向量数量积教案
两个向量的数量积说课稿
两个向量的数量积一、教材分析空间两个向量的夹角、数量积是高中数学向量的重要内容,也是高考的重要考查内容。
从知识的网络结构上看,空间向量夹角、数量积既是平面向量夹角、数量积概念的延续和拓展,又是后续空间向量数量积的计算坐标化和空间向量在立体几何中应用的教学基础。
二、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学目标:1.知识目标:掌握空间向量夹角和模的概念及表示方法;掌握空间向量的数量积及其运算律。
2.能力目标:体会类比和归纳的数学思想,并能利用两个向量的数量积公式解决立体几何中的一些简单问题。
3.情感目标:激发学生的学习热情和求知欲,培养严谨的学习态度以及空间想象的能力。
三、教学重点和难点本着课程标准,在吃透教材基础上,我确立了如下教学重点和难点:教学重点:空间两个向量的夹角、数量积的概念、计算方法及其应用。
教学难点:空间向量数量积的几何意义以及立体几何问题的转化。
下面,为了讲清楚重点、难点,使学生能达到本节课设定的教学目标,我再从教法上谈谈:四、教法分析1.本节属于概念教学,可采用以语言传递信息、分析概念的讲授法。
2.本节涉及到一些比较抽象的概念,可以借助多媒体,利用三维动态演示,来提高学生对概念的理解。
3.在重点和难点上,采用举例的方法来提高学生的实际解题能力。
4.通过知识对比来加强学生的知识迁移能力,顺便对已学过知识的复习。
最后我来具体谈一谈这节课的教学过程:五、教学过程学生是认知的主体,遵循学生的认知规律和本节课的特点,我设计了如下的教学过程:1.复习旧课,引入新课1)让学生回顾平面向量数量积及其运算律。
定义夹角几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
性质运算律2)举两个实际例子进行练习,并引出空间两个向量数量积课题。
设计意图:从学生已有认知平面向量相关知识出发,为类比出空间向量夹角和数量积概念做铺垫。
2.运用例子,理解概念,说明定义1、两向量夹角的定义已知两个非零向量a 、b,在空间任取一点O,做OA=a 、OB=b,则∠AOB ,叫做向a与b的夹角,记作<a ,b>。
新教材高中数学第1章空间向量的数量积运算教案新人教A版选择性必修第一册
新教材高中数学教案新人教A 版选择性必修第一册:1.1.2 空间向量的数量积运算学习 目 标核 心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2.③cos〈a ,b 〉=a ·b|a ||b |.(3)数量积的运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b )=a ·(λb )交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·ca b a b (2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a |a |. (2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =ka,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等.( )(2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos〈AB 1,BC 1〉=122×2=14.故选B.] 3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)]=13OB →+13OC →+13OA →. ∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2=13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系【例2】 已知空间四边形OABC 中,∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ, 又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎢⎡⎦⎥⎤12OA →+12OB →+OC→=14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0.∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:PA ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又PA →=PD →+DA →,∴PA →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即PA ⊥BD .夹角问题b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4;由余弦定理,得:cos∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14,又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3.即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC→+2BA →·CD →+2AC →·CD →=3+2×1×1×cos〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角αAB β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角αAB β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC的中点,则FG →·AB →=( )A .34 B .14 C .12 D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.] 2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b |a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →)=AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角αAB β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →,∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116,∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线;(2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值.[解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°.(1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0∴MN ⊥AB ,同理可证MN ⊥CD .∴MN 为AB 与CD 的公垂线.(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a22-a22-a22]=14×2a 2=a22.∴|MN →|=22a ,∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a24+a22-a24=a22.又∵|AN →|=|MC →|=32a , ∴AN →·MC →=|AN →|·|MC →|·cos θ=32a ·32a ·cos θ=a22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23.从而异面直线AN 与MC 所成角的余弦值为23.。
§3.1.3空间向量的数量积运算教学设计
§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。
2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。
3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。
二.教学重点空间向量数量积的概念以及实际应用。
三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。
学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。
(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。
性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。
思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。
空间向量数量积的几何意义同平面向量数量积是一样的。
只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。
(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。
49 向量的数量积 第2课时 向量的向量积 教案
6.2.4 向量的数量积第2课时向量的向量积本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节内容教材共分为两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的运算律,本节课是第二课时,本节课主要学习平面向量的数量积的运算律及其运用。
向量的数量积是继向量的线性运算(加法、减法、向量的数乘)后的又一种新的运算,它的内容很丰富。
包括定义、几何意义、性质与运算律,而且在物理和几何中具有广泛的应用。
向量数量积是代数、几何与三角的结合点,很好地体现了数形结合的数学思想。
但它与向量的线性运算有着本质的区别,运算结果是一个数量。
A.掌握数量积的运算律;B.利用数量积的运算律进行化简、求值;1.教学重点:数量积的运算律;2.教学难点:利用数量积的运算律化简、求值。
教学方法:以学生为主探究式学习合作学习教学工具:多媒体课件相关资料教学过程多媒体一、复习回顾,温故知新 1.向量的数乘的运算律【答案】设a 、b 为任意向量,λ、μ为任意实数,则有:(1) a a )()(λμμλ=(2)a a a μλμλ+=+)((3)b a b a λλλ+=+)(2.平面向量的数量积定义:θcos ||||b a b a =⋅平面向量的数量积的结果是数量。
二、探索新知1.平面向量数量积的运算律探究:类比数的乘法运算律,结合向量的线性运算的运算律,你能得到数量积运算的哪些运算律?你能证明吗?平面向量数量积的运算律证明:(1)因为θcos ||||b a b a =⋅,θcos ||||a b a b =⋅所以,a b b a ⋅=⋅。
(2)当的夹角与的夹角、与时,b a b a λλ0>一样。
因为)(cos ||||cos ||||)(b a b a b a b a ⋅===⋅λθλθλλ,)(cos ||||cos ||||)(b a b a b a b a ⋅===⋅λθλθλλ同理,当)()()(0b a b a b a λλλλ⋅=⋅=⋅<时,成立。
【教案】向量的数量积教学设计-2022-2023学年高一下学期数学人教A版(2019)必修第二册
§6.2.4向量的数量积一、内容和内容解析内容:向量的数量积.内容解析:本节是高中数学人教A版必修2第六章第2节的第四课时内容.教材以物理中力作功为背景引入向量的数量积,与向量的加法、减法、数乘运算一样有明显的几何意义,用途广泛,但与向量的线性运算不同的是,数量积的运算结果是数量而不是向量.会计算两个向量的数量积,提升数学抽象的核心素养.通过探究投影向量的表达式,进而得到数量积的几何意义,提升直观想象,逻辑推理的核心素养.二、目标和目标解析目标:(1)通过物理中“功”等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.(2)通过几何直观,了解平面向量投影的概念以及投影向量的意义.(3)会用数量积判断两个平面向量的垂直关系.目标解析:(1)能从物理中“功”的具体实例中,引出向量的数量积的概念,能依据数量积的概念计算平面向量的数量积,并能像了解实数的运算律一样,通过具体实例了解向量数量积的性质.(2)能从图形中判断向量投影与投影向量,知道向量投影是一种正交变换,并能表示投影向量与原向量之间的关系,能借助向量投影与投影向量体会向量数量积的几何意义.(3)知道两个平面向量的垂直等价于其数量积为零,并能用这一结论进行向量运算.三、教学问题诊断分析1.教学问题一:两个向量夹角的定义是指同一点出发的两个向量所构成的较小的非负角,因此向量夹角定义理解不清而造成解题错误是一些常见的误区.同时利用向量的数量积,可以解决两向量垂直问题,要深刻理解两向量垂直的充要条件,应用的时候才能得心应手.解决方案:数形结合让学生体验夹角的概念,强调夹角一定是共起点的最小角.2.教学问题二:向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义,用途广泛.但与向量的线性运算不同的是,它的运算结果不是向量而是数量,正是这个不同点沟通了向量运算与数量之间的关系.解决方案:强调两个非零向量的数量积是数量,而不是向量,它的值是两个向量的长度与两个向量夹角的余弦的乘积.3.教学问题三:对于向量的数量积运算,学生容易受实数乘法运算性质的负迁移的影响,可能出现一些错误,教师要尽可能地引导学生举一些反例,纠正错误.解决方案:引导学生借助画图、举反例来澄清认识,体会向量运算与实数运算的差异.基于上述情况,本节课的教学难点定为:数量积的性质及其应用.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.数量积的概念既是本节课的重点,也是难点.为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用.其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据.最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视数量积的概念和运算律,让学生在类比的基础上体会到从特殊到一般是数学抽象的基本过程.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计教学环节问题或任务师生活动设计意图创设情境引入新知[问题1]我们已经研究了向量的哪些运算?这些运算的结果是什么?[问题2]我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?[问题3]当力F与运动方向成某一角度时,力F对物体所做的功等于多少呢?教师1:提出问题1.学生1:学生思考.教师2:提出问题2.学生2:学生思考.物理模型→概念→性质→运算律→应用.教师3:提出问题3.学生3:cosW FSθ=使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向.探寻规律,明[问题4]向量的夹角该如何定义?它的范围是什么?教师4:提出问题4.学生4:已知两个非零向量a,b,O是平面上的任意一点,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.范围是:[0,]π教师5:我们可以用图来表示:通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本确概念[问题5]你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?[问题6]向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?例1.已知|a|=5,|b|=4,a与b的夹角θ=23π,求a⋅b.例2.设|a|=12,|b|=9,a⋅b=542-,求a与b的夹角θ.当=0,a与b同向;当=,a与b反向;当=2,a与b垂直教师6:提出问题5.学生5:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积.教师7:明确概念:已知两个非零向量a与b,它们的夹角为α,我们把数量︱a︱︱b︱cosα叫做a与b的数量积(或内积),记作:a b⋅,即:a b⋅ =︱a︱︱b︱cosα.规定:零向量与任一向量的数量积均为0.教师8:提出问题6.学生6:数量积的结果是数,线性运算的结果是向量.学生7:影响因素有:模长和夹角.教师9:完成表格:角α的范围00090α≤<090α=0090180α<≤a b⋅的符号学生8:学生思考,完成表格.教师10:追问:你能用数量积的概念解决以下问题吗?学生9:学生思考,完成例题.教师11:引入投影向量:如图,设a,b是两个非零向量,AB=a,CD=b,作如下变换:过AB的起点A和终点B,分别作CD所在直线的垂线,垂足分别为A1,B1,得到11AB,质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫.通过例题巩固数量积的概念.这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体[问题7]如图,在平面内任取一点O,作OM=a,ON=b,设与b方向相同的单位向量为e,a与b的夹角为,过点M作直线ON的垂线,垂足为M1,则1OM等于什么?[问题8]数量积的几何意义是什么?【练习】已知非零向量a与b 的夹角为45°,|a|=2,与b方向相同的单位向量为e,向量a在向量b上的投影向量为c,则c= .[问题9]根据数量积的概念,数量积有哪些性质?[问题10]类比数的乘法运算律,结合向量的线性运算的运算律,你能得到数量积运算的哪我们称上述变换为向量a向向量b投影,11AB叫做向量a在向量b上的投影向量.教师12:提出问题7.学生10:1OM=|a|cos e.教师13:提出问题8.学生11:a b⋅=b⋅a在b上的投影向量.教师14:完成练习学生12:c=|a|cos45°e=222e=2e.教师15:提出问题9:师生共同总结数量积的性质:(1) a⋅e=e⋅a=| a|cos.(2)a⊥b⇔a⋅b=0.(3)当a与b同向时,a⋅b=|a||b|;当a与b反向时,a⋅b=-|a|b|.(4) a·a=a2=|a|2或|a|=a·a=a2.(5)| a⋅b|≤|a||b|.(6)cosθ=a·b|a||b|.学生结合数量积的定义自己尝试推证上述性质,教师会数量积与向量投影的关系,同时也更符合知识的连贯性.结合数量积、投影的概念和几何意义,让学生自己尝试得到数量积些运算律?能否证明一下?给予必要的补充和提示,学生在推导过程中理解并记忆这些性质.教师16:提出问题10:学生13:教师17:表格中的结论有没有问题?学生14:数量积的结合律一般不成立,因为(a·b)·c是一个与c共线的向量,而(a·c)·b是一个与b共线的向量,两者一般不同.教师18:向量数量积的运算律交换律a·b=b·a对数乘的结合律(λa)·b=λ(a·b)=a·(λb)分配律(a+b)·c=a·c+b·c 的性质,培养学生独立思考的能力.有了运算方法就有运算律,通过问题让学生理解平面向量数量积运算律,并运用投影向量的性质证明数量积的分配律.典例探究落实巩固1.求投影向量例3.已知|a|=4,e为单位向量,它们的夹角为2π3,则向量a在向量e上的投影向量是______;向量e在向量a上的投影向量是________.2.利用数量积解决向量的夹角和垂直问题例4.已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()教师19:完成例3学生15:向量a在向量e上的投影向量是|a|cosθe=4cos2π3e=-2e.因为与向量a方向相同的单位向量为aa=14a,所以向量e在向量a上的投影向量是|e|cosθaa=cos2π314a=-18a.教师20:完成例4学生16:由题意,得a·(2a+b)=2a2+a·b=0,即a·b通过例题,让学生熟悉向量数量积的运算.A .π3B .π2C .2π3D .5π63利用数量积求向量的模例5.已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |的值.[课堂练习1] 设向量a ,b 满足|a +b|=10|a -b|=6,则 a·b =( ).A .1B .2C .3D .5 [课堂练习2]设向量a ,b 满足|a |=|b |=1,a·b =14-,则|a +2b|=_____.=-2a 2,设a 与b 的夹角为θ,则cos θ=a ·b |a |·|b |=-2a 24a 2=-12,所以θ=2π3,故选C .教师21:完成例5学生17:因为a 2=|a |2=25,b 2=|b |2=25,a·b =|a||b |cos θ=5×5×cos π3=252,所以|a +b |=(a +b )2=a 2+b 2+2a·b =25+25+25=53,|a -b |=(a -b )2=a 2+b 2-2a·b =25+25-25=5.教师18:布置课堂练习1、2. 学生16:完成课堂练习,并订正答案.课堂练习1:考查学生对平面向量数量积运算的掌握情况课堂练习2: 考查学生通过平面向量数量积运算求向量的模的能力. 课堂小结[问题11]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]1.若|m |=4,|n |=6,m 与n 的夹角为135°,则m ·n =( ) A .12 B .12 2教师19:提出问题11. 学生17:思考.教师20:布置课后练习师生共同回顾总结:引领学生感悟数学认知的过程,体会数学核心素养.升华认知 C.-12 2 D.-122.若向量a与b的夹角为60°,|b|=4,且(a+2b)·(a-3b)=-72,则a的模为()A.2B.4C.6 D.123.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=k a-4b,c与d垂直,则k的值为()A.-6 B.6C.3 D.-34.已知|b|=5,a·b=12,则向量a在向量b上的投影向量为________.学生18:学生课后进行思考,并完成课后练习.答案:C,C,B,1225b课后练习:巩固定理,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
2023高中数学平面向量的数量积教案范文
2023高中数学平面向量的数量积教案范文2020高中数学平面向量的数量积教案范文一一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。
3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。
4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。
因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。
二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。
因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。
对于cosθ= ,等的变形应用,同学们甚感兴趣。
2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。
三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。
(2)平面向量数量积的应用。
2、过程与方法通过学生小组探究学习,讨论并得出结论。
3、情感态度与价值观培养学生运算推理的能力。
四、教学活动内容师生互动设计意图时间 1、课题引入师:请同学请回忆我们所学过的相关同里的运算。
生:加法、减法,数乘师:这些运算所得的结果是数还是向量。
生:向量。
师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。
3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②O与任何向量的数里积为O。
8.1.3向量数量积的坐标运算教案 2021-2022学年高中数学人教B版必修第三册
8.1.3向量数量积的坐标运算【教学目标】1.掌握平面向量数量积的坐标表示及其运算.2.会运用向量的坐标运算求解向量垂直、夹角等相关问题.3.分清向量平行与垂直的坐标表示.4.能用向量方法证明两角差的余弦公式.【教学重点】数量积坐标表示的推理过程.【教学难点】公式的建立与应用.【教学过程】一、课前预习预习课本,思考并完成以下问题(1)平面向量数量积的坐标表示是什么?(2)如何用坐标表示向量的模、夹角、垂直?二、课前小测1.若向量a =(x,2),b =(-1,3),a ·b =3,则x 等于( )A .3B .-3 C.53 D .-53答案:A解析:a ·b =-x +6=3,x =3,故选A.2.已知a =(2,-1),b =(2,3),则a·b =________,|a +b |=________.答案:1 2 5解析:a ·b =2×2+(-1)×3=1,a +b =(4,2),|a +b |=42+22=2 5.3.已知向量a =(1,3),b =(-2,m ),若a ⊥b ,则m =______.答案:23解析:因为a ⊥b ,所以a ·b =1×(-2)+3m =0,解得m =23.4.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为________.答案:6365解析:因为a ·b =3×5+4×12=63,|a |=32+42=5,|b |=52+122=13,所以a 与b 夹角的余弦值为a·b |a ||b |=635×13=6365.三、新知探究1.平面向量数量积的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.2.向量模的公式设a =(x 1,y 1),则|a |=x 21+y 21.3.两点间的距离公式若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 夹角为θ,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 思考:已知向量a =(x ,y ),你知道与a 共线的单位向量的坐标是什么吗?与a 垂直的单位向量的坐标又是什么?[提示] 设与a 共线的单位向量为a 0,则a 0=±1|a |a =±⎝⎛⎭⎫x |a |,y |a |=±⎝ ⎛⎭⎪⎫x x 2+y 2,y x 2+y 2,其中正号、负号分别表示与a 同向和反向.易知b =(-y ,x )和a =(x ,y )垂直,所以与a 垂直的单位向量b 0的坐标为±⎝ ⎛⎭⎪⎫-y x 2+y2,x x 2+y 2,其中正、负号表示不同的方向.四、题型突破题型一 平面向量数量积的坐标运算【例1】 (1)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.(2)已知a 与b 同向,b =(1,2),a·b =10.①求a 的坐标;②若c =(2,-1),求a ·(b ·c )及(a·b )·c .(1)答案:2解析:以A 为坐标原点,AB 为x 轴、AD 为y 轴建立平面直角坐标系,则B (2,0),D (0,2),C (2,2),E (2,1).可设F (x,2),因为AB →·AF →=(2,0)·(x,2)=2x =2,所以x =1,所以AE →·BF →=(2,1)·(1-2,2)= 2.(2)解:①设a =λb =(λ,2λ)(λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4).②∵b·c =1×2-2×1=0,a·b =10,∴a ·(b·c )=0·a =0,(a·b )·c =10(2,-1)=(20,-10).【反思感悟】数量积运算的途径及注意点(1)进行向量的数量积运算,前提是牢记有关的运算法则和运算性质,解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.(2)对于以图形为背景的向量数量积运算的题目,只需把握图形的特征,并写出相应点的坐标即可求解.【跟踪训练】1.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( )A .-1B .0C .1D .2答案:C解析:∵a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .5B .4C .3D .2答案:A解析:由AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),得AD →·AC →=(2,1)·(3,-1)=5.题型二 向量模的坐标表示【例2】 (1)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|2a -b|等于( )A .4B .5C .3 5D .4 5(2)若向量a 的始点为A (-2,4),终点为B (2,1),求:①向量a 的模;②与a 平行的单位向量的坐标;③与a 垂直的单位向量的坐标.(1)答案:D解析:由a ∥b 得y +4=0,∴y =-4,b =(-2,-4),∴2a -b =(4,8),∴|2a -b |=4 5.故选D.(2)解:①∵a =AB →=(2,1)-(-2,4)=(4,-3),∴|a |=42+(-3)2=5.②与a 平行的单位向量是±a |a |=±15(4,-3), 即坐标为⎝⎛⎭⎫45,-35或⎝⎛⎭⎫-45,35. ③设与a 垂直的单位向量为e =(m ,n ),则a·e =4m -3n =0,∴m n =34. 又∵|e |=1,∴m 2+n 2=1.解得⎩⎨⎧ m =35,n =45或⎩⎨⎧ m =-35,n =-45, ∴e =⎝⎛⎭⎫35,45或e =⎝⎛⎭⎫-35,-45.【反思感悟】求向量的模的两种基本策略(1)字母表示下的运算:利用|a |2=a 2,将向量模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a =(x ,y ),则a·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2.【跟踪训练】3.已知平面向量a =(3,5),b =(-2,1).(1)求a -2b 及其模的大小;(2)若c =a -(a ·b )·b ,求|c |.解:(1)a -2b =(3,5)-2(-2,1)=(7,3),|a -2b |=72+32=58.(2)a ·b =(3,5)·(-2,1)=3×(-2)+5×1=-1,∴c =a -(a ·b )·b =(3,5)+(-2,1)=(1,6),∴|c |=1+62=37.题型三 向量的夹角与垂直问题[探究问题]1.设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?[提示] cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 2.已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于多少?[提示] 由已知得a -b =(1-x,4).∵a ⊥(a -b ),∴a ·(a -b )=0.∵a =(1,2),∴1-x +8=0,∴x =9.【例3】 (1)已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( )A .(-2,+∞) B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-∞,-2) D .(-2,2)(1)答案:B解析:当a 与b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0°,所以要使a 与b 的夹角为锐角,则有a·b>0且a ,b 不同向.由a·b =2+k >0得k >-2,且k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. (2)已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解:设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2).∵点D 在直线BC 上,即BD →与BC →共线,∴存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3),∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ, ∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,∴-6(x -2)-3(y +1)=0,即2x +y -3=0.② 由①②可得⎩⎪⎨⎪⎧x =1,y =1, 即D 点坐标为(1,1),AD →=(-1,2),∴|AD →|=(-1)2+22=5,综上,|AD →|=5,D (1,1).【多维探究】1.将本例(1)中的条件“a =(2,1)”改为“a =(-2,1)”,“锐角”改为“钝角”,求实数k 的取值范围.解:当a 与b 共线时,-2k -1=0,k =-12, 此时a 与b 方向相反,夹角为180°,所以要使a 与b 的夹角为钝角,则有a ·b <0,且a 与b 不反向.由a·b =-2+k <0得k <2.由a 与b 不反向得k ≠-12, 所以k 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2.2.将本例(1)中的条件“锐角”改为“π4”,求k 的值. 解:cos π4=a·b |a ||b |=2+k 5·1+k 2, 即22=2+k 5·1+k 2,整理得3k 2-8k -3=0, 解得k =-13或3. 【反思感悟】1.利用数量积的坐标表示求两向量夹角的步骤(1)求向量的数量积.利用向量数量积的坐标表示求出这两个向量的数量积.(2)求模.利用|a|=x 2+y 2计算两向量的模.(3)求夹角余弦值.由公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求夹角余弦值. (4)求角.由向量夹角的范围及cos θ求θ的值.2.涉及非零向量a ,b 垂直问题时,一般借助a ⊥b ⇔a·b =x 1x 2+y 1y 2=0来解决.五、达标检测1.判断正误若a =(x 1,y 1),b =(x 2,y 2)(1)a ⊥b ⇔x 1x 2+y 1y 2=0.( )(2)a ·b <0⇔a 与b 的夹角为钝角.( )(3)若a ·b ≠0,则a 与b 不垂直.( )(4)|AB →|表示A ,B 两点之间的距离.( )答案:(1)√ (2)× (3)√ (4)√2.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2答案:B解析:a·b=3×1+(-1)×(-2)=5,|a|=32+(-1)2=10,|b|=12+(-2)2=5,设a与b的夹角为θ,则cos θ=a·b|a||b|=510×5=22.又0≤θ≤π,∴θ=π4.3.设a=(2,4),b=(1,1),若b⊥(a+m b),则实数m=________.答案:-3解析:a+m b=(2+m,4+m),∵b⊥(a+m b),∴(2+m)×1+(4+m)×1=0,得m=-3.4.已知平面向量a=(1,x),b=(2x+3,-x),x∈R.(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|.解:(1)若a⊥b,则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,即x2-2x-3=0,解得x=-1或x=3.(2)若a∥b,则1×(-x)-x(2x+3)=0,即x(2x+4)=0,解得x=0或x=-2.当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),|a-b|=4+16=2 5.综上,|a-b|=2或2 5.六、本课小结1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0,a⊥b⇔x1x2+y1y2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.七、课后作业完成本讲配套练习《高一必修三8.1.3向量数量积的坐标运算课时精练(配套2)》.。
人教课标版高中数学选修2-1《空间向量的数量积运算》教案-新版
3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。
教案高中数学向量数量积
教案高中数学向量数量积
教学目标:
1. 了解向量数量积的定义和性质;
2. 掌握向量数量积的计算方法;
3. 能够运用向量数量积解决实际问题。
教学重点:
1. 向量数量积的定义;
2. 向量数量积的计算方法;
3. 向量数量积的性质。
教学步骤:
一、导入(5分钟)
教师引入向量数量积的概念,并与学生讨论向量数量积在实际生活中的应用。
二、讲解(20分钟)
1. 向量数量积的定义;
2. 向量数量积的计算方法;
3. 向量数量积的性质。
三、练习(25分钟)
1. 练习向量数量积的计算方法;
2. 解决一些实际问题。
四、总结(5分钟)
教师总结本节课的重点内容,强调向量数量积在解决实际问题中的应用。
五、作业布置(5分钟)
布置相关作业,巩固学生对向量数量积的理解和应用。
教学手段:
1. 多媒体课件;
2. 教学实例;
3. 练习题;
4. 白板和彩色笔。
教学评价:
1. 学生课堂表现;
2. 课堂练习成绩;
3. 作业完成情况。
《3.1.3空间向量的数量积运算》教学设计
《3.1.3空间向量的数量积运算》教学设计教学目标:知识与技能目标:知识:1.掌握空间向量夹角和模的概念及表示方法;2.掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题.技能:将立体几何问题转化为向量的计算问题过程与方法目标:1.培养类比等探索性思维,提高学生的创新能力.2.培养学生把空间立体几何问题转化为向量的计算问题的思想.情感与态度目标:1. 获得成功的体验,激发学生学习数学的热情;2. 学习向量在空间立体几何中的应用,感受到数学的无穷魅力.教学重点:两个向量的数量积的计算方法及其应用.教学难点:将立体几何问题转化为向量的计算问题.教辅工具:多媒体课件教学程序设计:一、几个概念1)两个非零向量的夹角的定义0,,,a b a b b a π≤〈〉≤〈〉〈〉规定:这样,两个向量的夹角就被唯一确定了,并且=ba b a b a ⊥=〉〈互相垂直,并记作:与则称如果,2,π,,,,,a b O OA a OB b a AOB a b b ∠〈〉==如图,已知两个非零向量在空间任取一点,作则角叫做向量与的夹角,记作:bABC思考:正三角形ABC 中,,______AB BC 〈〉=度120aOABab2)两个向量的数量积〉〈=⋅⋅〉〈b a b a b a b a b a b a b a b a ,cos ,,,cos ,即记作:的数量积,叫做向量,则已知空间两个非零向量几何意义: a与b的数量积b a⋅等于a 的长度|a |与b 在a的方向上的投影|b |cos ,a b 〈〉的乘积.A BO 1B cos ,b a b 〈〉A BO 1B cos ,b a b 〈〉A BO 1B cos ,b a b 〈〉大于0等于0小于0类比平面向量,说说的几何意义。
a b ⋅①两个向量的数量积是数量,而不是向量.〉〈=⋅⋅〉〈b a b a b a b a b a b a b a b a ,cos ,,,cos ,即记作:的数量积,叫做向量,则已知空间两个非零向量③非零向量④⑤cos ,a b a b a b⋅〈〉=2)两个向量的数量积a b ⊥0a b ⇔⋅=2a a =几个重要结论:②规定:00a ⋅=3)空间向量的数量积满足的运算律1)()()a b a b λλ⋅=⋅3()(a b c a b a c ⋅+=⋅+⋅)分配律)2)(a b b a ⋅=⋅交换律)量的数量积定义及几何意义等.对个的结论主让例题与练习分析二、课堂练习.________,2,22,22.1所夹的角为则已知bababa-=⋅==2.10,0,0()2)()()()3)()4)()a b ca b a ba b c a b ca b a c b cka b k ba⋅===⋅⋅=⋅⋅⋅=⋅=⋅==对于空间中任意向量,和,请判断下列说法的对错:)若则若,则若,则135××××ADFCBEACEFDCEFBDEFBAEFADABFEABCD⋅⋅⋅⋅)4()3()2(11 .3)(计算:的中点。
平面向量的数量积(教案)
§5.3 平面向量的数量积(教案)2014高考会这样考1.考查两个向量的数量积的求法;2.利用两个向量的数量积求向量的夹角、向量的模;3.利用两个向量的数量积证明两个向量垂直.复习备考要这样做1.理解数量积的意义,掌握求数量积的各种方法;2.理解数量积的运算性质;3.利用数量积解决向量的几何问题.1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos θ叫做a和b的数量积(或内积),记作a·b=|a||b|cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cos θ;(2)非零向量a,b,a⊥b⇔a·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=a·a;(4)cos θ=a·b |a||b|;(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=|AB→|=x1-x22+y1-y22.(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0. [难点正本疑点清源]1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2.a·b>0是两个向量a·b夹角为锐角的必要不充分条件.因为若〈a,b〉=0,则a·b>0,而a,b夹角不是锐角;另外还要注意区分△ABC中,AB→、BC→的夹角与角B的关系.3.计算数量积时利用数量积的几何意义是一种重要方法.1. 已知向量a 和向量b 的夹角为135°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =___.答案 -32解析 a ·b =|a||b |cos 135°=2×3×⎝ ⎛⎭⎪⎪⎫-22=-3 2. 2. 已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________.答案32解析 由a ⊥b 知a ·b =0.又3a +2b 与λa -b 垂直,∴(3a +2b )·(λa -b )=3λa 2-2b 2 =3λ×22-2×32=0.∴λ=32.3. 已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.答案655解析 设a 和b 的夹角为θ,|a |cos θ=|a |a ·b|a||b |=2×-4+3×7-42+72=1365=655.4. (2011·辽宁)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k 等于( )A .-12B .-6C .6D .12答案 D解析 由已知得a ·(2a -b )=2a 2-a ·b =2(4+1)-(-2+k )=0,∴k =12.5.(2012·陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A.22B.12C.0 D.-1答案 C解析利用向量垂直及倍角公式求解.a=(1,cos θ),b=(-1,2cos θ).∵a⊥b,∴a·b=-1+2cos2θ=0,∴cos2θ=12,∴cos 2θ=2cos2θ-1=1-1=0.题型一平面向量的数量积的运算例1(1)在Rt△ABC中,∠C=90°,AC=4,则AB→·AC→等于( )A.-16 B.-8 C.8 D.16(2)若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)·c=30,则x等于( )A.6 B.5 C.4 D.3思维启迪:(1)由于∠C=90°,因此选向量CA→,CB→为基底.(2)先算出8a-b,再由向量的数量积列出方程,从而求出x.答案(1)D (2)C→=16.解析(1)AB→·AC→=(CB→-CA→)·(-CA→)=-CB→·CA→+CA2(2)∵a=(1,1),b=(2,5),∴8a-b=(8,8)-(2,5)=(6,3).又∵(8a-b)·c=30,∴(6,3)·(3,x)=18+3x=30.∴x=4.探究提高求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.本题从不同角度创造性地解题,充分利用了已知条件.(2012·北京)已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→·CB→的值为________;DE→·DC→的最大值为________.答案 1 1解析方法一以射线AB,AD为x轴,y轴的正方向建立平面直角坐标系,则A(0,0),B(1,0),C(1,1),D(0,1),则E(t,0),t∈[0,1],则DE→=(t,-1),CB→=(0,-1),所以DE→·CB→=(t,-1)·(0,-1)=1.因为DC→=(1,0),所以DE→·DC→=(t,-1)·(1,0)=t≤1,故DE→·DC→的最大值为1.方法二由图知,无论E点在哪个位置,DE→在CB→方向上的投影都是CB=1,∴DE→·CB→=|CB→|·1=1,当E运动到B点时,DE→在DC→方向上的投影最大即为DC=1,∴(DE→·DC→)max=|DC→|·1=1.题型二向量的夹角与向量的模例2已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB→=a ,BC →=b ,求△ABC 的面积. 思维启迪:运用数量积的定义和|a |=a ·a .解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6. ∴cos θ=a ·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB→|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=33.探究提高 (1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,达到简化运算的目的.(1)已知向量a 、b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( )A.π6B.π4C.π3D.π2(2)已知向量a =(1,3),b =(-1,0),则|a +2b |等于( )A .1B.2C .2D .4 答案 (1)C (2)C解析 (1)∵cos 〈a ,b 〉=a ·b|a||b |=12,∴〈a ,b 〉=π3.(2)|a +2b |2=a 2+4a ·b +4b 2=4-4×1+4=4,∴|a +2b |=2. 题型三 向量数量积的综合应用例3已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证.(2)由模相等,列等式、化简.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -kb =(cos α-k cos β,sin α-k sin β), |k a +b |=k 2+2k cos β-α+1, |a -k b |=1-2k cosβ-α+k 2.∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.∵0<α<β<π,∴0<β-α<π,∴β-α=π2.探究提高 (1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a ·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a ·b =0.(3)数量积的运算中,a ·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎪⎫12,32. (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ). (1)证明 ∵a ·b =3×12-1×32=0,∴a ⊥b .(2)解∵c=a+(t2-3)b,d=-k a+t b,且c⊥d,∴c·d=[a+(t2-3)b]·(-k a+t b)=-k a2+t(t2-3)b2+[t-k(t2-3)]a·b=0,又a2=|a|2=4,b2=|b|2=1,a·b=0,∴c·d=-4k+t3-3t=0,∴k=f(t)=t3-3t4(t≠0).三审图形抓特点典例:(5分)如图所示,把两块斜边长相等的直角三角板拼在一起,若AD→=xAB→+yAC→,则x=________,y=________.审题路线图图形有一副三角板构成↓(注意一副三角板的特点)令|AB|=1,|AC|=1↓(一副三角板的两斜边等长)|DE|=|BC|= 2↓(非等腰三角板的特点)|BD|=|DE|sin 60°=2×32=62↓(注意∠ABD=45°+90°=135°) AD→在AB→上的投影即为x↓x=|AB|+|BD|cos 45°=1+62×22=1+32↓AD→在AC→上的投影即为y↓y=|BD|·sin 45°=62×22=32.解析方法一结合图形特点,设向量AB→,AC→为单位向量,由AD→=xAB→+yAC→知,x,y分别为AD→在AB→,AC→上的投影.又|BC|=|DE|=2,∴|BD→|=|DE→|·sin 60°=62.∴AD→在AB→上的投影x=1+62cos 45°=1+62×22=1+32,AD→在AC→上的投影y=62sin 45°=32.方法二∵AD→=xAB→+yAC→,又AD→=AB→+BD→,∴AB→+BD→=xAB→+yAC→,∴BD→=(x-1)AB→+yAC→.又AC→⊥AB→,∴BD→·AB→=(x-1)AB→2. 设|AB→|=1,则由题意|DE→|=|BC→|= 2.又∠BED=60°,∴|BD→|=62.显然BD→与AB→的夹角为45°.∴由BD→·AB→=(x-1)AB→2,得62×1×cos 45°=(x-1)×12.∴x=32+1.同理,在BD→=(x-1)AB→+yAC→两边取数量积可得y=3 2 .答案1+3232温馨提醒突破本题的关键是,要抓住图形的特点(图形由一副三角板构成).根据图形的特点,利用向量分解的几何意义,求解方便快捷.方法二是原试题所给答案,较方法一略显繁杂.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.失误与防范1. (1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2. a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3. a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( ) A .-1B .-12C.12D .1答案 D解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A.5 B.10 C .25 D .10答案 B 解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+-12=10.3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎪⎫79,73B.⎝ ⎛⎭⎪⎪⎫-73,-79C.⎝ ⎛⎭⎪⎪⎫73,79D.⎝ ⎛⎭⎪⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 联立①②解得x =-79,y =-73.4. 在△ABC 中,AB =3,AC =2,BC =10,则AB→·AC →等于( )A .-32B .-23C.23D.32答案 D解析 由于AB→·AC →=|AB →|·|AC →|·cos ∠BAC=12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32. 二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.答案 32解析 ∵a ,b 的夹角为45°,|a |=1, ∴a ·b =|a |·|b |cos 45°=22|b |,|2a -b |2=4-4×22|b |+|b |2=10,∴|b |=32.6. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB→·AC →=________.答案 -16 解析 如图所示, AB→=AM →+MB →, AC →=AM →+MC → =AM→-MB →, ∴AB→·AC →=(AM →+MB →)·(AM →-MB →) =AM→2-MB →2=|AM →|2-|MB →|2=9-25=-16. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________.答案 (-∞,-6)∪⎝⎛⎭⎪⎪⎫-6,32解析 由a ·b <0,即2λ-3<0,解得λ<32,由a ∥b 得:6=-λ,即λ=-6.因此λ<32,且λ≠-6.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c . 解 (1)a ·b =2n -2,|a |=5,|b |=n 2+4,∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0,∴n =6或n =-23(舍),∴b =(-2,6).(2)由(1)知,a ·b =10,|a |2=5.又c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0, ∴λb ·a -|a |2=0,∴λ=|a |2b ·a =510=12,∴c =12b =(-1,3).9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围. 解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7. 由已知得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时, 设2t e 1+7e 2=λ(e 1+t e 2),λ<0, 则⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍). 故t 的取值范围为(-7,-142)∪(-142,-12).B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,AB→·BC →=1,则BC 等于( )A.3B.7C .22D.23答案 A解析 ∵AB→·BC →=1,且AB =2,∴1=|AB→||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×(-1). ∴|BC |=3.2. 已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .2 答案 A解析 a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a ·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉, ∴|a |·cos 〈a ,b 〉=-4.3. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2等于( ) A .2B .4C .5D .10答案 D解析 ∵PA→=CA →-CP →,∴|PA →|2=CA →2-2CP →·CA →+CP →2. ∵PB→=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2. ∴|PA→|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD →+2CP →2. 又AB→2=16CP →2,CD →=2CP →, 代入上式整理得|PA→|2+|PB →|2=10|CP →|2,故所求值为10.二、填空题(每小题5分,共15分)4. (2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.答案2解析 利用向量数量积的坐标运算求解.a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0, ∴m =-12.∴a =(1,-1),∴|a |=2.5. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.答案2解析 方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2). 故AB→=(2,0),AF →=(x,2),AE →=(2,1),BF→=(x -2,2),∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF →=2,∴x =1.∴BF →=(1-2,2). ∴AE→·BF →=(2,1)·(1-2,2)=2-2+2=2.方法二 用AB→,BC →表示AE →,BF →是关键.设DF→=xAB →,则CF →=(x -1)AB →. AB→·AF →=AB →·(AD →+DF →) =AB →·(AD →+xAB →)=xAB →2=2x , 又∵AB→·AF →=2,∴2x =2,∴x =22.∴BF →=BC →+CF →=BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →.∴AE →·BF →=(AB →+BE →)·⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫AB →+12BC →⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫22-1AB →2+12BC →2=⎝ ⎛⎭⎪⎪⎫22-1×2+12×4= 2.6. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC→|=|CN →||CD→|,则AM→·AN →的取值范围是________. 答案 [1,4]解析 利用基向量法,把AM →,AN →都用AB →,AD →表示,再求数量积.如图所示,设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),则BM →=λBC →, CN→=λCD →,DN →=CN →-CD → =(λ-1)CD→,∴AM→·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →] =(λ-1)AB→·CD →+λBC →·AD →=4(1-λ)+λ=4-3λ,∴当λ=0时,AM→·AN →取得最大值4;当λ=1时,AM →·AN →取得最小值1.∴AM →·AN →∈[1,4]. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝ ⎛⎭⎪⎪⎫-12,32. (1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝ ⎛⎭⎪⎪⎫14+34=0,故向量a +b 与a -b 垂直. (2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,即⎝ ⎛⎭⎪⎪⎫-12·cos α+32·sin α=0,即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.。
人教B版(2019)数学必修(第三册):8.1.1 向量数量积的概念 教案
向量数量积的概念【教学过程】一、问题导入我们在物理课中学过,力与在力的方向上移动的距离的乘积称为力对物体所做的功。
如图所示,如果作用在小车上的力F 的大小为|F| N ,小车在水平面上位移s 的大小为|s|·m ,力的方向与小车位移的方向所成夹角为θ,那么这个力所做的功为W=|F||s|cos θ。
(1)显然,功W 与力向量F 及位移向量s 有关,这三者之间有什么关系?(2)给定任意两个向量a ,b ,能确定出一个类似的标量吗?如果能,请指出确定的方法;如果不能,说明理由。
二、新知探究1.与向量数量积有关的概念【例1】(1)以下四种说法中正确的是________。
(填序号)①如果a·b =0,则a =0或b =0;②如果向量a 与b 满足a·b<0,则a 与b 所成的角为钝角; ③△ABC 中,如果AB →·BC →=0,那么△ABC 为直角三角形; ④如果向量a 与b 是两个单位向量,则a 2=b 2(2)已知|a|=3,|b|=5,且a·b =-12,则a 在b 方向上的投影的数量为________,b 在a 方向上的投影的数量为________。
(3)已知等腰△ABC 的底边BC 长为4,则BA →·BC →=________。
思路探究:根据数量积的定义、性质、运算律及投影的定义解答。
(1)③④;(2)-125;-4;(3)8;[(1)由数量积的定义知a·b =|a||b|·cos θ(θ为向量a ,b 的夹角)。
①若a·b =0,则θ=90°或a =0或b =0,故①错; ②若a·b<0,则θ为钝角或θ=180°,故②错;③由AB →·BC →=0知B =90°,故△ABC 为直角三角形,故③正确; ④由a 2=|a|2=1,b 2=|b|2=1,故④正确。
高中数学人教版B版精品教案《向量数量积的坐标运算》
向量数量积的坐标运算【教学过程】一、问题导入我们已经学习了向量数量积的概念以及平面向量线性运算的坐标运算方法,那么向量的数量积能不能进行坐标运算呢?如果可以又遵循怎样的运算法则呢?这节课就让我们来学习——向量数量积的坐标运算。
二、新知探究1.平面向量数量积的坐标运算【例1】(1)已知向量a=(1,2),b=(2,),且a·b=-1,则的值等于()。
A.错误!B.-错误!C.错误!D.-错误!(2)已知向量a=(-1,2),b=(3,2),则a·b=________,a·a-b=________。
(3)已知a=(2,-1),b=(3,2),若存在向量c,满足a·c=2,b·c=5,则向量c=________。
思路探究:根据题目中已知的条件找出向量坐标满足的等量关系,利用数量积的坐标运算列出方程(组)来进行求解。
答案:(1)D;(2)1;4;(3)错误!。
[(1)因为a=(1,2),b=(2,),所以a·b=(1,2)·(2,)=1×2+2=-1,解得=-错误!。
(2)a·b=(-1,2)·(3,2)=(-1)×3+2×2=1,a·(a-b)=(-1,2)·[(-1,2)-(3,2)]=(-1,2)·(-4,0)=4.(3)设c=(,),因为a·c=2,b·c=5,所以错误!解得错误!所以c=错误!。
][教师小结](1)进行数量积运算时,要正确使用公式a·b=12+12,并能灵活运用以下几个关系:|a|2=a·a;(a+b)(a-b)=|a|2-|b|2;(a+b)2=|a|2+2a·b+|b|2.(2)通过向量的坐标表示可实现向量问题的代数化,应注意与函数、方程等知识的联系。
(3)向量数量积的运算有两种思路:一种是向量式,另一种是坐标式,两者相互补充。
3.1.3空间向量的数量积运算(优秀经典公开课比赛教案)
3.1.3空间向量的数量积运算一、教材分析:“3.1空间向量及其运算”包括空间向量的定义、空间向量的加减运算、空间向量的数乘运算、空间向量的数量积运算、空间向量的正交分解及其坐标表示、空间向量运算的坐标表示等内容。
在学生掌握了空间向量加法运算的基础上,学习空间向量的数乘运算应无困难。
教科书在本小节首先类比平面向量的数乘运算引入空间向量的数乘运算以及数乘运算的分配律和结合律。
进而分别给出了空间向量共线和共面的定义,并进一步研究了空间向量共线和共面的问题。
二、教学目标:1、掌握空间向量夹角和模的概念及表示方法;2、掌握两个向量数量积的概念、性质和计算方法及运算律;3、掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.三、教学重点:两个向量的数量积的计算方法及其应用.四、教学难点:向量运算在几何证明与计算中的应用.五、教学准备1、课时安排:1课时2、学情分析:3、教具选择:六、教学方法:七、教学过程1、自主导学:2、合作探究(一)、复习引入1.复习平面向量数量积定义:2. 平面向量中有两个平面向量的数量积,与其类似,空间两个向量也有数量积.(二)、新课讲授1. 两个非零向量夹角的概念:已知两个非零向量a 与b ,在空间中任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a 与b 的夹角,记作<a ,b >.说明:⑴规定:0≤<a ,b >π≤. 当<a 、b >=0时,a 与b同向; 当<a 、b >=π时,a 与b 反向;当<a 、b >=2π时,称a 与b 垂直,记a ⊥b . ⑵ 两个向量的夹角唯一确定且<a ,b >=<b ,a>.⑶ 注意:①在两向量的夹角定义中,两向量必须是同起点的.②<a ,b >≠(a ,b )2. 两个向量的数量积:已知空间两个向量a 与b ,|a ||b |cos <a 、b >叫做向量a 、b 的数量积,记作a ·b ,即 a ·b =|a ||b |cos <a ,b >. 说明:⑴零向量与任一向量的数量积为0,即0·a =0;⑵符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. 几何意义:已知向量AB =a 和轴l ,e 是l 上和l 同方向的单位向量.作点A 在l 上的射影A ′,点B 在l 上的射影B ′,则''A B 叫做向量AB 在轴l 上或在e 方向上的正射影,简称射影.可以证明:''A B =|AB |cos <a ,e >=a ·e .说明:一个向量在轴上的投影的概念,就是a ·e 的几何意义.3. 空间数量积的性质:根据定义,空间向量的数量积和平面向量的数量积一样,具有以下性质:⑴a ·e =|a |·cos <a ,e >; ⑵a ⊥b ⇔a ·b =0⑶当a 与b 同向时,a ·b =|a |·|b |; 当a 与b 反向时,a ·b =-|a |·|b |.特别地,a ·a =|a |2或|a |=2a a a ⋅=.⑷cos <a ,b >=a ba b ⋅⋅; ⑸|a ·b |≤|a |·|b |.4. 空间向量数量积的运算律:与平面向量的数量积一样,空间向量的数量积有如下运算律:⑴(λa )·b =λ(a ·b )=a ·(λb ) (数乘结合律); ⑵ a ·b =b ·a (交换律);⑶a ·(b +c )=a ·b +a ·c (分配律)说明:⑴(a ·b )c ≠a (b ·с);⑵有如下常用性质:a 2=|a |2,(a +b )2=a 2+2a ·b +b 2例题讲解:课本91页:例2、例33、巩固训练:课本92页:练习4、拓展延伸:5、师生合作总结:(1)空间向量夹角和模的概念及表示方法(2)两个向量数量积的概念、性质和计算方法及运算律;八、课外作业:课本97页:习题3.1 A组 4九、板书设计:。
有关高三数学平面向量的数量积教学设计大全
有关高三数学平面向量的数量积教学设计大全教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
接下来是小编为大家整理的有关高三数学平面向量的数量积教学设计大全,希望大家喜欢!有关高三数学平面向量的数量积教学设计大全一教学目标:(i)知识目标:(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示.(2) 平面向量数量积的应用.(ii)能力目标:(1) 培养学生应用平面向量积解决相关问题的能力.(2) 正确运用向量运算律进行推理、运算.教学重点: 1. 掌握平面向量的数量积及其几何意义.2. 用数量积求夹角、距离及平面向量数量积的坐标运算.教学难点:平面向量数量积的综合应用.教学过程:一、知识梳理1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量| || |cos(叫与的数量积,记作 ( ,即 ( = | || |cos(,并规定与任何向量的数量积为02.平面向量的数量积的几何意义:数量积 ( 等于的长度与在方向上投影| |cos(的乘积.3.两个向量的数量积的性质设、为两个非零向量,是与同向的单位向量1( ( = ( =| |cos(; 2( ( ( ( = 03(当与同向时, ( = | || |;当与反向时, ( = (| || | ,特别地 ( = ||24(cos( = ; 5(| ( | ≤ | || |4.平面向量数量积的运算律① 交换律:( = ( ② 数乘结合律:( )( = ( ( ) = (( )③ 分配律:( + )( = ( + (5.平面向量数量积的坐标表示①已知两个向量,,则 .②设,则 .③平面内两点间的距离公式如果表示向量的有向线段的起点和终点的坐标分别为、,那么 .④向量垂直的判定两个非零向量,,则 .⑤两向量夹角的余弦 cos( = ( ).二、典型例题1. 平面向量数量积的运算例题1 已知下列命题:① ; ② ; ③ ; ④其中正确命题序号是②、④ .点评:掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知 ; (2) ;(3) 的夹角为,分别求 .解(1)当时, = 或 = .(2)当时, = .(3)当的夹角为时, = .变式训练:已知,求解: =点评:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.2.夹角问题例题3 若,且,则向量与向量的夹角为 ( )A. B. C. D.解:依题意故选C变式训练1:① 已知,求向量与向量的夹角.② 已知,夹角为,则 .解:① ,故夹角为 .②依题意得 .变式训练2:已知是两个非零向量,同时满足,求的夹角.法一解:将两边平方得,则,故的夹角.为 .法二:数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.3.向量模的问题例题4 已知向量满足,且的夹角为,求 .解:,且的夹角为;变式训练:①(2005年湖北)已知向量,若不超过5,则的取值范围 ( )A. B. C. D.②(2006年福建) 已知的夹角为,,,则等于( )A 5 B. 4 C. 3 D. 1解:① ,故选C② ,,解得,故选B点评:涉及向量模的问题一般利用,注意两边平方是常用的方法.4.平面向量数量积的综合应用例题5 已知向量 .若 ; (2)求的最大值 .解:(1)若,则, .(2) = =,的最大值为 .例题6已知向量,且满足,求证 ; (2)将与的数量积表示为关于的函数 ;(3)求函数的最小值及取得最小值时向量与向量的夹角 .解:(1),故(2) ,故 .有关高三数学平面向量的数量积教学设计大全二2.3.1向量数量积的物理背景与定义教材说明平面向量数量积具有代数与几何的双重性质,因此所涉及的内容较为广泛,如方程、不等式等代数问题;夹角、距离、面积、平行、垂直等几何问题。
教学设计1:6.2.4 向量的数量积
6.2.4 向量的数量积【自主预习】1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[概念方法微思考]1.a 在b 方向上的投影与b 在a 方向上的投影相同吗?提示 不相同.因为a 在b 方向上的投影为|a |cos θ,而b 在a 方向上的投影为|b |cos θ,其中θ为a 与b 的夹角.2.两个向量的数量积大于0,则夹角一定为锐角吗?提示 不一定.当夹角为0°时,数量积也大于0.【基础自测】题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (3)由a ·b =0可得a =0或b =0.( × ) (4)(a ·b )c =a (b ·c ).( × )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (6)若a·b <0,则a 和b 的夹角为钝角.( × ) 题组二 教材改编2.已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的投影为|b |cos θ=4×cos120°=-2. 题组三 易错自纠4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 23解析 方法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2 =22+4×2×1×cos60°+4×12=12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________. 答案322解析 AB →=(2,1),CD →=(5,5),由定义知,AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a·b +b·c +a·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a·b =b·c =a·c =1×1×cos120°=-12,∴a·b +b·c +a·c =-32.【题型探究】题型一 平面向量数量积的基本运算1.已知a =(x,1),b =(-2,4),若(a +b )⊥b ,则x 等于( ) A .8 B .10C .11D .12答案 D解析 ∵a =(x,1),b =(-2,4),∴a +b =(x -2,5), 又(a +b )⊥b ,∴(x -2)×(-2)+20=0,∴x =12.2.已知向量a ,b 满足|a |=1,a·b =-1,则a ·(2a -b )等于( ) A .4 B .3C .2D .0答案 B解析 a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵|a |=1,a ·b =-1,∴原式=2×12+1=3.3.设D ,E 为正三角形ABC 中BC 边上的两个三等分点,且BC =2,则AD →·AE →等于( ) A.49 B.89 C.269D.263答案 C 解析 如图,|AB →|=|AC →|=2,〈AB →,AC →〉=60°, ∵D ,E 是边BC 的两个三等分点,∴AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=⎝⎛⎭⎫23AB →+13AC →·⎝⎛⎭⎫13AB →+23AC → =29|AB →|2+59AB →·AC →+29|AC →|2=29×4+59×2×2×12+29×4=269. [思维升华]平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解. 题型二 平面向量数量积的应用 命题点1 求向量的模例1(1)在△ABC 中,∠BAC =60°,AB =5,AC =6,D 是AB 上一点,且AB →·CD →=-5,则 |BD →|等于( ) A .1 B .2C .3D .4答案 C解析 如图所示,设AD →=kAB →,所以CD →=AD →-AC →=kAB →-AC →,所以AB →·CD →=AB →·(kAB →-AC →)=kAB →2-AB →·AC → =25k -5×6×12=25k -15=-5,解得k =25,所以|BD →|=⎝⎛⎭⎫1-25|AB →|=3. (2)设向量a ,b ,c 满足|a |=|b |=2,a ·b =-2,〈a -c ,b -c 〉=60°,则|c |的最大值为( ) A .4 B .2 C.2D .1答案 A解析 因为|a |=|b |=2,a ·b =-2,所以cos 〈a ,b 〉=a ·b |a ||b |=-12,〈a ,b 〉=120°.如图所示,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c ,∠AOB =120°. 所以∠ACB =60°,所以∠AOB +∠ACB =180°, 所以A ,O ,B ,C 四点共圆. 不妨设为圆M ,因为AB →=b -a ,所以AB →2=a 2-2a ·b +b 2=12,所以|AB →|=23,由正弦定理可得△AOB 的外接圆即圆M 的直径为2R =|AB →|sin ∠AOB =4.所以当|OC →|为圆M 的直径时,|c |取得最大值4. 命题点2 求向量的夹角例2 (1)已知|a |=1,|b |=2,|a -2b |=21,则向量a ,b 的夹角为(用弧度表示)________. 答案2π3解析 因为|a |=1,|b |=2,|a -2b |=21, 所以|a -2b |=(a -2b )2=21,解得cos 〈a ,b 〉=-12,又因为〈a ,b 〉∈[0,π],所以〈a ,b 〉=2π3.(2)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2. 所以cos60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12,解得λ=33. [思维升华](1)求解平面向量模的方法 ①利用公式|a |=x 2+y 2. ②利用|a |=a 2.(2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b |,θ的取值范围为[0,π].②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.③解三角形法:把两向量的夹角放到三角形中.[跟踪训练1](1)已知向量a 与b 的夹角为30°,且|a |=1,|2a -b |=1,则|b |=________. 答案3解析 ∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=1,∴4-4|b |cos30°+b 2=1, 整理得|b |2-23|b |+3=(|b |-3)2=0,解得|b |= 3.(2)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3答案 B解析 ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=22,∴〈a ,b 〉=π4. 题型三 平面向量与三角函数例3已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -|a +b |,求f (x )的最大值和最小值. 解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2·sin x2=cos2x .∵a +b =⎝⎛⎭⎫cos 3x 2+cos x 2,sin 3x 2-sin x 2, ∴|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22=2+2cos2x =2|cos x |.∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0,∴|a +b |=2cos x . (2)f (x )=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1. [思维升华]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. [跟踪训练2]在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.。
平面向量的数量积(公开课)
平面向量的数量积(公开课)一、向量的基本概念大家好,今天我们来聊一聊平面向量的数量积。
我们要明白什么是向量。
在数学里,向量是一个有大小和方向的量,它可以用两个数表示,一个是横坐标,一个是纵坐标。
比如,我们可以用(3, 4)这个数来表示一个向量,它的横坐标是3,纵坐标是4。
那么,向量的数量积是什么呢?二、向量的数量积向量的数量积是一个很重要的概念,它表示的是两个向量的点积。
点积的计算方法很简单,就是把两个向量的对应元素相乘,然后把乘积相加。
具体来说,就是横坐标乘以纵坐标,然后把所有的乘积加起来。
比如,(3, 4)和(1, 2)这两个向量的数量积就是(3 *1) + (4 * 2) = 7。
三、向量的数量积的性质向量的数量积有很多性质,比如:1. 数量积的取值范围是[-∞, +infty];2. 如果两个向量互相垂直,那么它们的数量积等于0;3. 如果一个向量用另一个向量表示,那么它们的数量积等于第一个向量的模乘以第二个向量的模与它们的夹角的余弦值的积。
4. 如果两个向量平行,那么它们的数量积为0或无穷大。
四、应用举例现在我们来看一个例子:假设有两个向量A=(3, 4)和B=(1, 2),那么它们的数量积就是A·B=(3*1)+(4*2)=7。
如果我们知道A和B互相垂直,那么它们的数量积就是0。
如果我们知道A用B表示,那么它们的数量积就是|A||B|cosθ=|A|*|B|*(A·B)/[(|A|^2+|B|^2)^(1/2)]=(5*sqrt(5))*(7/((5^2+(\sqrt{5})^2)^(1/2)))= 7/(10^(1/2))。
如果我们知道A和B平行,那么它们的数量积就是0或无穷大。
五、总结好了,今天我们就讲到这里了。
希望大家能够理解向量的数量积的概念和性质,并且能够在实际问题中灵活运用。
谢谢大家!。
学案5:6.2.4 向量的数量积
6.2.4 向量的数量积素养目标·定方向素养目标学法指导1.理解平面向量的数量积的定义.(数学抽象) 2.了解投影向量的概念.(直观想象) 3.了解向量的数量积与实数的乘法的区别.(数学运算)4.掌握向量数量积的性质及其运算律.(逻辑推理)1.对于向量的学习,关键是用好类比,即类比数的运算以及类比物理中矢量的运算. 2.物理中功的模型有助于我们更好地理解向量的数量积运算.3.在研究向量的数量积运算时,类似于数的乘法运算中经常要关注0一样,要特别重视零向量的特殊性.4.向量的投影是高维空间到低维空间的一种线性变换,得到的是低维空间向量.必备知识·探新知知识点1 向量的数量积 1.向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上任意一点,作OA →=a ,OB →=b , 则∠AOB =θ(_ ______≤θ≤_______)叫做向量a 与b 的夹角. (2)性质:当θ=_____时,a 与b 同向;当θ=______时,a 与b 反向. (3)向量垂直:如果a 与b 的夹角是______,我们说a 与b 垂直,记作_______. 2.向量的数量积 条件 非零向量a 与b ,它们的夹角为θ 结论 数量______叫做向量a 与b 的数量积(或内积) 记法 向量a 与b 的数量积记作a ·b ,即a ·b =_____规定零向量与任一向量的数量积为____3.向量a 在b 上的投影向量(1)设a ,b 是两个非零向量,AB →=a ,CD →=b ,我们考虑如下的变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影,A 1B 1→叫做___________的投影向量.(2)在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量,且OM 1→=_________.[知识解读] (1)两向量的数量积,其结果是数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定,而向量的加减和实数与向量的积的结果仍是向量.(2)两个向量的数量积是两个向量之间的一种乘法,与以前学过的数的乘法是有区别的,在书写时一定要把它们严格区分开来,决不可混淆. 知识点2 向量的数量积的性质及运算律 1.数量积的性质设a ,b 是两个非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a = . (2)a ⊥b ⇔_______.(3)当a ,b 同向时,a ·b =_____;当a ,b 反向时,a ·b = .特别地,a ·a =____或|a |=_____. (4)|a ·b |≤_______. (5)cos θ=______. 2.数量积的运算律对于向量a ,b ,c 和实数λ,有 (1)a ·b =_______(交换律).(2)(λa )·b =______=______(结合律). (3)(a +b )·c =_________(分配律). [知识解读] 向量数量积的性质及其应用性质(1)表明任意向量与单位向量的数量积等于这个向量在单位向量e 上的投影向量的长度. 性质(2)可用于解决与两个非零向量垂直有关的问题.性质(3)表明,当两个向量相等时,这两个向量的数量积等于向量的模的平方,因此可用于求向量的模.性质(4)可以解决有关“向量不等式”的问题.性质(5)的实质是平面向量数量积的逆用,可用于求两向量的夹角,也称为夹角公式.关键能力·攻重难题型探究题型一 平面向量的数量积典例1 (1)已知|a |=2,|b |=3,a 与b 的夹角为120°,试求:①a ·b ;②(a +b )·(a -b ); ③(2a -b )·(a +3b ).(2)在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=_______. [归纳提升] 求平面向量数量积的两个方法(1)定义法:若已知向量的模及其夹角,则直接利用公式a ·b =|a ||b |cos θ.注意:运用此法计算数量积的关键是正确确定两个向量的夹角,条件是两向量的始点必须重合,否则,要通过平移使两向量符合以上条件.(2)几何意义法:若已知一向量的模及另一向量在该向量方向上的投影向量,可利用数量积的几何意义求a ·b .【对点练习1】 (1)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2D .0(2)在等腰直角三角形ABC 中,AB =BC =4,则AB →·BC →=_____,BC →·CA →=______,CA →·AB →=______.题型二 利用数量积解决求模问题典例2 (1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=_________. (2)已知向量a 与b 夹角为45°,且|a |=1,|2a +b |=10,求|b |.[归纳提升]1.利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法: (1)a =a ·a =|a |2或|a |=a ·a . (2)|a ±b |=a ±b2=a 2+b 2±2a ·b .2.向量夹角公式cos 〈a ,b 〉=a ·b|a ||b |的计算中涉及了向量运算和数量运算,计算时要区别进行的是向量运算还是数量运算.从而保证计算结果准确无误.【对点练习2】 (1)已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=_______.(2)已知向量a ,b 的夹角为120°,|a |=4,|b |=3,则|a -3b |=_______. 题型三 两向量的夹角和垂直问题典例3 (1)已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为______. (2)已知|a |=3,|b |=2,向量a ,b 的夹角为60°,c =3a +5b ,d =m a -3b ,求当m 为何值时,c 与d 垂直?[归纳提升] 1.求向量夹角的方法(1)求出a ·b ,|a |,|b |,代入公式cos θ=a ·b |a ||b |求解.(2)用同一个量表示a ·b ,|a |,|b |代入公式求解. (3)借助向量运算的几何意义,数形结合求夹角.2.要注意夹角θ的范围θ∈[0,π],当cos θ>0时,θ∈⎣⎡⎭⎫0,π2;当cos θ<0时,θ∈⎝⎛⎦⎤π2,π,当cos θ=0时,θ=π2.3.当两向量垂直时,利用a ·b =0列方程(组)可求未知数.【对点练习3】 (1)已知|a |=1,|b |=2,且a +b 与a 垂直,则a 与b 的夹角是_____. (2)已知|a |=3,|b |=4,且(a -2b )·(2a +b )≥4,则a 与b 的夹角θ的取值范围是_______.参考答案必备知识·探新知知识点1 向量的数量积 1.(1)0 π(2) 0 π (3) π2a ⊥b2.|a ||b |cos θ |a ||b |cos θ 0 3.(1)向量a 在向量b 上 (2) |a |cos θe知识点2 向量的数量积的性质及运算律 1.(1)|a |cos θ (2)a ·b =0(3)|a ||b | -|a ||b | |a |2 a ·a (4)|a ||b | (5)a ·b |a ||b | 2.(1) b ·a (2)λ(a ·b ) a ·(λb ) (3)a ·c +b ·c关键能力·攻重难题型探究题型一 平面向量的数量积典例1 (1)解:①a ·b =|a ||b |cos120°=2×3×(-12)=-3.②(a +b )·(a -b )=a 2-a ·b +a ·b -b 2=a 2-b 2=|a |2-|b |2=4-9=-5.③(2a -b )·(a +3b )=2a 2+6a ·b -a ·b -3b 2=2|a |2+5a ·b -3|b |2=2×4-5×3-3×9=-34. (2)【答案】-14【解析】由已知得AD →=12(AB →+AC →),AE →=23AC →,BE →=BA →+AE →=23AC →-AB →,所以AD →·BE →=12(AB→+AC →)·(23AC →-AB →)=12×(23|AC →|2-|AB →|2-13AB →·AC →)=12×(23-1-13cos 60°)=-14.【对点练习1】 【答案】(1) B (2) 0 -16 -16 【解析】(1)a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵ |a |=1,a ·b =-1,∴ 原式=2×12+1=3. 故选B .(2)由题意,得|AB →|=4,|BC →|=4,|CA →|=42,所以AB →·BC →=4×4×cos 90°=0,BC →·CA →=4×42×cos 135°=-16,CA →·AB →=42×4×cos 135°=-16. 题型二 利用数量积解决求模问题典例2 (1)【答案】 23【解析】|a +2b |2=(a +2b )2=|a |2+2|a ||2b |cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,所以|a +2b |=12=2 3.(2)解:因为|2a +b |=10,所以(2a +b )2=10, 所以4a 2+4a ·b +b 2=10,又因为向量a 与b 的夹角为45°且|a |=1, 所以4×12+4×1×|b |×22+|b |2=10, 整理得|b |2+22|b |-6=0, 解得|b |=2或|b |=-32(舍去).【对点练习2】 【答案】(1) 3 (2) 133【解析】(1)因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3. (2)|a -3b |=(a -3b )2=a 2-6a ·b +9b 2 =42-6×4×3×cos120°+9×9 =133.题型三 两向量的夹角和垂直问题 典例3 (1)【答案】π3【解析】设a 与b 的夹角为θ,依题意有:(a +2b )·(a -b )=a 2+a ·b -2b 2=-7+2cos θ=-6,所以cos θ=12,因为0≤θ≤π,故θ=π3.(2)解:由已知得a ·b =3×2×cos 60°=3. 由c ⊥d ,得c ·d =0,即c ·d =(3a +5b )·(m a -3b ) =3m a 2+(5m -9)a ·b -15b 2=27m +3(5m -9)-60=42m -87=0, 所以m =2914,即m =2914时,c 与d 垂直.【对点练习3】 【答案】(1) 3π4 (2) [2π3,π]【解析】∵(a +b )·a =a 2+a ·b =0, ∴a ·b =-a 2=-1,∴cos θ=a ·b |a ||b |=-11×2=-22,又θ∈[0,π],∴θ=3π4.(2)∵(a -2b )·(2a +b )=2a 2+a ·b -4a ·b -2b 2=2×9-3|a ||b |cos θ-2×16=-14-3×3×4cos θ≥4,∴cos θ≤-12,∴θ∈[2π3,π].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公开课教案
课 题:6.8 向量的数量积 教学目标:1)向量的数量积
2)使学生理解向量的数量积和运算法则 3)使学生能初步利用向量的数量积的概念。
教学重点:理解向量的数量积 教学难点::理解向量的数量积 教学方法:讲授法,启发引导教学 课堂类型:新授课 教学步骤: (一)复习巩固
1、提问:向量的线性运算都包括哪些运算?
2、举两个向量的线性运算的例子,并计算出结果。
3、提问:向量的线性运算,其结果有什么特点? (二)引入新课:
我们学过向量的线性运算,知道其计算结果都是向量,那么有没有一些向量的运算其计算结果不是向量呢?我们先来看一个物理上的知识,关于力做功的的
问题,功W=|F
|·|S |cos θ这是一个由两个向量的模和它们的夹角余弦的乘积确定的,这节课我们就来学习这个内容。
(三)讲授新课
1、关于向量的规定:
1)、两个向量的夹角θ,记<a ,b
>。
0≤<a ,b >≤π,<a ,b >=<b ,a
>。
2)、规定:a ·b =|a | |b
|(0≤θ≤π)
或者表示成:a ·b =|a | |b |cos <a ,b >(0≤<a ,b
>≤π) a ·b 表示向量a 与b
的数量积。
3)、思考:如果a 与b
是两个非零向量,那么在什么条件下 ①a ·b >0 ②a ·b <0 ③a ·b =0 4)、练一练
1)如果|a |=3,|b |=2,cos θ= - 2
1,那么a ·b
= 。
2)|a |=21,|b |=4,θ=3
π,那么a ·b
= 。
2、例题讲解
例1、根据下列条件分别求出<a ,b
>: 1)|a |=3,|b |=4,a ·b
=6;
2)|a |=|b |=2,a ·b
= -2。
例2:已知|a |=4,|b |=3,<a ,b
>=3
π,计算:
1)(a +b )2
; 2)(2a - b )·(3a +2b )。
3、向量的数量积运算的运算律 1)满足交换律及分配律
①a ·b = b ·a ;②a
·(b +c )=a ·b +a ·c 2)不满足结合律
(a ·b )·c ≠a
·(b ·c ) 3)实数与向量相乘时,满足结合律
(k a )·b =k ( a ·b
)
课堂练习: 书P93 1~3
课堂小结:1、向量的数量积定义; 2、向量数量积运算的运算律;
3、向量数量积的运算的特点:结果是一个实数。
课后作业:书P93 4 板书设计
6.8 向量的数量积 1、规定:1)、两个向量的夹角 2、例题讲解
2)、规定:两个向量的数量积 3、运算律。