5 增阻侵入:由于渗透层井段常有泥浆侵入形成的侵入带,其径向电阻率分布特点决定于侵入类型,由于泥浆滤液电阻率Rmf大于地层水电阻Rw所致,含水层往往出现高侵。

侵入结果使冲洗带(岩层空隙中的地层水全部被泥浆滤液置换的岩层部分)电阻率Rxo大于原状地层电阻率Rt以及过渡带(岩层空隙中的地层水部分被置换的岩层部分)电阻率是由Rxo 渐变到Rt,但都大于Rt.6 减阻侵入:一般泥浆滤液电阻率小于含油层空隙中所含液体电阻率所致。

在油层井段常出现低侵入。

7 渗透率:渗透率就是在压力差作用下,岩石能通过石油和天然气的能力。

8 绝对渗透率:绝对渗透率是岩石孔隙中只有一种流体(油、气或水)时测量的渗透率,常用符号K表示。

9 有效渗透率:当两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率,称为岩石对该流体的有效渗透率,岩石对油、气、水的有效渗透率分别用Ko、Kg、Kw表示。

10 相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率,其值在0~1之间变化。

通常用Kro、Krg、Krw分别表示油、气、水的相对渗透率。

11 孔隙度:储集层的孔隙度是指其孔隙体积占岩石总体积的百分数,它是说明储集层储集能力相对大小的基本参数。

12 总孔隙度φt:总孔隙度φt是指所有孔隙空间(无论孔隙的大小、形状和连通与否)占岩石体积的百分数。

11-全波测井(修改)

11-全波测井(修改)

二记录内容
以CSU系统为例: 1 、 4条波形: WF1(10 ')、WF2(8 ' )、WF3(12 ' )、WF4(10 ' ) 采样数:n=512,采样率:5us(960,2us) 2 、 4条波形到达时间 TC1、TC2、TC3、TC4; 3 、 纵波时差—DTC 4 、 经过信号分析可以得到各子波时差频率和幅度 (或衰减)
③上或下偶极横波方式:偶极子声 源发射(F<4.7kHz),记录8条全 波列波形,源距L=11英尺或11.5 英尺,采样间距为40us,采样点 为256。测量横波时差。 ④专家方式:利用上下偶极子交叉 发射, T(X)—R(X)\R(Y),16条波形 T(Y)—R(X)\R(Y),16条波形
套管井中测量波形
4、对于井内接收点,滑行波的振幅随源离L增加是衰减的直达波
A1/Z 滑行纵波A 1/Z (lnZ)2。对于Z>e=2.72m,滑行波衰减快,对于 Z<e=2.72m,直达波衰减快。
5、存在共振频率,
f
i
2a 1 1 2 V02 VP
a为井径;i 为贝塞尔函数J1(i)的零 点,为 3.83、7.01….;对于一般砂岩频率为10、 20kHz。
1 2 VS
三Hale Waihona Puke 伪瑞利波:1、它是全反射波(波数在k1~ks=/V)即声射线入射角 在(s,/2)之间;由于存在许多声射线,伪瑞利波有 许多模式波
2、它是一种界面波,在径向方向r,井内按J0(1a)振荡衰减 ( 1为井中径向上波数),在地层中近似指数规律衰 减;在Z 轴上不衰减; 3、相速度, 声波测井发射信号是声脉冲,看成不同频率、 不同振幅的各种连续波组成。其速度随频率变化称频散。 频散性严重;存在截止频率只有声源频率高于截止频 率时才激发此波; 随着频率的增加速度下降快,最后趋 近泥浆速度。

测井复习资料说课材料

测井复习资料说课材料

测井复习资料测井复习资料一、绪论:1、什么是矿场地球物理测井,测井方法的分类概念:钻井中进行的各种地球物理勘探方法的统称,是以物理学、数学、地质学为理论基础,采用先进的电子技术、传感器技术、计算机技术和数据处理技术,借助专门设计的探测设备,沿钻井剖面观测岩层物理性质,了解井下的地质情况,从而发现油气煤、金属与非金属、放射性、地热、地下水等资源的一类方法技术。

分类:按研究的物理性质分类①电法测井:自然电位测井、电阻率测井、侧向测井、感应测井等;②声波测井:声速测井、声幅测井、横波测井、声波全波列测井等;③放射性测井:自然伽马测井、自然伽马能谱测井、补偿密度测井、岩性密度测井、补偿中子测井、中子寿命测井等;④其他测井:井温测井、地层测试、地层倾角测井、气测井等。

按技术服务项目分类①裸眼井地层评价测井系列②套管井地层评价测井系列③生产动态测井系列④工程测井系列2、矿场地球物理测井用途基础地质研究、石油勘探开发、煤田、金属矿产、水文、工程、环境、考古3、影响测井结果的环境因素4、矿场地球物理测井面临的主要问题5、储集层及其参数的基本概念储集层:具有储存石油及天然气的空间(包括岩石粒间孔隙、裂缝、溶洞等),同时孔隙或裂缝之间连通的岩层才可能储存石油及天然气,称之为储集层或渗透层。

分类:碎屑岩储集层、碳酸盐岩储集层孔隙度概念:储层孔隙的发育程度,岩石内孔隙总体积占岩石总体积的百分数,说明储集层的储集性能。

用符号Φ表示。

分类、碎屑岩和碳酸盐岩孔隙类型不同。

渗透率概念:在压力差作用下,岩石允许流体通过的性质称为岩石的渗透率,反映储集层的渗透性能。

用符号K表示。

单位含油气饱和度概念:含油气体积占孔隙体积的百分数,是估算油层储量的重要参数之一。

一般用符号So、Sw表示。

有效厚度概念,算法:用测井曲线确定储集层的顶、底界面深度后,两个界面的深度差就是储集层的厚度,对于互层组或砂岩中有厚度小于0.5m的致密夹层的储集层,应从层组厚度或砂岩储集层的厚度中扣除夹层,这样求出的厚度为有效厚度。

测井复习资料

测井复习资料

1.砂泥岩剖面SP曲线的特点及应用.影响因素.特点:1对应均质巨厚泥岩地层的泥岩基线。

2其他地层的SP曲线相对泥岩基线出现异常,当地层水电阻率小于钻井滤液电阻率时,出现负异常,反之,出现正异常。

3均质巨厚地层的SP曲线半幅点对应地层界面。

应用:1划分渗透层。

2计算地层的泥质含量。

3计算地层水电阻率。

4判断水淹层。

影响因素1.地层水和泥浆滤液中含盐浓度的比值2.岩性3.地层温度4.地层水及泥浆滤液中含盐性质5.地层的导电性6.地层厚度7.井径扩大和侵入的影响2.GR曲线特点及应用.影响特点1GR曲线的读数与地层岩性(泥质含量)和地层的成岩环境有关,与地层孔隙流体性质无关。

2GR曲线具有轻微的波动(与地层岩性无关)3当上下围岩的放射性相同时,均质地层的GR曲线关于地层中点对称。

4GR曲线幅度与地层厚度有关,地层越薄,关系越密切。

影响因素:1.测井速度.时间常数影响.2.放射性涨落的影响3.地层厚度对幅度影响.4井条件5.地层岩性.6.地层沉积环境.应用:1划分岩性不同岩性地层其放射性不同。

2井间地层对比地层放射性与孔隙流体性质无关。

3计算地层泥质含量地层泥质含量高,其放射性强。

3.梯度.电位电极系的电极距.曲线特点影响因素及应用梯度电阻率曲线特点:1.非对称曲线2顶(底)部梯度电阻率曲线在高阻层顶(底)部出现极大,在高阻层底(顶)部出现极小3地层中部电阻率最接近地层实际值。

电位电阻率曲线特点:1对称曲线2随地层厚度减小,围岩电阻率的影响增大3地层中部电阻率最接近地层实际值。

梯度.电位曲线应用:1可利用厚层电位电阻率曲线的半幅点确定地层界面及厚度。

2确定地层电阻率。

3确定地层流体饱和度。

影响因素:1.测量仪器2电级系.3测量环境.a井的影响b围岩-层厚影响c侵入的影响d高阻邻层屏蔽影响e地层倾角的影响.4.微电极系(微梯度.微电位)曲线特点及应用.特点:1微梯度与微电位电极系的探测范围不同。

2微梯度与微电位电极系的探测范围比较小。

地球物理测井复习资料

地球物理测井复习资料

地球物理测井复习资料测井复习资料电阻增⼤系数:含油岩⽯的电阻率Rt与该岩⽯完全含⽔时的电阻率R0之⽐。

梯度电极系:井中的成对电极之间的距离⽐单电极与最近的⼀个成对电极的距离⼩的电极系。

电位电极系:是指成对测量电极之间的距离⼤于单电极与最近的⼀个测量电极之间的距离。

光电效应:当⼀个γ光⼦与物质原⼦中的束缚电⼦作⽤时,光⼦把全部能量转移给某个束缚电⼦,使之脱离原⼦⽽发射出去,⽽光⼦本⾝被全部吸收,这个过程称为光电效应。

康普顿效应:中等能量的伽马光⼦穿过介质时,把部分能量传递给原⼦的外层电⼦,使电⼦脱离轨道,成为散射的⾃由电⼦,⽽损失部分能量的伽马光⼦从另⼀⽅向射出。

此效应为康普顿效应。

电⼦对效应:当⼊射γ光⼦的能量⼤于两个电⼦的静电质量能(即⼤于1.022MeV)时,在原⼦核的库场作⽤下,光⼦转化为⼀个负电⼦和⼀个正电⼦,形成正负电⼦对,这个过程称为电⼦对效应。

跳波:在⽓层、疏松砂岩层、裂缝发育井段、井眼严重坍塌井段中声波测井会出现由“基线”到“极⼤值”之间的突然变化,这⼀特征为“跳波”。

严重时称“周波跳跃”。

周波跳跃:在正常情况下,第⼀接收器R1和第⼆接收器R2应该被⾸波的同⼀个波峰的前沿所触发。

由于某种原因造成声波衰减严重,使两个接收器不是被同—个峰触发⽽造成的曲线跳动现象。

由于每差⼀个峰,在时间上造成的误差恰好是⼀个周期,所以叫周波跳跃。

增阻泥浆侵⼊:当地层中原有流体的电阻率⽐较低,电阻率较⾼的泥浆滤液侵⼊后,侵⼊带电阻率⼤于原始地层电阻率,常见淡⽔泥浆钻井的⽔层。

减阻泥浆侵⼊:当地层中原有流体的电阻率⽐较⾼,泥浆滤液侵⼊后,侵⼊带电阻率⼩于原始地层电阻率,常见淡⽔泥浆钻井的油⽓层或盐⽔泥浆钻井的⽔层及油⽓层。

⼏何因⼦:在⽆限均匀介质中与电极系有特定⼏何位置关系的介质体积所产⽣的信号占总信号的⽐例。

M、N:某⼀种矿物的M和N值,是声波-密度交会图图版和中⼦-密度交会图图版上该种矿物的⾻架点与流体点连线的斜率。

《测井方法与综合解释》综合复习资料

《测井方法与综合解释》综合复习资料

《测井方法与综合解释》综合复习资料一、名词解释声波时差:声波在介质中传播单位距离所需时间。

孔隙度:地层孔隙占地层提及的百分数。

地层压力:地层孔隙流体压力。

地层倾角:地层层面的法向与大地铅锤轴之间的夹角。

含油孔隙度:含油孔隙体积占地层体积的百分比。

泥质含量:泥质体积占地层体积的百分比。

二、填空题1.描述储集层的基本参数有岩性、孔隙度、含油饱和度和有效厚度等。

2.地层三要素倾角、倾向、走向。

3.伽马射线去照射地层可能会产生光电效应、康普顿效应和电子对效应效应。

4.岩石中主要的放射性核素有铀、钍和钾等。

5.声波时差Δt的单位是微妙/米(微妙/英尺),电导率的单位是毫西门子/米。

6.渗透层在微电极曲线上有基本特征是微梯度与微点位两条曲线不重合。

7.地层因素随地层孔隙度的减小而增大;岩石电阻率增大系数随地层含水饱和度的增大而增大。

8.当Rw大于Rmf时,渗透性砂岩的SP先对泥岩基线出现正异常。

9.由测井探测特性知,普通电阻率测井提供的地层视电阻率是探测范围内各种介质共同贡献。

对于非均匀电介质,其大小不仅与测井环境有关,还与测井仪器类型和电极距有关。

电极系A0.5M2.25N的电极距是0.5米。

10.地层对热中子的俘获能力主要取决于氯的含量。

利用中子寿命测井区分油、水层时,要求地层水矿化度高,此时,水层的热中子寿命小于油层的热中子寿命。

11.某淡水泥浆钻井地层剖面,油层和气层通常具有较高的视电阻率。

油气层的深浅电阻率显示泥浆低侵特征。

12.地层岩性一定,C/O测井值越高,地层剩余油饱和度越大。

13.在砂泥岩剖面,当渗透层SP曲线为负异常时,井眼泥浆为淡水泥浆,油层的泥浆侵入特征是泥浆低侵。

14.地层中的主要放射性核素是铀、钍、钾。

沉积岩的泥质含量越高,地层放射性越强。

15.电极系A3.75M0.5N 的名称底部梯度电极系,电极距4米。

16.套管波幅度低,一界面胶结好。

17.在砂泥岩剖面,油层的深侧向电阻率大于浅侧向电阻率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:1.静自然电位:在相当厚的纯砂岩与纯泥岩的交界面附近,自然电流回路的总自然电动势Es ,是每个接触面上自然电动势的代数和,通常也称为静自然电位SSP 。

2.视电阻率:实际钻井导电介质大多数是非均质的,井内有钻井液污染,地层厚度有限,上下有围岩,在井中所测量的电阻率不是地层真电阻率,而是井内钻井液、渗透层的侵入、上下围岩的电阻率等各项因素都影响的电阻率,称为视电阻率:3.几何因子:表示了主电流经过的空间各部分介质对测量结果的相对贡献,是指与介质空间位置、体积大小和形状等几何因素有关的各种影响因素的总和,把主电流经过的整个空间的几何因子看作1。

4.传播效应:电磁波在均匀无限介质中传播时,出现幅度衰减和相位移动时的现象。

5.声波时差:是声波在两接收换能器间距内传播所用的时间差。

6.周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被首波的同一个波峰的前沿所触发。

由于某种原因造成声波衰减严重,使两个接收器不是被同—个峰触发而造成的曲线跳动现象。

由于每差一个峰,在时间上造成的误差恰好是一个周期,所以叫周波跳跃。

7.康普顿效应:中等能量的伽马光子穿过介质时,把部分能量传递给原子的外层电子,使电子脱离轨道,成为散射的自由电子,而损失部分能量的伽马光子从另一方向射出。

此效应为康普顿效应。

8.Pe:光电吸收截面指数:描述光电效应时,物质对光子吸收能力的一个参数。

在一定的条件下一种或两种粒子射线与碰撞的靶(原子)之间发生核反应几率大小的度量值。

9.含氢指数:是表示物质中含氢量多少的参数,一种物质的含氢指数等于该物质所含的氢原子核数与同体积淡水中所含氢原子核数比。

10.岩石体积模型:根据岩石的组成按其物理性质的差异,把单位体积岩石分成相应的几部分,然后研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和。

11.含水孔隙度:是岩石中含水部分的孔隙度。

12.M 、N:某一种矿物的M 和N 值,是声波-密度交会图图版和中子-密度交会图图版上该种矿物的骨架点与流体点连线的斜率。

问答题: 1. 论述自然伽马能谱测井原理及其地质作用。

原理:伽马能谱测井是在井内对岩石自然伽马射线进行能谱分析,分别测量地层内铀、钍、钾的含量来研究井剖面地层性质的测井方法。

根据铀、钍、钾的自然伽马能谱特征,用能谱分析的方法,将测量的铀、钍、钾的伽马射线的混合谱,进行谱的解析,从而来确定铀、钍、钾在地层中的含量。

地质作用:1研究生油层2寻找页岩储集层3寻找高放射性储集岩和碳酸盐岩储集层4用Th/U 比值研究沉积环境5求泥质含量6区分泥质砂岩和云母2. 写出阿尔奇公式中的地层因素与孔隙度、电阻率与含水饱和度的关系式,并说明各符号的物理意义。

Ro:完全含水的岩石地层电阻率 Rw :地层水电阻率 υ :岩石孔隙度(小数)m :胶结指数与岩石胶结情况和空隙结构有关的指数(1.5~3.0)a :与岩性有关的比例系数(0.6~1.5)F :地层因素,它是100%饱和地层水的岩石电阻率与所含地层水电阻率的比值 So :岩石含油饱和度;b :仅与岩性有关的系数,一般接近于1,常取1. n :饱和度指数,它们表示油水在孔隙中的分布状况对含油岩石电阻率的影响,常取2Sw :岩石含水饱和度,小数 Sh :岩石含油气饱和度I :电阻增大系数,它是含油气岩石真电阻率Rt 与该岩石100%饱含地层水时的电阻率Ro 的比值。

3. 简述在砂泥岩剖面上,如何应用自然电位SP ,自然伽马GR 和微电极(微电位,微梯度)测井曲线资料判断岩性和识别渗透层。

自然电位SP :划分岩性:以泥岩的自然电位为基线,如果砂岩地层的岩性由粗变细,泥质含量增加,表现为自然电位幅度值降低,根据自然电位曲线可以清楚的划出泥岩、砂岩、泥质砂岩。

识别渗透层:以均质泥岩段的自然电位曲线为基线,出现异常的层段(偏离基线)均可认为是渗透层段,SP 异常幅度的大小,可以反映渗透性好坏。

自然伽马GR :划分岩性:在砂泥岩剖面,纯砂岩GR 最低,粘土最高,泥质砂岩较低,泥质粉砂岩和砂质泥岩较高。

即自然伽马随泥质含量的增加而升高。

识别渗透层:低GR 的为砂岩储集层,在厚层情况下可以用半幅点分层。

微电极:划分岩性A 、含油砂岩和含水砂岩:有幅度差,读数中等。

B 、泥岩:幅度低,无幅度差或较小的正、负不定的幅度差,曲线呈直线状。

C 、致密灰岩:幅度高,呈锯齿状,有幅度不大的正或负的幅度差。

D 、生物灰岩:读数高,正幅度差大。

E 、孔隙性、裂缝性石灰岩:读数低,有明显幅度差。

识别渗透层:根据曲线是否重合,将渗透层与非渗透层分开,且一般为正的幅度差。

4. 补偿声波测井和补偿中子测井CNL 方法的基本原理是什么?给出利用这两种测井曲线计算纯地层孔隙度的计算公式,并给出两者所求得的孔隙度有何不同。

原理:补偿声波测井:双发双收声速测井仪的T1发射得到的△t1和T2发射得到的△t2曲线,在井径变化处的变化方向相反,所以,取二者的平均值得到的曲线恰好补偿掉了井径变化对测量结果的影响。

补偿中子测井:当含氢量一定的岩石中还含有俘获能力很大的元素时,由于热中子被强烈吸收,使热中子密度明显降低,测井读数将不再是岩石含氢量的单一反映,由此计算的岩石孔隙度将产生较大的误差。

利用长、短两个探测器分别记录两个计数率NL 、NS ,则其比值只与减速性质有关,只取决于含氢量。

计算公式:补偿声波测井:威利时间平均公式:声波在单位体积岩石内传播所用的时间由2部分:岩石骨架部分(1-Φ)以Vma 传播所经过的时间、充满流体的孔隙部分Φ以vf 传播所经过的时间的总和。

公式:未固结含水纯砂岩层计算要进行压实校正:补偿中子测井:补偿中子测井仪通常都在标准裸眼刻度井内已知不同孔隙度的饱含淡水的纯石灰岩地层上进行刻度的,由此获得的石灰岩孔隙度单位。

在纯石灰岩地层上就等于地层的真孔隙度,记录的孔隙度对石灰岩适用,对纯砂岩孔隙度为10%~35%时,含油气泥质单矿物地层的补偿中子孔隙度为: )()1(nh h nw w nsh sh nma sh N S S V V φφφφφφφ+++--=,其中:h w S S +=1 异同:补偿声波测井测量的孔隙度是原生孔隙度,而补偿中子测井测量的是次生孔隙度。

5. 比较说明双侧向测井和双感应测井的曲线影响因素以及应用条件。

侧向测井:需要导电介质,电流必须流入地层形成等效闭合电路,如果井筒是油基泥浆或空气时,供电电流很少或无法流入地层,严重影响电位差变化的测定。

应用前需要作井眼校正、围岩-层厚校正和侵入校正。

侧向测井视电阻率相当于井眼、侵入带、原状地层和围岩等几部分串联的结果,其中电阻率高者将对Ra 有较大的贡献。

地层影响随着地层电阻率的变大而增加。

适用于:盐水泥浆井眼,储集层为高阻薄层,低侵,或碳酸盐岩等高电阻剖面。

感应测井:是基于电磁感应原理,利用交流电的互感原理测量地层的导电性。

需要作均质校正、围岩-层厚校正、侵入校正,只有当σm 很高(盐水泥浆)和井眼直径很大时,才进行井眼校正。

感应测井视电导率相当于井眼、侵入带、原状地层和围岩等几部分并联的结果,其中电导率高者将对Ra 有较大的贡献。

适用于:淡水泥浆、砂泥岩剖面,储集层为中低阻和中厚层。

6. 在侧向测井中,当目的层的厚度小于主电流层厚度时,为什么Rt>Rs 时,测得的视电阻率要降低?而当Rt<Rs 测得的视电阻率要出现变高?p ma f ma t C t t t t 1log ⋅∆-∆∆-∆=φ当目的层厚度小于或接近于电流层厚度时,视电阻率就要受围岩的影响。

1)目的层的电阻率高于围岩电阻率(Rt>Rs)时,电流层受围岩分流影响而散开,因而测得的视电阻率有所降低。

2)目的层的电阻率小于围岩电阻率(Rt<Rs)时,围岩电阻高,使电流层向低阻层集中,减小了电流的发散程度和电流层的横向截面积,使电阻值增大,就使测得的视电阻率比地层的真电阻率值大。

因此,对薄层求地层真电阻率Rt时,要进行层厚—围岩校正。

7.自然伽马理论曲线和实际曲线有什么特征和差异。

简述影响自然伽马测井曲线的因素。

理论曲线特征:1)总体特征:对着高放射性地层,曲线显示高读数,并在岩层中心处出现极大值。

对于厚岩层,该极大值能很好地反映岩层的放射性,随着岩层厚度的变薄,极大值随之降低。

2)曲线的对称性:上下围岩放射性含量相同时,曲线对称于地层中点,反之,曲线不对称。

3)当岩层厚度较厚时:当h大于3倍井径或者大于2倍探测半径时,地层中心处的平均值为地层的伽马射线强度值,可用曲线上最大幅度一半的地方(半幅值点)划分岩层的上下界面。

4)当岩层变薄时:当h<3d0时,受低放射性围岩的影响,自然伽马幅度值对厚度h减小而减小,岩层界面的位置移向曲线的顶端实际曲线特征:1)曲线呈锯齿状:放射性涨落的影响。

2)曲线的幅度降低和极大值偏移:由于vτ的影响。

主要影响因素有:1)测井速度v和τ的影响:vτ越大,曲线幅度越小,对称性越差,极值向提升方向偏移越远,即曲线的深度位移和形态畸变随之加剧。

2)放射性涨落误差的影响:自然伽马曲线不光滑,有许多起伏的变化,这些起伏是放射性涨落引起的。

放射性的涨落误差就是平均计数率涨落误差σ2和测量每一点计数率涨落误差误差σ1之和。

3)地层厚度的影响:当地层足够厚时,对应曲线的幅度平均值代表地层的真实情况。

当地层很薄时,曲线的平均值达不到代表地层的真实性质。

在砂泥岩剖面,由于地层变薄会使得泥岩的自然伽马测井曲线值下降,砂岩层的自然伽马曲线值上升对于地层层厚小于3d0时,应考虑层厚的影响。

4)井的影响:井内钻井液的放射性强弱对数值有影响。

井径大,井内钻井液降低了岩层的数值。

套管和管外的水泥环有很强的吸收能力,也降低了曲线的数值。

在大井眼和套管井中,要做曲线校正。

8.从减速能力的角度说明中子孔隙度测井对地层和流体的响应关系。

从减速能力的角度说明中子孔隙度测井对地层和流体的响应关系。

着重点:地层对快中子的减速能力主要取决于地层含氢量,在中子源强度和源距一定的情况下,热中子或超热中子计数率决定于地层的减速能力,也主要决定于地层的含氢量。

储集层中常见的岩石,其矿物成分不含氢,岩石含氢量基本上分布在岩石孔隙的流体中,即水和油气中。

热中子或超热中子计数率直接与地层孔隙度和孔隙流体性质有关。

在长源距条件下,中子密度随源距增加而衰减的速率称为影响热中子密度的主要因素,热中子密度在含氢量高的地层衰减得快,在含氢量低的地层衰减的慢,而且差异随着源距增大而增加。

即含氢量高的地层热中子密度低,即孔隙度高的地层中子测井记数率低。

含氢指数H(任何物质单位体积(如1cm3)的含氢指数与同样体积淡水氢核数的比值)表征了地层含氢量与地层孔隙度之间的关系。

相关文档
最新文档