人教版九年级上册知识点强化训练:根与系数的关系 含答案

合集下载

初中根与系数的关系复习题 附答案

初中根与系数的关系复习题  附答案

10.已知关于 x 的方程(m-2)x2-(m-1)x+m=0. (1)请你选取一个合适的整数 m,使方程有两个有理数根,并求出这两个根; (2)当 m>0,且 m2-2m<0 时,讨论方程的实数根的情况.
11.(2013•平谷区一模)已知关于 m 的一元二次方程 2x2+mx-1=0. (1)判定方程根的情况; (2)设 m 为整数,方程的两个根都大于 -1 且小于
b a a b
3 ,那么它的另一个根是为
3
是关于 x 的方程 x2-4x+c=0 的一个根,则 c 的值是
7.已知关于 x 的方程 2x2-mx-6=0 的一个根 2,则 m=
,另一个根为
8.若 x1,x2 是方程 3x2-|x|-4=0 的两根,则
x1 x 2 1 的值 x1 x 2
9.方程 x2-3x+1=0 中的两根分别为 a 、b,则代数式 a 2-4 a -b 的值为
2
2
18.已知 x1,x2 是方程 x2-2x-2=0 的两实数根,不解方程求下列各式的值: (1)
2 2 x1 x 2

(2)
1 1 x1 x 2
19. 已知关于 x 的方程 x
2
x2 的积是两根和的两倍, ①求 m 的值; (2m 3) x m 2 6 0 的两根 ,求 a b 的值.
23.要在一个长 10m,宽 8m 的院子中沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的 30%, 试求这花圃的宽度.
24.某电热器经过两次降价后,利润由 20 元降到 5 元,已知降价前该产品的利润率是 25%,解答下列问 题: (1)求这种电热器的进价; (2)求经过两次降价后的售价; (3)求每次降价的平均降价率?(精确到 1%)

21.2.4 一元二次方程的根与系数的关系(含答案)-2021-2022学年九年级数学上册(人教版)

21.2.4 一元二次方程的根与系数的关系(含答案)-2021-2022学年九年级数学上册(人教版)

2021-2022学年九年级数学上册课时作业(人教版)第二十一章一元二次方程21.2解一元二次方程21.2.4一元二次方程的根与系数的关系分点训练知识点1利用根与系数的关系求两根之间关系的代数式的值1. 设α,β是一元二次方程x2+2x-1=0的两个根,则α·β的值是( )A. 2B. 1C. -2D. -12. 下列方程两个实数根之和等于两个实数根之积的是( )A. x2-2x-2=0B. x2+x+1=0C. x2+x-1=0D. x2+5x+5=03. 已知一元二次方程2x2-5x+1=0的两根为m,n,则m2+n2=.4. 根据一元二次方程的根与系数的关系,求下列方程两根x1,x2的和与积:(1)x2-9x-16=0;(2)3x2-2=2x;(3)3x(x-2)=5.5. 已知x1,x2是一元二次方程x2-4x+1=0的两个根.求(1)(x1-3)(x2-3);(2)(x1-x2)2.知识点2利用根与系数的关系求方程中待定字母的值6. 如果关于x的一元二次方程x2+4x+a=0的两个不相等的实数根x1,x2满足x1x2-2x1-2x2-5=0,那么a的值为( )A. 3B. -3C. 13D. -137. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负数,则实数m的取值范围是.8. 关于x的方程3x2+mx-8=0有一个根是23,求另一个根及m的值.9. 若关于x的一元二次方程x2-4x+k-3=0的两个实数根为x1,x2且满足x1=3x2,试求出方程的两个实数根及k的值.强化提升10. 一元二次方程x2-5x-4=0的两根为x1,x2,则下列正确的是( )A. x1=-1,x2=4B. x1=1,x2=-4C. x1+x2=5D. x1x2=411. 定义运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +m =0(m <0)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 有关12. 若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( ) A. 3 B. -3 C. 5 D. -513. 求下列方程两个根的和与积:(1)3x 2-5x =-2;(2)(x +1)(x +3)-6x =4.14. 已知关于x 的一元二次方程x 2-2x +m -1=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)当21x +22x =6x 1x 2时,求m 的值.15. 已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.参考答案1. D 【解析】∵α,β是一元二次方程x 2+2x -1=0的两个根,∴α·β=-1.2. C 【解析】选项A ,x 1+x 2=2,x 1x 2=-2,方程两个实数根之和不等于两个实数根之积,此选项错误;选项B ,x 1+x 2=-1,x 1x 2=1,方程两个实数根之和不等于两个实数根之积,此选项错误;选项C ,x 1+x 2=-1,x 1x 2=-1,方程两个实数根之和等于两个实数根之积,此选项正确;选项D ,x 1+x 2=-5,x 1x 2=5,方程两个实数根之和不等于两个实数根之积,此选项错误.3.214 【解析】由根与系数的关系可得,m +n =52,m ·n =12,m 2+n 2=(m +n )2-2m ·n =(52)2-2×12=214. 4. 解:(1)x 1+x 2=9,x 1x 2=-16.(2)方程可化为3x 2-2x -2=0,x 1+x 2=23,x 1x 2=-23. (3)方程可化为3x 2-6x -5=0,x 1+x 2=2,x 1x 2=-53. 5. 解:(1)★x 1+x 2=4,x 1x 2=1,★(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=1-3×4+9=-2.(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×1=12.6. B 【解析】由根与系数的关系可得,x 1+x 2=-4,x 1x 2=a ,∴x 1x 2-2x 1-2x 2-5=x 1x 2-2(x 1+x 2)-5=a +8-5=0,∴a =-3.7. m >12 【解析】设x 1,x 2为方程x 2+2x -2m +1=0的两个实数根,由已知得120•0x x ∆⎧⎨⎩>,<, 即80210m m -+⎧⎨⎩>,<, 解得m >12. 8. 解:设方程的另一个根是x 1,由一元二次方程根与系数的关系,得112332833m x x ⎧⎪⎪⎨⎪⎪⎩+=-,①=-,② 由★得x 1=-4,代入★,得23+(-4)=-3m ,解得m =10,所以方程的另一个根是-4,m 的值是10. 9. 解:依题意得:x 1+x 2=4,又x 1=3x 2,★x 1=3,x 2=1,把x 2=1代入原方程得k =6.10. C 【解析】∵一元二次方程x 2-5x -4=0的两根为x 1,x 2,∴x 1+x 2=5,x 1x 2=-4.11. A 【解析】由根与系数的关系可找出a +b =1,根据新运算找出b ★b -a ★a =b (1-b )-a (1-a ),将其中的1替换成a +b ,即可得出结论12. D 【解析】★a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根,★a +b =3,ab =p ,★a 2-ab +b 2=(a +b )2-3ab =32-3p =18,★p =-3.当p =-3时,★=(-3)2-4p =9+12=21>0,★p =-3符合题意.ab +b a =22a b ab +=222a b ab ab +-=2()a b ab +-2=-5. 13. 解:(1)方程化为3x 2-5x +2=0,x 1+x 2=53,x 1x 2=23. (2)方程化为x 2-2x -1=0,x 1+x 2=2,x 1x 2=-1.14. 解:(1)★原方程有两个实数根,★Δ=(-2)2-4(m -1)≥0,即4-4m +4≥0,★m ≤2.(2)★21x +22x =6x 1x 2,★(x 1+x 2)2-2x 1x 2=6x 1x 2,即(x 1+x 2)2-8x 1x 2=0. ★x 1+x 2=2,x 1x 2=m -1,★22-8(m -1)=0,即4-8m +8=0,★m =32. ★m =32<2,★m 的值为32. 15. 解:设方程x 2+2(m -2)x +m 2+4=0的两个实数根为x 1,x 2,★x 1+x 2=2(2-m ),x 1x 2=m 2+4. ★这两根的平方和比两根的积大21,★21x +22x -x 1x 2=21,即(x 1+x 2)2-3x 1x 2=21,★4(m -2)2-3(m 2+4)=21,m 2-16m -17=0,解得m =17或m =-1. ★Δ=4(m -2)2-4(m 2+4)≥0,解得m ≤0.故m =17舍去,★m =-1.。

人教版九年级数学上册同步练习 21.2.4一元二次方程的根与系数的关系(含答案)

人教版九年级数学上册同步练习 21.2.4一元二次方程的根与系数的关系(含答案)

一元二次方程的根与系数的关一、选择题1.[一元二次方程x 2-2x =0的两根分别为x 1和x 2,则x 1x 2的值为( )A .-2B .1C .2D .02.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为 ( )A .1B .-3C .3D .43.若α,β是一元二次方程3x 2+2x -9=0的两个根,则βα+αβ的值是 ( ) A.427 B .-427 C .-5827 D.58274.已知一元二次方程2x 2+2x -1=0的两个根分别为x 1,x 2,且x 1<x 2,下列结论正确的是( )A .x 1+x 2=1B .x 1·x 2=-1C .|x 1|<|x 2|D .x 12+x 1=125.若关于x 的方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A .-2或3B .3C .-2D .-3或26.若关于x 的方程x 2-(m 2-4)x +m =0的两个根互为相反数,则m 等于( )A .-2B .2C .±2D .4二、填空题7.若x 1,x 2是一元二次方程x 2+x -2=0的两个实数根,则x 1+x 2+x 1x 2=________.8.写出以3,-5为根且二次项系数为1的关于x 的一元二次方程是____________________.9.若x 1,x 2是一元二次方程x 2-mx -6=0的两个根,且x 1<x 2,x 1+x 2=1,则x 1=________,x 2=________.10.已知x 1,x 2是一元二次方程x 2-2x -1=0的两个实数根,则12x 1+1+12x 2+1的值是________.11.一元二次方程x 2-4x +2=0的两个根分别为x 1,x 2,则x 12-4x 1+2x 1x 2的值为________.12.若关于x 的方程x 2-(2m -1)x +m 2-1=0的两实数根分别为x 1,x 2,且x 12+x 22=3,则m =________.三、解答题13.已知关于x的一元二次方程x2-2x+a=0的两个实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.14.已知关于x的一元二次方程x2-(2m-2)x+(m2-2m)=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两个实数根分别为x1,x2,且x12+x22=10,求m的值.15.已知关于x的一元二次方程(x-3)(x-2)=p(p+1).(1)求证:无论p取何值,此方程总有两个实数根;(2)若原方程的两个根x1,x2满足x12+x22-x1x2=3p2+1,求p的值.16.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足|x1|+|x2|=x1x2,求k的值.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,求k 的值与方程的另一个根.18.已知关于x 的方程x 2+2x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若α,β是这个方程的两个实数根,求α1+α+β1+β的值.18 已知关于x 的一元二次方程x 2-(2k +1)x +4k -3=0.(1)求证:无论k 取什么实数,该方程总有两个不相等的实数根;(2)当Rt △ABC 的斜边长a =31,且两条直角边长b 和c 恰好是这个方程的两个根时,求△ABC 的周长.答案1.D.2.C.3.C.4.D.5.C.6.A.7.-3.8.x2+2x-15=09.x1=-2,x2=3.10.6.11.2.12.[0.13.解:∵该一元二次方程有两个实数根,∴b2-4ac=(-2)2-4×1×a=4-4a≥0,解得a≤1.由韦达定理可得x1x2=a,x1+x2=2.∵x1x2+x1+x2>0,∴a+2>0,解得a>-2,∴-2<a≤1.14.解:(1)证明:∵b2-4ac=[-(2m-2)]2-4(m2-2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m-2,x1x2=m2-2m,x12+x22=(x1+x2)2-2x1x2=10,∴(2m-2)2-2(m2-2m)=10,∴m2-2m-3=0,∴m=-1或m=3.15.解:(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵b 2-4ac =(-5)2-4(6-p 2-p)=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根.(2)∵原方程的两个根分别为x 1,x 2,∴x 1+x 2=5,x 1x 2=6-p 2-p.又∵x 12+x 22-x 1x 2=3p 2+1,∴(x 1+x 2)2-3x 1x 2=3p 2+1,∴52-3(6-p 2-p)=3p 2+1,∴25-18+3p 2+3p =3p 2+1,∴3p =-6,∴p =-2.16.解:(1)∵原方程有两个不相等的实数根,∴b 2-4ac =(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,解得k >34. (2)∵k >34,∴x 1+x 2=-(2k +1)<0. 又∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1x 2,∴2k +1=k 2+1,解得k 1=0,k 2=2.又∵k >34,∴k =2. 17.解:将x =-2代入原方程中,得4-2(k +3)+k =0,解得k =-2.∵两根之积为k ,∴方程的另一个根为k -2=-2-2=1. 即k 的值为-2,方程的另一个根为1.18.解:(1)b 2-4ac =4+4k.∵方程有两个不相等的实数根,∴b 2-4ac >0,即4+4k >0,∴k >-1.(2)由根与系数的关系可知α+β=-2,αβ=-k ,∴α1+α+β1+β=α(1+β)+β(1+α)(1+α)(1+β)=α+β+2αβ1+α+β+αβ=-2-2k 1-2-k=2. 17 解:(1)证明:∵b 2-4ac =[-(2k +1)]2-4(4k -3)=4k 2-12k +13=4(k -32)2+4>0恒成立, ∴无论k 取什么实数,该方程总有两个不相等的实数根.(2)根据勾股定理,得b 2+c 2=a 2=31.∵两条直角边长b 和c 恰好是这个方程的两个根,∴b +c =2k +1,bc =4k -3.∵(b +c)2-2bc =b 2+c 2=31,∴(2k +1)2-2(4k -3)=31,整理,得4k 2+4k +1-8k +6-31=0,即k 2-k -6=0,解得k 1=3,k 2=-2(舍去).∵b +c =2k +1=7,∴△ABC 的周长为a +b +c =31+7.。

根与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册压轴题专项(人教版)

根与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册压轴题专项(人教版)

根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。

分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。

一、一元二次方程的根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根是,那么,.注意:它的使用条件为a≠0,Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x的一元二次方程kx2+2x+1―2k=0有两个实数根x1,x2.(1)若|x1|+|x2|=k的值;(2)当k取哪些整数时,x1,x2均为整数;(3)当k取哪些有理数时,x1,x2均为整数.(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可;(2)根据根与系数的关系可得若x1+x2=―2k为整数,可得整数k=±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k=―1时,符合题意;由两根之积可得k应该是整数的倒数,不妨设k=1m,则方程可变形21xx,abxx-=+21acxx=21为x 2+2mx +m ―2=0,即为(x +m )2=m 2―m +2,再结合整数的意义即可解答.解:(1)∵Δ=22―4k (1―2k )=4―4k +8k 2=8k 2―12k =8k+72>0,∴不论k 为何值,关于x 的一元二次方程kx 2+2x +1―2k =0都有两个实数根x 1,x 2,∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2kk,分两种情况:①若两根同号,由|x 1|+|x 2|=x 1+x 2=x 1+x 2=―当x 1+x 2=―2k =k =―当x 1+x 2=――2k =―k =②若两根异号,由|x 1|+|x 2|=(x 1―x 2)2=8,即(x 1+x 2)2―4x 1x 2=8,∴――4×1―2kk=8,解得:k =1,综上,k 的值为1或 ±(2)∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2k k,若x 1,x 2均为整数,则x 1+x 2=―2k 为整数,∴整数k =±1,±2,当k =±2时,x 1x 2=1―2kk不是整数,故应该舍去;当k =1时,此时方程为x 2+2x ―1=0,方程的两个根不是整数,故舍去;当k =―1时,此时方程为―x 2+2x +3=0,方程的两个根为x 1=―1,x 2=3,都是整数,符合题意;综上,当k 取―1时,x 1,x 2均为整数;(3)显然,当k =―1时,符合题意;当k 为有理数时,由于x 1x 2=1―2kk=1k ―2为整数,∴k应该是整数的倒数,不妨设k=1m(m≠0),m为整数,则方程kx2+2x+1―2k=0即为x2+2mx+m―2=0,配方得:(x+m)2=m2―m+2,即x=―m±当m=2即k=12时,方程的两根为x1=0,x2=―4,都是整数,符合题意;当m≠2时,m2―m+2=(m―12)2+74不是完全平方数,故不存在其它整数m的值使上式成立;综上,k=―1或12.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax2+bx+c=0(a≠0)有两个根x1和x2,且1<x1<2< x2<4,那么方程cx2―bx+a=0的较小根x3的范围为( )A.12<x3<1B.―4<x3<―2C.―12<x3<―14D.―1<x3<―12【思路点拨】由根与系数的关系得出x1+x2=―ba ,x1⋅x2=ca,再设方程cx2―bx+a=0的为m,n,根据根与系数的关系得出m+n=―(1x2+1x1),mn=x1⋅x2,从而得出方程cx2―bx+a=0的两根为―1x1,―1x2,然后由1<x1<2<x2<4,求出―1x1,―1x2的取值范围,从而得出结论.【解题过程】解:∵方程ax2+bx+c=0(a≠0)有两个根x1和x2,∴x1+x2=―ba ,x1⋅x2=ca,设方程cx2―bx+a=0的两根为m,n,则m+n=bc ,mn=ac,∵m+n=bc =―ba⋅(―ac),mn=1x1⋅x2,∴m+n=―(x1+x2)⋅1x1⋅x2=―x1+x2x1⋅x2=―(1x2+1x1),∴方程cx2―bx+a=0的两根为―1x1,―1x2,∵1<x1<2,2<x2<4,∴12<1x1<1,14<1x2<12,∴―1<―1x1<―12,―12<―1x2<―14,∵―1x1<―1x2,∴方程cx2―bx+a=0的较小根x3的范围为―1<x3<―12.故选:D.2.(22-23九年级下·安徽安庆·阶段练习)若方程x2+2px―3p―2=0的两个不相等的实数根x1、x2满足x12+x13=4―(x22+x23),则实数p的所有值之和为()A.0B.―34C.―1D.―54【思路点拨】先根据一元二次方程解的定义和根与系数的关系得到x12+2px1―3p―2=0,x1+x2=―2p,进而推出x13=3px1+2x1―2px12,则x13+x12=3px1+2x1―2px12+x12,x23+x22=3px2+2x2―2px22+x22,即可推出(3p+2)(x1+x2)+(1―2p)(x12+x22)=4,然后代入x1+x2=―2p,x12+x22=(x1+x2)2―4p 得到2p(4p+3)(p+1)=0,再根据判别式求出符号题意的值即可得到答案.【解题过程】解:∵x1、x2是方程x2+2px―3p―2=0的两个相等的实数根,∴x12+2px1―3p―2=0,x1+x2=―2p,x1x2=―3p―2,∴x12+2px1=3p+2,∴x13+2px12=3px1+2x1,∴x13=3px1+2x1―2px12,∴x13+x12=3px1+2x1―2px12+x12,同理得x23+x22=3px2+2x2―2px22+x22,∵x12+x13=4―(x22+x23),∴x12+x13+(x22+x23)=4,∴3px1+2x1―2px12+x12+3px2+2x2―2px22+x22=4,∴(3p+2)(x+x)+(1―2p)(x2+x2)=4,∴(3p+2)(―2p)+(1―2p)(―2p)2―2(―3p―2)=4,∴―6p2―4p+(1―2p)4p2+6p+4=4,∴―6p2―4p+4p2+6p+4―2p4p2+6p+4=4,∴―2p2+2p―2p4p2+6p+4=0,∴―2p4p2+6p+4+p―1=0,∴2p4p2+7p+3=0,∴2p(4p+3)(p+1)=0,,解得p1=0,p2=―1,p3=―34∵Δ=(2p)2+4(3p+2)>0,∴p2+3p+2>0,∴(p+1)(p+3)>0,∴p=―1不符合题意,∴p1+p3=―34∴符合题意,故选B.3.(22-23八年级下·安徽合肥·期末)若关于x的一元二次方程x2―2x+a2+b2+ab=0的两个根为x1=m,x2=n,且a+b=1.下列说法正确的个数为( )①m·n>0;②m>0,n>0;③a2≥a;④关于x的一元二次方程(x+1)2+a2―a=0的两个根为x1=m―2,x2=n―2.A.1B.2C.3D.4【思路点拨】根据根与系数的关系得x1x2=mn=a2+b2+ab,利用a+b=1消去b得到mn=a2―a+1=a+34 >0,从而即可对①进行判断;由于x1+x2=m+n=2>0,x1x2=mn>0,利用有理数的性质可对②进行判断;根据根的判别式的意义得到Δ=4―4(a2+b2+ab)≥0,即4―4(a2―a+1)≥0,则可对③进行判断;利用a2+b2+ab=a2―a+1把方程x2―2x+a2+b2+ab=0化为(x―1)2+a2―a+1=0,由于方程(x―1)2+a2―a=0可变形为[(x+2)―1]2+a2―a=0,所以x+2=m或x+2=n,于是可对④进行判断.【解题过程】解:根据根与系数的关系得x1x2=mn=a2+b2+ab,∵a+b=1,∴b=1―a,>0,所以①正确;∴mn=a2+(1―a)2+a(1―a)=a2―a+1=a―+34∵x1+x2=m+n=2>0,x1x2=mn>0,∴m>0,n>0,所以②正确;∵Δ≥0,∴4―4(a2+b2+ab)≥0,即4―4(a2―a+1)≥0,∴a≥a2,所以③错误;∵a2+b2+ab=a2―a+1,∴方程x2―2x+a2+b2+ab=0化为(x―1)2+a2―a+1=0,即(x―1)2+a2―a=0,∵方程(x+1)2+a2―a=0可变形为[(x+2)―1]2+a2―a=0,∴x+2=m或x+2=n,解得x1=m―2,x2=n―2,所以④正确.故选:C.4.(22-23九年级上·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程x2―8cx―9d=0的解,c、d是方程x2―8ax―9b=0的解,则a+b+c+d的值为.【思路点拨】由根与系数的关系得a+b,c+d的值,两式相加得的值,根据一元二次方程根的定义可得a2―8ac―9d=0,代入可得a2―72a+9c―8ac=0,同理可得c2―72c+9a―8ac=0,两式相减即可得a+c 的值,进而可得a+b+c+d的值.【解题过程】解:由根与系数的关系得a+b=8c,c+d=8a,两式相加得a+b+c+d=8(a+c).因为a是方程x2―8cx―9d=0的根,所以a2―8ac―9d=0,又d=8a―c,所以a2―72a+9c―8ac=0①同理可得c2―72c+9a―8ac=0②①-②得(a―c)(a+c―81)=0.因为a≠c,所以a+c=81,所以a+b+c+d=8(a+c)=648.故答案为648.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值【思路点拨】用分类讨论的思想,解决问题即可.【解题过程】解:不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2―a,bc=4,a=0的两实根,于是b,c是一元二次方程x2―(2―a)x+4a≥0,即(a2+4)(a―4)≥0,∴Δ=(2―a)2―4×4a所以a≥4.又当a=4,b=c=―1时,满足题意.故a,b,c中最大者的最小值为4.因为abc=4>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,a,b,c4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,不妨设a>0,b<0,c<0,则|a|+|b|+|c|=a―b―c=a―(2―a)=2a―2,∵a≥4,故2a―2≥6,当a=4,b=c=―1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.故答案为:6.6.(22-23九年级上·四川成都·期末)将两个关于x的一元二次方程整理成a(x+ℎ)2+k=0(a≠0,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax2+bx+c=0(a≠0)与方程(x+1)2―2=0是“同源二次方程”,且方程ax2+bx+c=0(a≠0)有两个根为x1、x2,则b-2c=,ax1+x1x2+ax2的最大值是.【思路点拨】利用ax2+bx+c=0(a≠0)与方程(x+1)2―2=0是“同源二次方程”得出b=2a,c=a―2,即可求出b―2c;利用一元二次方程根与系数的关系可得x1+x2=―2,x1x2=a―2,进而得出ax1+x1x2+ax2=―2a=t(t>0),得a2―t⋅a+1=0,根据方程a2―t⋅a+1=0有正数解可知Δ=t2a+1,设a+1a―4≥0,求出t的取值范围即可求出ax1+x1x2+ax2的最大值.【解题过程】解:根据新的定义可知,方程ax2+bx+c=0(a≠0)可变形为a(x+1)2―2=0,∴a(x+1)2―2=ax2+bx+c,展开,ax2+2ax+a―2=ax2+bx+c,可得b=2a,c=a―2,∴b―2c=2a―2(a―2)=4;∵x1+x2=―2,x1x2=a―2,a=―2a++1,∴ax1+x1x2+ax2=a(x1+x2)+x1x2=―2a+a―2a∵方程ax2+bx+c=0(a≠0)有两个根为x1、x2,∴Δ=b2―4ac=(2a)2―4a(a―2)8a≥0,且a≠0,∴a>0,=t(t>0),得a2―t⋅a+1=0,设a+1a∵方程a2―t⋅a+1=0有正数解,∴Δ=t2―4≥0,≥2,解得t≥2,即a+1a∴ax1+x1x2+ax2=―2a+1≤―3.故答案为:4,-3.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x2y+xy2=484,求x3+y3.【思路点拨】本题主要考查了代数式求值、一元二次方程的根与系数的关系、因式分解的应用等知识点,综合应用所学知识成为解题的关键.设xy=m,x+y=n,等量代换后可得44=m+n、484=mn,则m、n为t2―44t+484=0的根,可解得m=n=22,然后再对x3+y3变形后将m=n=22代入计算即可.【解题过程】解:设xy=m,x+y=n,∴44=xy+x+y=m+n,484=x2y+xy2=xy(x+y)=mn,∴m、n为t2―44t+484=0的根,∴m=n=22,∴x3+y3=(x+y)x2+y2―xy=(x+y)(x+y)2―3xy=n[n2―3m]=n3―3mn=9196.8.(2024九年级·全国·竞赛)记一元二次方程x2+3x―5=0的两根分别为x1、x2.(1)求1x1―1+1x2―1的值;(2)求3x21+6x1+x22的值.【思路点拨】本题考查了一元二次方程根与系数的关系、一元二次方程的解.在利用根与系数的关系x1⋅x2=ca,x1+x2=―ba时,需要弄清楚a、b、c的意义.(1)利用根与系数的关系求得求1x1―1+1x2―1的值的值;(2)由一元二次方程的解可得x21+3x1―5=0,再利用根与系数的关系求解即可.【解题过程】(1)∵x1+x2=―3,x1x2=―5,∴1x1―1+1x2―1=x2―1+x1―1 (x1―1)(x2―1)=x1+x2―2x1x2―(x1+x2)+1=―3―2―5―(―3)+1=5;(2)∵x1是一元二次方程x2+3x―5=0的根,∴x21+3x1―5=0,∴x21+3x1=5,又∵x1+x2=―3,x1x2=―5,∴3x21+6x1+x22=2x21+3x1+(x1+x2)2―2x1x2=29.9.(23-24九年级下·北京·开学考试)已知关于x的方程x2―2mx+m2―n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.【思路点拨】本题考查一元二次方程根的判别式及根与系数的关系,对于一元二次方程ax2+bx+c=0(a≠0),当判别式Δ>0时方程有两个不相等的实数根,Δ=0时方程有两个相等的实数根,Δ<0时方程没有实数根,若方程的两个实数根为x1、x2,则x1+x2=―ba ,x1⋅x2=ca.(1)根据方程x2―2mx+m2―n=0有两个不相等的实数根得出判别式Δ>0,列出不等式即可得答案;(2)根据(1)中结果得出n值,利用一元二次方程根与系数的关系列方程求出m的值即可.【解题过程】(1)解:∵关于x的方程x2―2mx+m2―n=0有两个不相等的实数根,∴Δ=(―2m)2―4(m2―n)>0,解得:n>0.(2)设方程的两个实数根为x1、x2,且x1>x2,∴x1+x2=2m,x1⋅x2=m2―n,由(1)可知:n>0,∵n为符合条件的最小整数,∴n=1,∵该方程的较大根是较小根的3倍,∴x1=3x2,∴4x2=2m,3x22=m2―1,∴3×m24=m2―1,解得:m1=―2,m2=2.当m=2时,x2=1,则x1=3x2=3,符合题意,当m=―2时,x2=―1,则x1=3x2=―3<x2,与x1>x2不符,舍去,∴m=2.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x2+2x―m2―m=0.(1)若α和β分别是该方程的两个根,且αβ=―2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,⋅⋅⋅,α2024、β2024,求1α1+1β1+1α2+1β2+⋯+1α2024+1β2024的值.【思路点拨】(1)根据一元二次方程的根与系数的关系进行求解即可;(2)根据一元二次方程的根与系数的关系x1+x2=―ba ,x1⋅x2=ca可得:1x1+1x2=x1+x2x1⋅x2=2m2+m,进一步可寻找1α2024+1β2024的规律,即可求解.【解题过程】(1)解:∵关于x的一元二次方程x2+2x―m2―m=0,α和β分别是该方程的两个根,∴αβ=―m2―m∵αβ=―2,∴―2=―m2―m∴m=1或m=―2;(2)解:设方程x2+2x―m2―m=0的两个根为:x1,x2则x1+x2=―ba =―2,x1⋅x2=ca=―m2―m,∴1 x1+1x2=x1+x2x1·x2=2m2+m=2m(m+1)∴1α1+1β1=21×2,1α2+1β2=22×3,1α3+1β3=23×4…..1α2024+1β2024=22024×2025∴1+1+1+1+⋯+1+1=2×+1+...+=2×1―12+12―13+...+12024=2×1―=4048202511.(22-23九年级上·湖北武汉·期中)已知α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根(1)直接写出m 的取值范围(2)若满足1α+1β=―1,求m 的值.(3)若α>2,求证:β>2;【思路点拨】(1)根据一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,得Δ>0,即可列式作答;(2)结合一元二次方程根与系数的关系,得α+β=―(2m +3)和αβ=m 2,因为1α+1β=―1,所以2m+3m 2=1,解得m 1=3,m 2=―1,结合m >―34,即可作答;(3)因为(α―2)(β―2)=αβ―2(α+β)+4,结合α+β=―(2m +3)和αβ=m 2,得m 2+2(2m +3)+4=(m +2)2+6,则(α―2)(β―2)≥6>0,又因为α>2,即可证明β>2.【解题过程】(1)解:∵一元二次方程x 2+(3)x +m 2=0的两个不相等的实数根∴Δ=b 2―4ac =(2m +3)2―4×1×m 2=4m 2+12m +9―4m 2=12m +9>0,即m >―34;(2)解:∵1α+1β=βαβ+ααβ=α+βαβ=―1,且α+β=―b a =―(2m +3),αβ=ca =m 2∴2m+3m 2=1整理得m 2―2m ―3=0,解得:m 1=3,m 2=―1∵由(1)知m >―34,∴m =3检验:当m =3时,m 2≠0,即m =3;(3)证明:因为(α―2)(β―2)=αβ―2(α+β)+4,把α+β=―(2m+3)和αβ=m2代入上式,得m2+2(2m+3)+4=m2+4m+10=(m+2)2+6,∵(m+2)2≥0,∴(m+2)2+6≥6∴(α―2)(β―2)≥6>0∵α>2,∴α―2>0,∴β―2>0,即β>2.12.(22-23九年级·浙江·自主招生)已知方程x2+4x+1=0的两根是α、β.(1)求|α―β|的值;(2(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x3+y3=(x+y) x2+y2―xy.【思路点拨】(1α+β=―4,αβ=1,再求得(α―β)2的值,进而求得|α―β|的值.++α+β=―4,αβ=1代(2入计算即可;(3+的值,然后根据一元二次方程根与系数的关系即可解答.【解题过程】(1)解:∵方程x2+4x+1=0的两根是α、β∴α+β=―4,αβ=1∴(α―β)2=(α+β)2―4αβ=12∴|α―β|=(2)解:由(1)可知:α<0,β<0,∵+=αβ+βα+2=α2+β2αβ+2=(α+β)2―2αβαβ+2=16,=4(负值舍去);(3+=(1α+1β)+―=α+βαβ=α+βαβ=―411=―52==1所以新的一元二次方程x2+52x+1=0.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx2―(m―1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.【思路点拨】(1)根据关于x的方程mx2―(m―1)x+2=0有两个根,且为实数根,先利用一元二次方程的根的判别式确定m的取值范围,再根据一元二次方程的根与系数的关系,可知x1+x2=m―1m,若方程的两根之和为整数,即m―1m为整数,即可确定m的值;(2)分两种情况讨论:当m=0时,此时关于x的方程为x+2=0,求解可得x=―2,符合题意;当m≠0时,对于关于x的方程mx2―(m―1)x+2=0可有x=m为整数,则Δ=m2―10m+1为某一有理数的平方,据此分析即可获得答案.【解题过程】(1)解:∵关于x的方程mx2―(m―1)x+2=0有两个根,且为实数根,∴m≠0,且Δ=[―(m―1)]2―4m×2=m2―10m+1≥0,根据一元二次方程的根与系数的关系,可知x1+x2=――(m―1)m =m―1m,若方程的两根之和为整数,即m―1m为整数,∵m―1m =1―1m,∴1m是整数,∴m=±1,当m=1时,Δ=1―10+1=―8<0,不符合题意;当m=―1时,Δ=1+10+1=12>0,m―1m =―1―1―1=2,为整数,符合题意;∴m的值为―1;(2)当m=0时,此时关于x的方程为x+2=0,解得x=―2;当m≠0时,对于关于x的方程mx2―(m―1)x+2=0的根为:x=若方程的根为有理根,且m为整数,则Δ=m2―10m+1为完全平方数,设m2―10m+1=k2(k为正整数),则:m==5±∵m为整数,设24+k2=n2(n为正整数),∴(k+n)(n―k)=24,∴k+n=12n―k=2或k+n=6n―k=4或k+n=8n―k=3或k+n=24n―k=1,解得:k=5n=7或k=1n=5或k=52n=11(不合题意,舍去)或k=232n=25(不合题意,舍去)∴m 2―10m +1=12=1或m 2―10m +1=52=25;当m 2―10m +1=1时,解得m =10或m =0(舍去);当m 2―10m +1=25时,解得m =―2或m =12,综上所述,若方程的根为有理根,则整数m 的值为0或10或―2或12.14.(22-23九年级下·浙江·自主招生)设m 为整数,关于x 的方程(m 2+m ―2)x 2―(7m +2)x +12=0有两个整数实根.(1)求m 的值.(2)设△ABC 的三边长a,b,c 满足c =2+a 2m ―12a =0,m 2+b 2m ―12b =0.求△ABC 的面积.【思路点拨】(1)设原方程的两个解分别为x 1,x 2,根据两个整数实根,则x 1+x 2=7m+2m 2+m―2,x 1x 2=12m 2+m―2都是整数,进而分类讨论,即可求解;(2)由(1)得出的m 的值,然后代入将m 2+a 2m ―12a =0,m 2+b 2m ―12b =0进行化简,得出a ,b 的值.然后再根据三角形三边的关系来确定符合条件的a ,b 的值,用三角形的面积公式得出三角形的面积.【解题过程】(1)解:∵m 2+m ―2≠0,∴m ≠―2或m =1,∵方程有两个实数根,∴Δ=b 2―4ac =[―(7m +2)]2―4×12×(m 2+m ―12)=m 2―20m +580=(m ―10)2+480>0设原方程的两个解分别为x 1,x 2∴x 1+x 2=7m+2m 2+m―2,x 1x 2=12m 2+m―2都是整数,∴m 2+m ―2=1,2,3,4,6,12m 2+m ―2=1,解得:m =m 2+m ―2=2,解得:m =m 2+m ―2=3,解得:m =m 2+m ―2=4,解得:m =―3或m =2m 2+m ―2=6,解得:m =m2+m―2=12,解得:m=当m=―3时,7m+2m2+m―2=―21+24=―194不是整数,舍去当m=2时,7m+2m2+m―2=14+24=4符合题意,综上所述,m=2;(2)把m=2代入两等式,化简得a2―6a+2=0,b2―6b+2=0,当a=b时,a=b=3当a≠b时,a、b是方程x2―6x+2=0的两根,而Δ>0,根据根与系数的关系可得,a+b=6>0,ab=2>0,则a>0、b>0,①a≠b,c=a2+b2=(a+b)2―2ab=36―4=32=c2,故△ABC为直角三角形,且∠C=90°,SΔABC=12ab=1;②a=b=3c=2(3―<故不能构成三角形,不合题意,舍去;;③a=b=3c=2(3+>SΔABC=12×=综上,△ABC的面积为1或15.(22-23九年级上·湖南常德·材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2―x―1=0的两个实数根分别为m,n,∴m+n=1,mn=―1,则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2―3x―1=0的两个根为x1,x2,则x1+x2=___________,x1x2= ___________.(2)类比应用:已知一元二次方程x2―3x―1=0的两根分别为m、n,求nm +mn的值.(3)思维拓展:已知实数s、t满足s2―3s―1=0,t2―3t―1=0,且s≠t,求1s ―1t的值.【思路点拨】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出m +n =―ba =3,mn =ca =―1,再根据nm +mn=m 2+n 2mn=(m+n )2―2mnmn,最后代入求值即可;(3)由题意可将s 、t 可以看作方程x 2―3x ―1=0的两个根,即得出s +t =―b a =3,s ⋅t =ca =―1,从而可求出(t ―s )2=(t +s )2―4st =13,即t ―s =t ―s =―【解题过程】(1)解:∵一元二次方程x 2―3x ―1=0的两个根为x 1,x 2,∴x 1+x 2=―ba =――31=3,x 1⋅x 2=c a =―11=―1.故答案为:3,―1;(2)∵一元二次方程x 2―3x ―1=0的两根分别为m 、n ,∴m +n =―ba =3,mn =ca =―1,∴nm +m n=m 2+n 2mn=(m +n )2―2mn mn =32―2×(―1)―1=―11;(3)∵实数s 、t 满足s 2―3s ―1=0,t 2―3t ―1=0,∴s 、t 可以看作方程x 2―3x ―1=0的两个根,∴s +t =―ba =3,st =ca =―1,∵(t ―s )2=(t +s )2―4st =32―4×(―1)=13∴t ―s =t ―s =―当t ―s =1s―1t =t―s st==―当t ―s =―1s―1t =t―s st==综上分析可知,1s ―1t 的值为16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx +n =0或px +q =0时,多项式A =(mx +n )(px +q )=mpx 2+(mq +np )x +nq 的值为0,把此时x 的值称为多项式A 的零点.(1)已知多项式(3x +1)(x ―2),则此多项式的零点为__________;(2)已知多项式B =(x ―1)(bx +c )=ax 2―(a ―1)x ―a2有一个零点为1,求多项式B 的另一个零点;(3)小聪继续研究(x ―3)(x ―1),x (x ―4)及x ――x 轴上表示这些多项式零点的两个点关于直线x =2对称,他把这些多项式称为“2系多项式”.若多项式M =(2ax +b )(cx ―5c )=bx 2―4cx ―2a ―4是“2系多项式”,求a 与c 的值.【思路点拨】(1)根据多项式的零点的定义即可求解;(2)根据多项式的零点的定义将x =1代入ax 2―(a ―1)x ―a2=0,求得a =2,再解一元二次方程即可求解;(3)令cx ―5c =0,求得M 的一个零点为5,根据“2系多项式”的定义求得方程bx 2―4cx ―2a ―4=0的两个根为x 1=―1,x 2=5,再利用根与系数的关系即可求解.【解题过程】(1)解:令(3x +1)(x ―2)=0,∴3x +1=0或x ―2=0,∴x =―13或x =2,则此多项式的零点为―13或2;故答案为:―13或2;(2)解:∵多项式B =(x ―1)(bx +c )=ax 2―(a ―1)x ―a2有一个零点为1,∴将x =1代入ax 2―(a ―1)x ―a2=0,得a ―(a ―1)―a2=0,解得a =2,∴B=2x2―x―1=(x―1)(2x+1),令2x+1=0,解得x=―12,∴多项式B的另一个零点为―12;(3)解:∵M=(2ax+b)(cx―5c)=bx2―4cx―2a―4是“2系多项式”,令cx―5c=0,解得x=5,即M的一个零点为5,∴设M的另一个零点为y,则y+52=2,解得y=―1,即2ax+b=0时,x=―1,则―2a+b=0①,令M=bx2―4cx―2a―4=0,根据题意,方程bx2―4cx―2a―4=0的两个根为x1=―1,x2=5,∴x1+x2=――4cb =5+(―1)=4,x1⋅x2=―2a―4b=5×(―1)=―5,∴c=b②,5b―2a―4=0③,解①②③得c=b=1,a=12,∴a=12,c=1.17.(22-23九年级上·湖北黄石·期末)(1)x1,x2是关于x的一元二次方程x2―2(k+1)x+k2+2=0的两实根,且(x1+1)⋅(x2+1)=8,求k的值.(2)已知:α,β(α>β)x2―x―1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2―α―1=0,β2―β―1=0,将两式相加,得α2+β2―(α+β)―2=0,于是,得s2―s1―2=0.根据以上信息,解答下列问题:①直接写出s1,s2的值.②经计算可得:s3=4,s4=7,s5=11,当n≥3时,请猜想s n,s n―1,s n―2之间满足的数量关系,并给出证明.【思路点拨】(1)根据一元二次方程根与系数的关系可得出x1+x2=2(k+1),x1x2=k2+2.由(x1+1)(x2+1)=8,可得x1x2+(x1+x2)+1=8,即得出关于k的一元二次方程,解出k的值,再根据一元二次方程根的判别式验证,舍去不合题意的值即可;(2)①根据一元二次方程根与系数的关系可得出α+β=―ba =1,αβ=ca=―1,进而可求出s1=α+β=1,s2=α2+β2=(α+β)2―2αβ=3;②由一元二次方程的解的定义可得出α2―α―1=0,两边都乘以αn―2,得:αn―αn―1―αn―2=0①,同理可得:βn―βn―1―βn―2=0②,再由①+②,得:(αn+βn)―αn―1+βn―1―αn―2+βn―2=0.最后结合题意即可得出s n―s n―1―s n―2=(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,即s n=s n―1+s n―2.【解题过程】解:(1)∵x1,x2是关于x的一元二次方程x2―2(k+1)x+k2+2=0的两实根,∴x1+x2=―ba =――2(k+1)1=2(k+1),x1x2=ca=k2+21=k2+2,∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8,整理,得:k2+2k―3=0,解得:k1=―3,k2=1.当k=―3时,Δ=b2―4ac=[―2(k+1)]2―4(k2+2)=[―2(―3+1)]2―4(―32)+2=―28<0,∴此时原方程没有实数根,∴k=―3不符合题意;当k=1时,Δ=b2―4ac=[―2(k+1)]2―4(k2+2)=[―2×(1+1)]2―4(12+2)=4>0,∴此时原方程有两个不相等的实数根,∴k=1符合题意,∴k的值为1;(2)①∵x2―x―1=0,∴a=1,b=―1,c=―1.∵α,β(α>β)是一元二次方程x2―x―1=0的两个实数根,∴α+β=―ba =1,αβ=ca=―1,∴s1=α+β=1,s2=α2+β2=(α+β)2―2αβ=12―2×(―1)=3;②猜想:s n=s n―1+s n―2.证明:根据一元二次方程根的定义可得出α2―α―1=0,两边都乘以αn―2,得:αn―αn―1―αn―2=0①,同理可得:βn―βn―1―βn―2=0②,由①+②,得:(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,∵s=α+β,s=α+β,s=α+β,∴s n―s n―1―s n―2=(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,即s n=s n―1+s n―2.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x2―(m+2)x+4m=0有两个实数根x1,x2,其中x1<x2.(1)若m=―1,求x12+x22的值;(2)一次函数y=3x+1的图像上有两点A(x1,y1),B(x2,y2),若AB=m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x1和x2,求该直角三角形的面积.【思路点拨】该题主要考查了一元二次方程的根判别式“Δ=b2―4ac”,根与系数关系“x1+x2=―ba ,x1⋅x2=ca”,一次函数的性质,直角三角形的性质,勾股定理“直角三角形两直角边的平方之和等于斜边的平方”等知识点,解题的关键是分类谈论思想的运用;(1)将m=―1代入方程得出方程,再根据根与系数关系得到x1+x2=―ba =1,x1⋅x2=ca=―4,将x12+x22转化即可求解;(2)根据点A(x1,y1),B(x2,y2)在函数图像上,得出A x1,3x1+1,B x2,3x2+1,再根据根与系数关系得到x1+x2=m+2,x1⋅x2=4m,根据AB=(3)根据直角三角形两直角边x1,x2为整数,得出Δ=b2―4ac=m2―12m+4,令m2―12m+4=k2(k为正整数),得出(m+k―6)(m―k―6)=32,又m+k―6>m―k―6,然后分三种情况取值即可解答;【解题过程】(1)当m=―1时,方程为x2―x―4=0,Δ=b2―4ac=(―1)2―4×1×(―4)=17>0,∴x1+x2=―ba =1,x1⋅x2=ca=―4,即x21+x22=(x1+x2)2―2x1x2=12―2×(―4)=9;(2)将A(x1,y1),B(x2,y2)代入y=3x+1可得A x1,3x1+1,B x2,3x2+1,又Δ=(m+2)2―4×4m>0,故x1+x2=m+2,x1⋅x2=4m,AB2=(x1―x2)2+(y1―y2)2=10(x1―x2)2,即10(x1―x2)2=10,(x1―x2)2=1,(x1―x2)2=(x1+x2)2―4x1x2=1,(m+2)2―4×4m=1,(m―6)2=33,m1=6+2=6―(3)∵直角三角形两直角边x1,x2为整数,∴Δ=b2―4ac=(m+2)2―4×4m=m2―12m+4为平方数,不妨令m2―12m+4=k2(k为正整数),(m―6)2―32=k2,(m+k―6)(m―k―6)=32,m+k―6>m―k―6,当①∴m+k―6=32,m―k―6=1,解得m=452(不合题意舍去);当②m+k―6=16,m―k―6=2,解得m=15,∴方程x2―17x+60=0,x1=12,x2=5,则斜边为13,即S=x1⋅x22=30;当③m+k―6=8,m―k―6=4,解得m=12,∴方程x2―14x+48=0,x1=6,x2=8,则斜边为10,即S=x1⋅x22=24,综上所述:该直角三角形的面积为30或24.19.(22-23九年级上·全国·单元测试)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=―p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a,b是方程x2+15x+5=0的二根,则ab +ba=?(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知x =x 1y =y 1 和x =x 2y =y 2是关于x ,y 的方程组x 2―y +k =0x ―y =1的两个不相等的实数解.问:是否存在实数k ,使得y 1y 2―x 1x 2―x 2x 1=2?若存在,求出的k 值,若不存在,请说明理由.【思路点拨】(1)根据a ,b 是方程x 2+15x +5=0的二根,求出a +b ,ab 的值,即可求出ab +ba 的值;(2)根据a +b +c =0,abc =16,得出a +b =―c ,ab =16c,a 、b 是方程x 2+cx +16c=0的解,再根据c 2―4×16c≥0,即可求出c 的最小值;(3)运用根与系数的关系求出x 1+x 2=1,x 1x 2=k +1,再解y 1y 2―x 1x 2―x 2x 1=2,即可求出k 的值.【解题过程】(1)解:∵a ,b 是方程x 2+15x +5=0的二根,∴a +b =―15,ab =5,∴ab +ba =(a+b )2―2abab=(―15)2―2×55=43,∴ab +b a =43;(2)∵a +b +c =0,abc =16,∴a +b =―c ,ab =16c ,∴a 、b 是方程x 2+cx +16c=0的解,∴c 2―4×16c≥0,∴c 2―43c≥0,∵c 是正数,∴c 3―43≥0,∴c 3≥43,∴c ≥4,∴正数c 的最小值是4;(3)存在,当k =―2时,y 1y 2―x 1x 2―x 2x 1=2.理由如下:∵x2―y+k=0①x―y=1②,由①得:y=x2+k,由②得:y=x―1,∴x2+k=x―1,即x2―x+k+1=0,由题意思可知,x1,x2是方程x2―x+k+1=0的两个不相等的实数根,∴(―1)2―4(k+1)>0x1+x2=1x1x2=k+1,则k<―34,∵x=x1y=y1和x=x2y=y2是关于x,y的方程组x2―y+k=0x―y=1的两个不相等的实数解,∴y1y2=(x1―1)(x2―1),∴y1y2―x1x2―x2x1=(x1―1)(x2―1)―(x1+x2)2―2x1x2x1x2=2,∴x1x2―(x1+x2)+1―(x1+x2)2―2x1x2x1x2=2,∴k+1―1+1―1―2(k+1)k+1=2,整理得:k2+2k=0,解得:k1=―2,k2=0(舍去),∴k的值为―2.20.(22-23九年级上·四川资阳·期末)定义:已知x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若x1<x2<0,且3<x1x2<4,则称这个方程为“限根方程”.如:一元二次方程x2+13x+30=0的两根为x1=―10,x2=―3,因―10<―3<0,3<―10―3<4,所以一元二次方程x2+13x+30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x2+9x+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程2x2+(k+7)x+k2+3=0是“限根方程”,且两根x1、x2满足x1+x2+x1x2 =―1,求k的值;(3)若关于x的一元二次方程x2+(1―m)x―m=0是“限根方程”,求m的取值范围.【思路点拨】(1)解该一元二次方程,得出x 1=―7,x 2=―2,再根据“限根方程”的定义判断即可;(2)由一元二次方程根与系数的关系可得出x 1+x 2=―k+72,x 1x 2=k 2+32,代入x 1+x 2+x 1x 2=―1,即可求出k 1=2,k 2=―1.再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出x 1=―1,x 2=m 或x 1=m ,x 2=―1.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出Δ>0,m <0且m ≠―1,可求出m 的取值范围.最后分类讨论即可求解.【解题过程】(1)解:x 2+9x +14=0,(x +2)(x +7)=0,∴x +2=0或x +7=0,∴x 1=―7,x 2=―2.∵―7<―2,3<―7―2=72<4,∴此方程为“限根方程”;(2)∵方程2x 2+(k +7)x +k 2+3=0的两个根分比为x 1、x 2,∴x 1+x 2=―k+72,x 1x 2=k 2+32.∵x 1+x 2+x 1x 2=―1,∴―k+72+k 2+32=―1,解得:k 1=2,k 2=―1.分类讨论:①当k =2时,原方程为2x 2+9x +7=0,∴x 1=―72,x 2=―1,∴x 1<x 2<0,3<x 1x 2=72<4,∴此时方程2x 2+(k +7)x +k 2+3=0是“限根方程”,∴k =2符合题意;②当k =―1时,原方程为2x 2+6x +4=0,∴x 1=―2,x 2=―1,∴x 1<x 2<0,x 1x 2=2<3,∴此时方程2x2+(k+7)x+k2+3=0不是“限根方程”,∴k=―1不符合题意.综上可知k的值为2;(3)x2+(1―m)x―m=0,(x+1)(x―m)=0,∴x+1=0或x―m=0,∴x1=―1,x2=m或x1=m,x2=―1.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴Δ>0,m<0且m≠―1,∴(1―m)2+4m>0,即(1+m)2>0,∴m<0且m≠―1.分类讨论:①当―1<m<0时,∴x1=―1,x2=m,∵3<x1x2<4,∴3<―1m<4,解得:―13<m<―14;②当m<―1时,∴x1=m,x2=―1,∵3<x1x2<4,∴3<m―1<4,解得:―4<m<―3.综上所述,m的取值范围为―13<m<―14或―4<m<―3.。

人教版九年级上册数学一元二次方程的根与系数的关系(含答案)

人教版九年级上册数学一元二次方程的根与系数的关系(含答案)

一元二次方程的根与系数的关系一、基础练习。

1.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.-5 D.62.设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是()A.-4 B.-1 C.1 D.03.两个实数根的和为2的一元二次方程可能是()A.x2+2x-3=0 B.2x2-2x+3=0C.x2+2x+3=0 D.x2-2x-3=04.小强同学在解一元二次方程x2-3x+c=0时,正确解得x1=1,x2=2,则c的值为______.5.已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是________.6.求下列方程两根的和与两根的积:(1)4x2-x=4; (2)3x2-2x=x+2.7.已知一元二次方程x2-2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.二、提高训练。

8.点(α,β)在反比例函数y=kx的图象上,其中α,β是方程x2-2x-8=0的两根,则k=__________9.已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.10.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2-1,求k的值.一元二次方程的根与系数的关系(答案)1.B 2.B 3.D 4.25.-656.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根, ∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.1010.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.。

人教版2022-2023学年九年级数学上册一元二次方程根与系数的关系练习题含答案

人教版2022-2023学年九年级数学上册一元二次方程根与系数的关系练习题含答案
【详解】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,
∴x1+x2 2,
故选:B.
【点睛】此题考查了根与系数的关系,设x1,x2为方程ax2+bx+c=0(a≠0)的两个根,则有x1+x2 ,x1•x2= .
2.A
【分析】根据一元二次方程根与系数的关系求得 ,代入代数式即可求解.
【详解】解:∵一元二次方程 的两个根分别为 和 ,
∴ 或 ,
∵ , ,
∴ , ,
∴ ,
解得 ,
∴ ,
故选:D.
【点睛】本题主要考查了根与系数的关系,公式法解一元二次方程,熟记一元二次方程的求根公式是解本题的关键.
5.C
【分析】利用根的判别式可判断①;把 ,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a= >0,开口向上,且当 时, ;当 时, ,
∴抛物线 与x轴有两个不同的交点,
∴ ,
∴ ;故①正确;
∵当 时, ,
∴ -b+c<0,即b> +c,
∵c>1,
∴b> ,故②正确;
抛物线 的对称轴为直线x=b,且开口向上,
当x<b时,y的值随x的增加反而减少,
∴当 时, ;故③正确;
∵方程 的两实数根为x1,x2,
则x1﹣2=x2﹣2或x1﹣2=2﹣x2,
∴x1=x2或x1+x2=4,
当x1=x2时,x1=x2= ,不能判断a与b之间的关系,
当x1+x2=4时,即 =4,
∴b=﹣4a,
故ax2+bx+c=0(a≠0)是2的等距方程时,b不一定等于﹣4a,故③错误;

根与系数关系例题附答案

根与系数关系例题附答案

根与系数关系专练学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知α,β方程x 2+3x ﹣8=0的两个实数根,则为x 1、x 2,则α2+β2的值为( ) A .﹣7 B .25 C .17 D .1【答案】B 【分析】根据韦达定理可得α+β=-3,αβ=-8,再根据完全平方公式变形即可求解. 【详解】解:∵α,β方程x 2+3x ﹣8=0的两个实数根, ∴α+β=-3,αβ=-8,∴α2+β2=(α+β)2-2αβ=9+16=25, 故选:B . 【点睛】本题主要考查根与系数的关系,若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,则x 1+x 2=−b a,x 1x 2=c a .2.一元二次方程240x kx +-=的一个根是1x =-,则另一个根是( ) A .4 B .-1 C .-3 D .-2【答案】A 【分析】设方程的另一个根为m ,由根与系数的关系即可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:设方程的另一个根为m , 则有m ×(-1)=-4, 解得:m =4. 故选:A . 【点睛】本题考查了根与系数的关系以及解一元一次方程,牢记两根之积等于ca是解题的关键.3.已知,m n 是方程2310x x +-=的两根,则24m m n ++的值为( )A .2-B .2C .3-D .4【答案】A 【分析】,m n 是方程2310x x +-=的两根,则有2310m m +-=,3m n +=-,将原式变形代入求解即可. 【详解】解:∵,m n 是方程2310x x +-=的两根 ∴2310m m +-=,3m n +=- ∴231m m +=∴22+4+=3=132m m n m m m n +++-=- 故选:A 【点睛】本题考查一元二次方程根与系数的关系,以及方程解的定义,根据所对应的代数式进行适当的变形是解题关键.4.若x 1,x 2是一元二次方程x 2+x ﹣1=0的两根,则x 12﹣2017x 1﹣2018x 2的值为( ) A .2020 B .2019 C .2018 D .2017【答案】B 【分析】根据一元二次方程的解的定义可得21110x x +-=,根与系数的关系求得12x x +1=-,代入求解即可. 【详解】x1,x 2是一元二次方程x 2+x ﹣1=0的两根,∴21110x x +-=,12x x +1=-,()()2111220181201812019x x x x ∴=+-+=-⨯-=原式.故选B . 【点睛】本题考查了一元二次方程的定义,根与系数的关系,掌握以上知识是解题的关键. 5.已知实数a ,b 满足a ≠b ,且a 2-4a =b 2-4b =2,则a 2+b 2的值为( ) A .16 B .20 C .25 D .30【答案】B 【分析】根据题意可得则,a b 为2x 4x 2-=的两根,进而根据一元二次方程根与系数的关系以及完全平方公式的变形求值即可. 【详解】242a a -=,242b b -=,则,a b 为2x 4x 2-=的两根 2420x x --=, 4,2a b ab ∴+==-,()222216420a b a b ab ∴+=+-=+=,故选B 【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,完全平方公式的变形求值,理解,a b 为2x 4x 2-=的两根是解题的关键.6.等腰三角形三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +k +2=0的两根,则k 的值为( ) A .30 B .34或30C .36或30D .34【答案】D 【分析】分三种情况讨论,①当a =4时,②当b =4时,③当a=b 时;结合一元二次方程根与系数的关系即可求解; 【详解】解:当4a =时,440448b -=<<+=时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,440448a -=<<+=,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 1222a b ∴==, 6a b ∴==,236k ab ∴+==,34k ∴=; 故选D . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合一元二次方程根与系数的关系和三角形三边关系进行解题是关键. 7.方程2x 2+(k +1)x -6=0的两根和是-2,则k 的值是( ) A .k =3 B .k =- 3 C .k =0 D .k =1【答案】A 【分析】设方程22(1)60x k x ++-=的两根分别为1x ,2x ,则由题意得12122k x x ++=-=-,解方程即可. 【详解】解:设方程22(1)60x k x ++-=的两根分别为1x ,2x , ∵方程22(1)60x k x ++-=的两根之和是-2, ∴12122k x x ++=-=-, ∴3k =, 故选A . 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系. 8.点(),A a b 在反比例函数9y x=上的点图象上,且a ,b 是关于的一元二次方程260x x m -+=的两根,则点A 坐标是( )A .(1,9)B .92,2⎛⎫⎪⎝⎭C .(3,3)D .(-3,-3)【答案】C 【分析】根据点(),A a b 在反比例函数9y x=上的点图象上,可得9ab = ,再利用一元二次方程根与系数的关系,可得ab m =,从而得到9m = ,然后解出方程,即可求解. 【详解】解:∵点(),A a b 在反比例函数9y x=上的点图象上, ∴9ab = ,∵a ,b 是关于的一元二次方程260x x m -+=的两根, ∴ab m =, ∴9m = ,∴方程260x x m -+=为2690x x -+=, 解得:123x x == , 即3a b == , ∴点A 坐标是()3,3 . 故选:C 【点睛】本题主要考查了反比例函数的性质,一元二次方程根与系数的关系,熟练掌握反比例函数的性质,一元二次方程根与系数的关系是解题的关键.二、填空题9.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+2a +b 的值为____. 【答案】2020 【分析】由于a 2+2a +b =(a 2+a )+(a +b ),故根据方程的解的意义,求得(a 2+a )的值,由根与系数的关系得到(a +b )的值,即可求解. 【详解】解:∵a ,b 是方程x 2+x −2021=0的两个实数根, ∴a 2+a −2021=0,即a 2+a =2021,a +b =ba-=−1,∴a 2+2a +b =a 2+a +a +b =2021−1=2020, 故答案为:2020. 【点睛】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.10.若方程x 2﹣3x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为___. 【答案】4 【分析】根据根与系数的关系可得出x 1+x 2=3、x 1x 2=1,将其代入x 1(1+x 2)+x 2=(x 1+x 2)+x 1x 2中即可求出结论. 【详解】解:∵方程x 2﹣3x +1=0的两根是x 1,x 2, ∴x 1+x 2=3,x 1x 2=1,∴x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=(x 1+x 2)+x 1x 2=3+1=4. 故答案为:4. 【点睛】本题考查了根与系数的关系,牢记两根之和等于-b a、两根之积等于ca 是解题的关键.11.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则(a +1)(b +1)的值为_______. 【答案】-2021 【分析】首先根据一元二次方程根与系数的关系得出1,2021a b ab +=-=-,然后整体代入求解即可. 【详解】∵a ,b 是方程x 2+x ﹣2021=0的两个实数根, 1,2021a b ab ∴+=-=-,()()()()1112021112021a b ab a b ∴++=+++=-+-+=-,故答案为:-2021. 【点睛】本题主要考查代数式求值,掌握一元二次方程根与系数的关系是关键.12.已知方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,则x 1+x 2﹣x 1x 2的值为_________. 【答案】23【分析】根据一元二次方程的解的定义以及根与系数的关系可得x 1+x 2=13,x 1x 2=13-,再将它们代入x 1+x 2﹣x 1x 2,计算即可. 【详解】解:∵方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,∴x 1+x 2=13,x 1x 2=13-,∴x 1+x 2﹣x 1x 2=13﹣1()3-=23.故答案为:23.【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a,x 1•x 2=ca .将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了一元二次方程的解的定义.13.设x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根,则4x 12+4x 1﹣2x 2的值为 ______. 【答案】11 【分析】先根据一元二次方程根的定义得到2x 12=﹣3x 1+4,则4x 12+4x 1﹣2x 2化为﹣2(x 1+x 2)+8,再根据根与系数的关系得到x 1+x 2=﹣32,然后利用整体代入的方法计算.【详解】解:∵x 1是方程2x 2+3x ﹣4=0的根, ∴2x 12+3x 1﹣4=0, ∴2x 12=﹣3x 1+4,∴4x 12+4x 1﹣2x 2=2(﹣3x 1+4)+4x 1﹣2x 2=﹣2(x 1+x 2)+8, ∵x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根, ∴x 1+x 2=﹣32,∴4x 12+4x 1﹣2x 2=﹣2(x 1+x 2)+8=﹣2×(﹣32)+8=11.故答案为:11. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则12bx x a +=-,12c x x a=.14.设α、β是方程x 2+2x ﹣2021=0的两根,则α2+3α+β的值为______. 【答案】2019 【分析】先根据一元二次方程的解的定义得到α2+2α-2021=0,则α2+2α=2021,于是α2+3α+β可化为2021+α+β,再利用根与系数的关系得到α+β=-2,然后利用整体代入的方法计算求解即可. 【详解】解:根据题意知,α2+2α﹣2021=0,即α2+2α=2021. 又∵α+β=﹣2.所以α2+3α+β=α2+2α+(α+β)=2021﹣2=2019. 故答案是:2019. 【点睛】此题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.解题的关键是熟练掌握一元二次方程的解以及根与系数的关系.三、解答题15.已知关于x 的方程240x x m -+=的一个根为2+ (1)求m 的值及方程的另一个根; (2)设方程的两个根为1x ,2x ,求20212022121x xx +的值.【答案】(1)m =1,(2)4 【分析】(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,求出即可.(2)根据一元二次方程根与系数的关系得到x 1+x 2=4,x 1•x 2=1,根据积的乘方把原式变形,代入计算即可. 【详解】解:(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,解得:a m =1,即m =1,方程的另一个根为 (2)x 1,x 2是方程x 2-4x +1=0的两个根, 则x 1+x 2=4,x 1•x 2=1,∴x 12021x 22022+x 1=(x 1x 2)2021x 2+x 1=x 2+x 1=4. 【点睛】本题考查的是一元二次方程根与系数的关系、完全平方公式的应用,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=ba -,x 1x 2=c a ,反过来也成立.16.已知关于x 的方程221(2)04x m x m --+=有两个不相等的实数根x 1,x 2.(1)求m 的取值范围;(2)是否存在实数m ,使方程的两个实数根互为相反数?如果存在,求出m 的值;如果不存在,说明理由.【答案】(1)m <1;(2)不存在;理由见解析. 【分析】(1)由题意根的判别式大于0即可求解;(2)根据互为相反数的两数和等于0得方程,求解并判断即可. 【详解】解:(1)∵关于x 的方程221(2)04x m x m --+=有两个不相等的实数根,∴Δ=(m -2)2-2144m ⨯ >0即:4-4m >0 m <1(2)由题意,x 1+x 2=()214m ---=4m -8, 若方程两实数根互为相反数,则4m -8=0, 解得,m =2, 因为m <1,所以m =2时,原方程没有实数根,所以不存在实数,使方程两实数根互为相反数. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系.(2)易错,只关注求m 的值而忽略m 的范围.17.定义:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为12,x x (12x x <),分别以12,x x 为横坐标和纵坐标得到点M (12,x x ),则称点M 为该一元二次方程的奇特点. (1)若方程为x 2=3x ,写出该一元二次方程的奇特点M 的坐标;(2)若关于x 的一元二次方程x 2﹣(2m +1)x +2m =0(m <0)的奇特点为M ,过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,求m 的值; (3)是否存在b ,c ,使得不论k (k ≠0)为何值,关于x 的一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,若存在请算出b ,c 的值,若不存在请说明理由.【答案】(1)()0,3 ;(2)12m =- ;(3)存在,148,33b c ==【分析】(1)先解出一元二次方程,再根据奇特点M 的定义,即可求解;(2)先解出一元二次方程,再根据奇特点M 的定义,可得奇特点M 的坐标为()2,1m ,再由过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,可得到关于m 的方程,解出即可;(3)将直线解析式变形,可得直线过定点2,43⎛⎫⎪⎝⎭,从而得到一元二次方程x 2+bx +c =0的两个根为122,43x x == ,即可求解.【详解】解:(1)23x x = ,整理得: 230x x -=,即()30x x -=,解得:120,3x x == , ∴奇特点M 的坐标为()0,3 ; (2)x 2﹣(2m +1)x +2m =0, ∴()()210x m x --= , 解得:122,1x m x == , ∵m <0, ∴21m < ,∴奇特点M 的坐标为()2,1m ,∵过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形, ∴21m -= ,解得:12m =- ;(3)存在,理由如下:∵()()322324y kx k k x =--=-+ ,∴当320x -= ,即23x =时,4y = , ∴直线y =3kx ﹣2(k ﹣2)过定点2,43⎛⎫⎪⎝⎭ ,∵一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,一元二次方程x 2+bx +c =0的两个根为122,43x x == , ∴224,433b c +=-⨯= , 解得:148,33b c == . 【点睛】 本题主要考查了一元二次方程根与系数的关系,正方形的性质,一次函数的性质,理解新定义是解题的关键.18.已知方程2x ﹣(m ﹣3)x ﹣3m =0有一个根为4,求它的另一个根.【答案】﹣3【分析】直接把4代入方程即可求得m 的值,然后利用根与系数关系求另一个根即可.【详解】解:把4代入已知方程得:24﹣4(m ﹣3)﹣3m =0,解得m =4,∴两根之积为﹣3m =﹣12,∴另一个根为:﹣12÷4=﹣3.【点睛】本题考查了一元二次方程根的定义,根与系数关系定理,熟练掌握根与系数关系定理是解题的关键.19.利用根与系数的关系,求下列方程的两根之和、两根之积:(1)(31)10x x --=; (2)(25)(1)7x x x ++=+.【答案】(1)1213x x +=,1213x x =-;(2)123x x +=-,121x x =-. 【分析】将原式整理为一元二次方程一般式,然后根据根与系数的关系:1212,b c x x x x a a+=-⋅=,求解即可.【详解】解:(1)原式整理为:2310x x --=,∴3,1,1a b c ==-=-, ∴1213b x x a +=-=,1213c x x a ⋅==-; (2)原式整理为:2310x x +-=,∴1,3,1a b c ===-, ∴123b x x a +=-=-,121c x x a⋅==-. 【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.20.求下列方程两个根的和与积:(1)25100x x --=; (2)22710x x ++=;(3)23125x x -=+; (4)(1)37x x x -=+.【答案】(1)125x x +=,x x ⋅=-1210;(2)1272x x +=-,1212x x ⋅=;(3)1223x x +=,122x x ⋅=-;(4)124x x +=,x x ⋅=-127 【分析】(1)直接根据根与系数的关系求解;(2)直接根据根与系数的关系求解;(3)先把方程化为一般式为23260x x --=,然后根据根与系数的关系求解; (4)先把方程化为一般式为2470x x --=,然后根据根与系数的关系求解.【详解】解:(1)设方程的两根为1x ,2x ,则125x x +=,x x ⋅=-1210 .(2)设方程的两根为1x ,2x ,则1272x x +=-,1212x x ⋅=. (3)原方程化为23260x x --=,设方程的两根为1x ,2x ,则1223x x +=,122x x ⋅=-. (4)原方程化为2470x x --=,设方程的两根为1x ,2x ,则124x x +=,x x ⋅=-127.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=c a . 21.根据一元二次方程的根与系数的关系,求下列方程两个根12,x x 的和与积: (1)26150x x --=(2)23790x x +-=(3)2514x x -=【答案】(1)12126,15x x x x +==-;(2)12127,33x x x x +=-=-;(3)121251,44x x x x +== 【分析】(1)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (2)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (3)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案. 【详解】解:(1)∵26150x x --=,∴1a =,6b =-,15c =-, ∴126b x x a +=-=,1215c x x a==-; (2)∵23790x x +-=,∴3a =,7b =,9c =-, ∴1273b x x a +=-=-,123c x x a==-; (3)∵2514x x -=,即24510x x -+=∴4a =,5b =-,1c =, ∴1254b x x a +=-=,1214c x x a ==. 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根于系数的关系.22.已知1x ,2x 是一元二次方程22210x x m -++=的两个实数根.(1)求实数m 的取值范围;(2)如果1x ,2x 满足不等式2121246()x x x x +>+,且m 为整数,求m 的值.【答案】(1)12m;(2)1-或0 【分析】(1)由题意得一元二次方程判别式Δ≥0,进而求解.(2)由根与系数的关系用含m 的代数式表示12x x +与12x x ⋅,进而求解.【详解】解:(1)方程22210x x m -++=有两个实数根,∴Δ0,即2(2)42(1)0m --⨯+, 解得12m , ∴实数m 的取值范围是12m; (2)1x ,2x 是一元二次方程22210x x m -++=的两个实数根,121x x ∴+=,121(1)2x x m ⋅=+,2121246()x x x x +>+,2146(1)12m ∴+⨯+>, 解得2m >-, 12m 且m 为整数, m ∴的值为1-或0.【点睛】本题考查一元二次的判别式及根与系数的关系,解题关键是掌握一元二次方程根的情况与Δ的关系,掌握12b x x a +=-,12c x x a=. 23.已知关于x 的方程 (k 2+1)x 2+(2k 2+1)x +k 2−1=0.(1)证明:无论k 取何值,方程都有两个不相等的实数根;(2)是否存在实数k ,使方程两实数根互为相反数?如果存在,求出k 的值,如不存在,说明理由.【答案】(1)见解析;(2)不存在符合条件的实数k ,理由见解析【分析】(1)根据方程各项的系数结合根的判别式即可得出Δ=4k 2+5>0,由此可得出无论k 为何值,方程总有两个不相等的实数根;(2)设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,利用根与系数的关系结合x 1、x 2互为相反数,可得出关于k 的方程,解之即可求出k 值,再由(1)中k 的取值范围,即可得出不存在符合条件的k 值.【详解】(1)证明:Δ=(2k 2+1)2-4×(k 2+1)×(k 2-1) =4k 4+4k 2+1-4k 4+4=4k 2+5,∴k 2+1>0,4k 2+5>0,∴无论k 为何值,这个方程总有两个不相等的实数根;(2)不存在符合条件的实数k ,理由如下:设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,由根与系数关系得:x 1+x 2=-22211k k ++. ∵x 1、x 2互为相反数,∴x 1+x 2=0,即-222101k k +=+, ∵k 2≥0,∴2k 2+1≥1,∴不存在符合条件的k 值.【点睛】本题考查了根与系数的关系、一元二次方程的定义、相反数以及根的判别式,解题的关键是:(1)根据非负数的性质得到根的判别式Δ>0,方程有两个不相等的实数根;(2)根据根与系数的关系结合x 1、x 2互为相反数,求出k 值.24.关于x 的方程2210x x k -++=的两个实数根是1x ,2x .(1)求k 的取值范围;(2)若k 为整数,且满足12124x x x x +-<,求k 的值.【答案】(1)0k ≤;(2)2k =-,1-,0【分析】(1)根据“方程2210x x k -++=有两个实数根,”可得0∆≥,即可求解;(2)根据“k 为整数,且满足12124x x x x +-<,”可得3k >-,结合(1)0k ≤,即可求解.【详解】解:(1)∵方程2210x x k -++=有两个实数根,∴0∆≥,即()244410b ac k -=-+≥,解得0k ≤;(2)∵122x x +=,121x x k =+,∴214k --<,由(1)0k ≤,可得30k -<≤,∵k 为整数,∴2k =-,1-,0.【点睛】本题主要考查了一元二次方程的根的判别式,根与系数的关系,熟练掌握一元二次方程的根的判别式24b ac ∆=-,根与系数的关系12b x x a+=-,12c x x a =是解题的关键.。

根与系数的关系(解析版)-2023年升初三人教版暑假衔接教材

根与系数的关系(解析版)-2023年升初三人教版暑假衔接教材

❊1.5根与系数的关系知识点一根与系数的关系【注意】题型一利用韦达定理求方程的根例1已知关于x 的方程0322=+++a a x x 有一个根为-2,则另一个根为()A .5B .2C .-1D .-5【答案】【分析】根据关于系可以求得另一个根的值,本题得以解决.【详解】∵关于∴2-解得,故选例变1若关于x 的一元二次方程032=+-bx x 有一个根是1=x ,求b 的值及方程的另一根.【答案】解:∵关于x 的一元二次方程x 2﹣bx+3=0有一个根是x=1,∴1﹣b+3=0,解得:b=4,把b=4代入方程得:x 2﹣4x+3=0,设另一根为m ,可得1+m=4,解得:m=3,则b 的值为4,方程另一根为x=3.变2若73+是方程062=+-c x x 的一个根,求方程的另一个根及c 的值.【答案】解:∵=3+7是此方程的一个根,设另一个解为2则1+2=6,∴2=3−7,即方程的另一个根为3−7∵12=∴=(3+7)(3−7)=2.题型二利用韦达定理判断根的正负例1一元二次方程2410x x --=根的情况是()A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于5D .有两个正根,且有一根大于4【分析】根据根的判别式判断根的情况,利用根与系数的关系,确定根的符号,进行判读即可.【解答】解:2410x x --=,△24164200b ac =-=+=>,∴方程有两个不相等的实数根;设方程的两个根为12x x ⋅,则:124x x +=,121x x ⋅=-,∴方程的有一个正根,一个负根;故选:B .例2关于x 的方程2(2)(1)(x x p p -+=为常数)根的情况,下列结论中正确的是()A .有两个相异正根B .有两个相异负根C .有一个正根和一个负根D .无实数根【分析】先计算根的判别式的值得到△0>,则可判断方程有两个不相等的实数解,设方程的两个分别为1x ,2x ,利用根与系数的关系得1210x x +=>,21220x x p =--<,根据有理数的性质得到1x 、2x 的符合相反,且正根的绝对值较大,于是可对各选项进行判断.【解答】解:方程化为一般式为2220x x p ---=, △222(1)4(2)490p p =----=+>,∴方程有两个不相等的实数解,设方程的两个分别为1x ,2x ,根据根与系数的关系得1210x x +=>,21220x x p =--<,∴方程有一个正根和一个负根.故选:C .变1关于x 的一元二次方程2250x x --=有()A .两个相等的实数根B .两个不相等的正数根C .两个不相等的负数根D .一个正数根和一个负数根【分析】先根据根的判别式判断方程是否有根,再根据根与系数的关系判断两根的正负即可.【解答】解:2250x x --=,△224(2)41(5)240b ac =-=--⨯⨯-=>,所以方程有两个不相等的实数根,设方程2250x x --=的两个根为e 、f ,则50ef =-<,则e 和f 异号,即方程有一个正数根和一个负数根,故选:D .变2关于x 的方程2(1)(2)(x x p p -+=为常数)根的情况下,下列结论中正确的是()A .两个正根B .一个正根,一个负根,正根的绝对值比负根的绝对值大C .两个负根D .一个正根,一个负根,正根的绝对值比负根的绝对值小【分析】方程整理为一般形式,设两根分别为a ,b ,利用根与系数的关系表示出a b +与ab ,判断即可.【解答】解:设方程两根设为a ,b ,方程整理得:2220x x p +--=,∴由根与系数的关系得:10a b +=-<,220ab p =--<,则一个正根,一个负根,正根的绝对值比负根的绝对值小.故选:D .例3一元二次方程20ax bx c ++=有一正根和一个负根,且负根的绝对值较大的条件是()A .a ,c 异号B .a ,c 异号;a ,b 同号C .a ,c 异号;b ,c 同号D .b ,c 异号变3一元二次方程20ax bx c ++=中,若0a >,0b <,0c <,则这个方程根的情况是()A .有两个相等的实数根B .没有实数根C .有一正根一负根且正根绝对值大D .有两个正的实数根【分析】先根据根的判别式判断根的情况,再根据12cx x a=判断根的符号情况.【解答】解:0a > ,0b <,0c <,0ac ∴<,∴△240b ac =->,∴方程有两个不相等的实数根,120cx x a=< .∴两根异号,故选:C .例4若方程22210x x m +-+=有一正实根和一负实根,则m 的取值范围是()A .167≥m B .12m >C .716m >D .21≥m 【分析】根据根与系数的关系即可求出答案.【解答】解:由根与系数的关系可知:210m -+<,12m ∴>,由△18(21)0m =--+>,716m ∴>,12m ∴>,故选:B .变4若关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,则实数m 的取值范围是()A .0m >B .12m >C .12m <D .0m <【分析】利用根的判别式△0>及两根之积为负数,即可得出关于m 的一元一次不等式组,解之即可得出实数m 的取值范围.【解答】解: 关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,∴2241(12)0120m m ⎧=-⨯⨯->⎨-<⎩,解得:12m >,∴实数m 的取值范围是12m >.故选:B .知识点二韦达定理与代数式题型三利用韦达定理求代数式的值例1已知21x x ,是方程2310x x -+=的两个实数根,求下列各式的值:(1)21x x +(2)12·x x (3)()()1211x x --(4)()()122111x x x x +++(5)2212x x +(6)()212x x -(7)1211+x x (8)2112x x x x +变1已知21x x ,是方程03622=-+x x 的两个实数根,求下列各式的值:(1)2221x x +(2))2)(2(21++x x(3)2112x x x x +(4)221)(x x -(5)21x x -例2一元二次方程x 2+4x +1=0的两个根是x 1,x 2,则2112x x x x -的值为______.(其中x 2>x 1)【分析】利用根与系数的关系得到x 1+x 2=﹣4,x 1x 2=1,再通过通分和完全平方公式变形得到21−12=12【解答】解:根据题意得x 1+x 2=﹣4,x 1x 2=1,所以21−12=22−1212=(1+2)(2−1)===﹣83.故答案为﹣83例3已知方程2410x x ++=,记两根为,αβ,求βααβ+的值为()A .3B .C .4D .变3已知:m 、n 是方程022=--x x 的两根,则=--)1)(1(22n m ______.【答案】0【分析】根据一元二次方程的解和根与系数的关系,可得2−−2=0,2−−2=0,+=1,B =−2,从而得到2−1=+1,2−1=+1,再代入,即可求解.【详解】解:∵m 、n 是方程2−−2=0的两根,∴2−−2=0,2−−2=0,+=1,B =−2,∴2−1=+1,2−1=+1,∴2−12−1=+1+1=B +++1=−2+1+1=0故答案为:0变4已知a 、b 是方程2x 2+5x +1=0的两实数根,则式子abbb a a+的值为______.【分析】利用根与系数的关系可得出a +b =−52,a •b =12,进而可得出a <0,b <0,再将a +b =−52,a •b =12代入=【解答】解:∵a 、b 是方程2x 2+5x +1=0的两实数根,∴a +b =−52,a •b =12,∴a <0,b <0,∴+=+=B==−(−52)+2×12=−故答案为:−题型四根据代数式的值求参数的值例1已知21x x ,是关于x 的方程012)13(22=++++k x k x 的两个不相等实数根,且满足2218)1)(1(k x x =--,则k 的值为______.【分析】该一元二次方程含有参数,所以务必要计算△.【解答】)12(4)13(4222≥+-+=-=∆k k ac b (注意:可以不用解出来)∵2218)1)(1(k x x =--∴2212181)(k x x x x =++-将)13(21+-=-=+k a b x x ,12221+==⋅k acx x 代入得:22811312k k k =++++,解得211-=k ,12=k .再将k 的值带入△,判断是否满足△≥0即可.【答案】1【解析】根据根与系数的关系结合(x 1﹣1)(x 2﹣1)=8k 2,可得出关于k 的一元二次方程,解之即可得出k 的值,根据方程的系数结合根的判别式△>0,可得出关于k 的一元二次不等式,解之即可得出k 的取值范围,进而即可确定k 值,此题得解.∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根,∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2,∴2k 2+1+3k +1+1=8k 2,整理,得:2k 2﹣k ﹣1=0,解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,∴△=(3k +1)2﹣4×1×(2k 2+1,解得:k <﹣3﹣2或k >﹣3+2,∴k =1.例2已知关于x 的一元二次方程02)12(22=+++-k k x k x 有两个实数根为21x x ,,使得16222121-=--x x x x 成立,则k 的值______.【分析】根据判别式的意义得到△=(2k +1)2﹣4(k 2+2k )≥0,然后解不等式求得k 的取值范围,然后根据根与系数的关系得到x 1+x 2=2k +1,x 1x 2=k 2+2k ,再把x 1x 2﹣x 12﹣x 22=﹣16变形为﹣(x 1+x 2)2+3x 1•x 2=﹣16,所以﹣(2k +1)2+3(k 2+2k )=﹣16,然后解方程后即可确定满足条件的k 的值.【解答】解:∵关于x 的一元二次方程x 2﹣(2k +1)x +k 2+2k =0有两个实数根,∴△=(2k +1)2﹣4(k 2+2k )≥0,解得k ≤14,由根与系数的关系得x 1+x 2=2k +1,x 1x 2=k 2+2k ,∵x 1x 2﹣x 12﹣x 22=﹣16.∴x 1x 2﹣[(x 1+x 2)2﹣2x 1x 2]=﹣16,即﹣(x1+x2)2+3x1•x2=﹣16,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得k2﹣2k﹣15=0,解得k1=5(舍去),k2=﹣3.∴k=﹣3,故答案为﹣3.即6180m -=,解得:3m =.变4已知关于x 的一元二次方程0)14(62=++-m x x 有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为21x x ,,且421=-x x ,求m 的值.【答案】见解析。

2022-2023学年九年级数学 一元二次方程的根与系数的关系 含答案

2022-2023学年九年级数学 一元二次方程的根与系数的关系   含答案

一元二次方程的根与系数的关系一.选择题1.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3 B.﹣C.D.﹣22.已知关于x的一元二次方程x2﹣3x+k+1=0,它的两根之积为﹣4.则k的值为()A.﹣1 B.4 C.﹣4 D.﹣53.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8 B.10 C.12 D.144.设m是整数,关于x的方程mx2﹣(m﹣1)x+1=0有有理根,则方程的根为()A.B.x=﹣1C.D.有无数个根5.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<2 6.已知关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,其中m是实数,则m可取的值有()A.3个B.4个C.5个D.6个7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或4 8.m、n是方程x2﹣2019x+2022=0的两根,(m2﹣2022m+2022)•(n2﹣2022n+2022)的值是()A.2017 B.2018 C.2019 D.2022 二.填空题9.已知m,n是方程x2+2x﹣1=0的两个实数根,则式子3m2+6m ﹣mn的值为.10.若方程x2﹣3x﹣4=0的两个根分别为x1和x2,则=.11.已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是.12.若关于x的方程x2﹣34x+34k﹣1=0至少有一个正整数根,求满足条件的正整数k的值.13.已知关于x的方程(a﹣1)x2+2x﹣a﹣1=0的根都是一整数,那么符合条件的整数a有个.14.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题15.已知x1,x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x12+x22,且m为整数,求m的值.16.已知关于x的一元二次方程x2﹣2mx+(m2+m)=0有两个实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且x1+x2+x1•x2=4,求m的值.17.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.18.试求出所有的正整数a,使得关于x的二次方程ax2+(4a﹣1)x+2(2a﹣3)=0至少有一个整数根.参考答案一.选择题1.解:由x2﹣3x+2=0可知,其二次项系数a=1,一次项系数b =﹣3,由根与系数的关系:x1+x2=,故选:A.2.解:∵关于x的一元二次方程x2﹣3x+k+1=0,它的两根之积为﹣4,∴k+1=﹣4,∴k=﹣5.故选:D.3.解:根据题意得x1+x2=5,x1x2=6,所以(x1+1)(x2+1)=x1x2+x1+x2+1=6+5+1=12.故选:C.4.解:(1)当m=0,原方程变为:x+1=0,解得x=﹣1,为有理根;(2)当m≠0,原方程为一元二次方程,∵方程mx2﹣(m﹣1)x+1=0有有理根,∴△=b2﹣4ac为完全平方数,即△=(m﹣1)2﹣4m=(m﹣3)2﹣8为完全平方数,而m是整数,∴设(m﹣3)2﹣8=n2,即(m﹣3)2=8+n2,∴完全平方数的末位数只能为1,4,5,6,9.∴n2的末位数只能为1,6,而大于10的两个完全平方数相差大于8,∴n=1,∴m﹣3=3,即m=6,所以方程为:6x2﹣5x+1=0,(2x﹣1)(3x﹣1)=0,∴x1=,x2=,故选:C.5.解:由题意可知:x1+x2=﹣2,x1x2=k+1,∵x1+x2﹣x1x2<﹣1,∴﹣2﹣k﹣1<﹣1,∴k>﹣2,∵△=4﹣4(k+1)≥0,∴k≤0,∴﹣2<k≤0,故选:C.6.解:①当m2﹣3m+2≠0时,即m≠1和m≠2时,由原方程,得[(m﹣1)x+m][(m﹣2)x﹣(m+1)]=0解得,x=﹣1﹣或x=1+,∵关于x的方程(m2﹣3m+2)x2+(1﹣2m)x﹣m(m+1)=0的根是整数,∴m=0.5,m=1.5,m=1.25;②当m2﹣3m+2=0时,m=1,m=2,分别可得x=0,x=2,因此m=1,m=2也可以;综上所述,满足条件的m值共有5个.故选:C.7.解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.解:∵m,n是方程x2﹣2019x+2022=0的两根,∴m2﹣2019m+2022=0,n2﹣2019n+2022=0,mn=2022,∴(m2﹣2022m+2022)•(n2﹣2022n+2022)=(﹣m)(﹣n)=mn=2022.故选:D.二.填空题9.解:∵m是方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∴3m2+6m﹣mn=2(m2+2m)﹣mn=2×1﹣mn=2﹣mn,∵m,n是方程x2+2x﹣1=0的两个实数根,∴mn=﹣1,∴3m2+6m﹣mn=2﹣2×(﹣1)=4.故答案为4.10.解:根据题意得x1+x2=3,x1x2=﹣4,所以+===﹣.故答案为﹣.11.解:∵a,b是方程x2+3x﹣1=0的两根,∴根据根与系数的关系得:a+b=﹣3,ab=﹣1,∴a2b+ab2=ab(a+b)=(﹣1)×(﹣3)=3,故答案为:3.12.解:∵方程x2﹣34x+34k﹣1=0至少有1个正整数根,∴△=342﹣4(34k﹣1)=1160﹣136k≥0,正整数k可能取值为1,2,3,4,5,6,7,8,∵只有当k=1时,x1=1,x2=33,∴正整数k的值是1.故答案为:1.13.解:①当a=1时,x=1;②当a≠1时,原式可以整理为:[(a﹣1)x+a+1](x﹣1)=0,易知x=1是方程的一个整数根,再由1+x=且x是整数,知1﹣a=±1或±2,∴a=﹣1,0,2,3;由①、②得符合条件的整数a有5个.故答案为:5.14.解:∵5x2﹣5ax+26a﹣143=0⇒25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=2.8不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=8.4不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=12.4不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.三.解答题15.解:(1)根据题意得△=(﹣2)2﹣4×2(m+1)≥0,解得m≤﹣.故实数m的取值范围是m≤﹣;(2)根据题意得x1+x2=1,x1x2=,∵4+4x1x2>x12+x22,∴4+4x1x2>(x1+x2)2﹣2x1x2,即4+6x1x2>(x1+x2)2,∴4+6×>1,解得m>﹣2,∴﹣2<m≤﹣,∴整数m的值为﹣1.16.解:(1)根据题意得△=4m2﹣4(m2+m)≥0,解得m≤0;(2)根据题意得x1+x2=2m,x1x2=m2+m,∵x1+x2+x1•x2=4,∴2m+m2+m=4,整理得m2+3m﹣4=0,解得m1=﹣4,m2=1,∵m≤0,∴m的值为﹣4.17.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.18.解:ax2+(4a﹣1)x+2(2a﹣3)=0,ax2+4ax+4a=x+6,a(x+2)2=x+6,当x=﹣2时,a不存在,所以x≠﹣2,∵a是正整数,∴a=≥1,由(x+2)2>0得(x+2)2≤x+6,整理得x2+3x﹣2≤0.天天向上独家原创解得:≤x≤,所以x可取﹣3、﹣2(舍去)、﹣1、0,依次代入a=得到:x=﹣3,a=3;x=﹣1,a=5;x=0,a=1.5(舍去).∴满足条件的正整数a的值是3和5.11 / 11。

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=02. 一元二次方程x2−2x+b=0的两根分别为x1,x2,则x1+x2等于( )A.−2B.bC.2D.−b3. 若x1,x2是一元二次方程2x2−7x+5=0的两根,则x1+x2−x1x2的值是()A.1B.6C.−1D.−64. 若关于x的一元二次方程kx2−3x+1=0的两根之积为4,则这个方程的两根之和为( )A.3 4B.−34C.12D.−125. 下列方程中两个实数根的和等于2的方程是()A.2x2−4x+3=0B.2x2−2x−3=0C.2y2+4y−3=0D.2t2−4t−3=06. 王刚同学在解关于x的方程x2−3x+c=0时,误将−3x看作+3x,结果解得x1=1,x2=−4,则原方程的解为()A.x1=−1,x2=−4B.x1=1,x2=4C.x1=−1,x2=4D.x1=2,x2=37. 已知x1,x2是方程x2=2x+1的两个根,则1x1+1x2的值为()A.−12B.2 C.12D.−28. x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()9. 设方程x2−4x−1=0的两个根为x1与x2,则x1x2的值是()A.−4B.−1C.1D.010. 若2,3是方程x2+px+q=0的两实根,则x2−px+q可以分解为()A.(x−2)(x−3)B.(x+1)(x−6)C.(x+1)(x+5)D.(x+2)(x+3)11. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为________.12. 若关于x的方程x2+3x+k=0的一个根是1,则另一个根是________.13. 一元二次方程x2−4x+2=0的两根分别为x1,x2,则x12−4x1+2x1x2的值为________.14. 已知α,β是一元二次方程x2+x−2=0的两个实数根,则α+β−αβ的值是________.15. 如果m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,那么代数式2n2−mn+2m+2009=________.16. 一元二次方程x2−4x+2=0的两根为x1,x2,则x12−4x1+2x1x2的值为________.17. 若m,n是方程x2+3x−2019=0的两个实数根,则m2+4m+n的值为________.18. 设方程x2+3x−4=0的两个实数根为x1,x2,求1x1+1x2=________.19. 试写出一个以−1,−3为两根的一元二次方程________.20. 已知,α、β是关于x的一元二次方程x2+4x−1=0的两个实数根,则α+β的值是________.21. 已知关于x的方程x2+5x−c=0一根为2,求另一根及c的值.x1+x2+12√x1x2.(1)当a≥0时,求y的取值范围;(2)当a<0时,比较y与−a2+3a−9的大小,并说明理由.23. 已知x1、x2是方程x2+6x+3=0的两实数根,求x2x1+x1x2的值.24. 已知a,b是关于x的方程x2+2x−3=0的两个实数根.求a+b与ab的值.25. 已知实数a,b是方程x2−x−1=0的两根,求ba +ab的值.26. 已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.27. 已知方程x2+4x−2=0的两个实数根分别为x1,x2,试求:(1)x12+x22;(2)1x12+1x22.28. 在一元二次方程x2−2ax+b=0中,若a2−b>0,则称a是该方程的中点值.(1)方程x2−8x+3=0的中点值是________;(2)已知x2−mx+n=0的中点值是3,其中一个根是2,求mn的值.29. 关于r的一元二次方程x2−4x−k−3=0的两个实数根是x1,x2(1)已知k=2(2)若x=3x试求上的值30. 已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0的两实数根分别为x1,x2.(1)求x1−x2的值;(2)若x12+x22=10,求m的值.31. 阅读材料:已知实数m,n满足m2−m−1=0,n2−n−1=0,求nm +mn的值.解:由题知m,n是方程x2−x−1=0的两个不相等的实数根,根据根与系数关系得m+n=1,mn=−1,所以nm +mn=m2+n2mn=(m+n)2−2mnmn=1+2−1=−3.根据上述材料解决以下问题:(1)一元二次方程5x2+10x−1=0的两个根为x1,x2,则x1+x2=_______,x1x2=_______;(2)类比探究:已知m,n满足7m2−7m−1=0,7n2−7n−1=0,求m2n+mn2的值;(3)思维拓展:已知p,q满足p2=9p−6,3q2=9q−2,求p2+9q2的值.32. 已知x1,x2是一元二次方程x2−2x−3=0的两个实数根,则x1+x2=________.33. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)=42.请你根据以上解法解答下题:已知x1,x2是方程x2−4x+2=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.34. 已知关于x的方程x2+x+a−1=0有一个根是1,求a的值及方程的另一个根.35. 设一元二次方程x2−6x+3=0的两根为x1和x2,求x2x1+x1x2的值.36. 若x1,x2是方程x2+2x−2007=0的两个根,试求下列各式的值:(1)x12+x22;(2)1x1+1x2;(3)(x1−5)(x2−5);(4)|x1−x2|.37. 先阅读,再回答问题:如果x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=−ba ,x1x2=ca,例如:若x1、x2是方程2x2−x−1=0的两个根,则x1+x2=−ba =−−12=12,x1x2=c a =−12=−12.若x1、x2是方程2x2+x−3=0的两个根.(1)求x1+x2,x1x2;(2)求x2x1+x1x2的值.38. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)= 42.请你根据以上解法解答下题:已知x1,x2是方程x2+x−1=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.(3)试求x22−x12的值.39. 已知关于x的一元二次方程ax2+bx+c=0的两根分别为x、x,有如下结论:3x2−x−2019=0的两根分别为x1、x2,求(x1+2)(x2+2)的值.40. 韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1+x2=−ba ,x1⋅x2=ca,阅读下面应用韦达定理的过程:若一元二次方程−2x2+4x+1=0的两根分别为x1、x2,求x12+x22的值.解:该一元二次方程的△=b2−4ac=42−4×(−2)×1=24>0由韦达定理可得,x1+x2=−ba =−4−2=2,x1⋅x2=ca=1−2=−12x12+x22=(x1+x2)2−2x1x2=22−2×(−1 2 )=5然后解答下列问题:(1)设一元二次方程2x2+3x−1=0的两根分别为x1,x2,不解方程,求x12+x22的值;(2)若关于x的一元二次方程(k−1)x2+(k2−1)x+(k−1)2=0的两根分别为α,β,且α2+β2=4,求k的值.参考答案与试题解析初中数学一元二次方程根与系数的关系练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 C【考点】根与系数的关系 【解析】由根与系数的关系求得p ,q 的值. 【解答】解:方程两根分别为x 1=3,x 2=1,则x 1+x 2=−p =3+1=4,x 1x 2=q =3 ∴ p =−4,q =3,∴ 原方程为x 2−4x +3=0. 故选C . 2. 【答案】 C【考点】根与系数的关系 【解析】根据“一元二次方程x 2−2x +b =0的两根分别为x 1和x 2”,结合根与系数的关系,即可得到答案. 【解答】解:根据题意得: x 1+x 2=−−21=2.故选C . 3.【答案】 A【考点】根与系数的关系 【解析】首先利用韦达定理计算,再代入求值即可. 【解答】解:由题可知, x 1+x 2=72,x 1x 2=52, 所以x 1+x 2−x 1x 2=72−52=1. 故选A .【答案】C【考点】根与系数的关系【解析】设出两根,利用根已悉数的关系,构造方程,解出即可. 【解答】解:设两根分别为x1,x2,由根与系数的关系可知,x1+x2=3k ,x1x2=1k=4,∴k=14,∴x1+x2=3k=3×4=12.故选C.5.【答案】D【考点】根与系数的关系【解析】利用判别式对A进行判断;根据根与系数的关系对B、C、D进行判断.【解答】解:A、△=(−4)2−4×2×3<0,方程没有实数解,所以A选项错误;B、两个实数根的和等于1,所以B选项错误;C、两个实数根的和等于−2,所以C选项错误;D、两个实数根的和等于2,所以D选项正确.故选D.6.【答案】C【考点】根与系数的关系【解析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=−4.则c=1×(−4)=−4,则原方程为x2−3x−4=0,整理,得(x+1)(x−4)=0,解得x1=−1,x2=4.7.【答案】D根与系数的关系【解析】先把方程化为一般式得x2−2x−1=0,根据根与系数的关系得到x1+x2=−2,x1⋅x2=−1,再把原式通分得x1+x2x1x2,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2−2x−1=0,根据题意得x1+x2=2,x1⋅x2=−1,∴原式=x1+x2x1x2=2−1=−2.故选D.8.【答案】A【考点】根与系数的关系【解析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2⋅=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.【答案】B【考点】根与系数的关系【解析】关于x的一元二次方程ax2+bx+c=0(a≠0)根与系数的关系为:x1+x2=−ba,x1⋅x2=ca.【解答】解:a=1,c=−1,所以x1⋅x2=ca =−11=−1.【答案】 D【考点】根与系数的关系 【解析】本题考查了根与系数的关系这一知识点. 【解答】解:根据根与系数的关系可得p =−(2+3)=−5,q =2×3=6. 因此x 2+5x +6=(x +2)(x +3). 故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】−32【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2、x 1x 2的值,然后将所求的代数式进行变形并代入计算即可. 【解答】解:∵ 方程x 1,x 2是方程5x 2−3x −2=0的两个实数根, ∴ x 1+x 2=35,x 1x 2=−25, ∴1x 1+1x 2=x 1+x 2x 1x 2=35−25=−32.故答案为:−32. 12.【答案】 −4【考点】根与系数的关系 【解析】设方程的两根分别为x 1,x 2,则由根与系数关系得,x 1+x 2=−3,由x 1=1可得x 2=−4. 【解答】解:根据题意,设方程的两根分别为x 1,x 2,令x 1=1, 则由根与系数关系得,x 1+x 2=−3, ∵ x 1=1, ∴ x 2=−4. 故答案为:−4. 13.【答案】 2【解析】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于−b,两根之积a .根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2,x1x2=2,将等于ca其代入所求式子中即可求出结论.【解答】解:根据题意得,x12−4x1=−2,x1x2=2,x12−4x1+2x1x2=−2+4=2.故答案为:2.14.【答案】1【考点】根与系数的关系【解析】据根与系数的关系α+β=−1,αβ=−2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x−2=0的两个实数根,∴α+β=−1,αβ=−2,∴α+β−αβ=−1+2=1.故答案为:1.15.【答案】2020【考点】根与系数的关系【解析】由于m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,可知m,n是x2−x−3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=−3,又n2=n+3,利用它们可以化简2n2−mn+2m+2015=2(n+3)−mn+2m+2015=2n+6−mn+2m+2015=2(m+n)−mn+2021,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,所以m,n是x2−x−3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=−3,又n2=n+3,则2n2−mn+2m+2009=2(n+3)−mn+2m+2009=2n+6−mn+2m+2009=2(m+n)−mn+2015=2×1−(−3)+2015=2+3+2015=2020.故答案为:2020.16.【答案】2【考点】根与系数的关系【解析】根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2、x1x2=2,将其代入x12−4x1+2x1x2中即可求出结论.【解答】∵一元二次方程x2−4x+2=0的两根为x1、x2,∴x12−4x1=−2,x1x2=2,∴x12−4x1+2x1x2=−2+2×2=2.17.【答案】2016【考点】根与系数的关系【解析】此题暂无解析【解答】解:∵m,n是方程x2+3x−2019=0的两个根,∴m2+3m=2019,m+n=−3,∴m2+4m+n=m2+3m+(m+n)=2019−3=2016.故答案为:2016.18.【答案】34【考点】根与系数的关系【解析】根据根与系数的关系得到x1+x2=−3,x1⋅x2=−4,再变形1x1+1x2得到x1+x2x1x2,然后利用代入法计算即可.【解答】解:∵一元二次方程x2+3x−4=0的两根是x1,x2,∴x1+x2=−3,x1⋅x2=−4,∴1x1+1x2=x1+x2x1x2=−3−4=34.故答案为:34.19.【答案】x 2+4x +3=0 【考点】根与系数的关系 【解析】根据根与系数的关系:两根之和=−ba,两根之积=ca,首先写出两根之和,再写出两根之积,可直接得到方程. 【解答】解:∵ −1+(−3)=−4,(−1)×(−3)=3, ∴ 方程为:x 2+4x +3=0, 故答案为:x 2+4x +3=0. 20.【答案】 −4【考点】根与系数的关系 【解析】 此题暂无解析 【解答】 此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 【考点】根与系数的关系 【解析】 暂无 【解答】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 22. 【答案】解:(1)14x 2+(a −2)x +a 2=0,∵ △=(a −2)2−4×14×a 2≥0,∴ a ≤1,根据题意得x 1+x 2=−4(a −2),x 1x 2=4a 2, ∵ 0≤a ≤1,∴ y =−4(a −2)+a =−3a +8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.【考点】根与系数的关系【解析】(1)先把方程化为一般式得到14x2+(a−2)x+a2=0,再利用判别式得到a≤1,根据根与系数的关系得到y=−4(a−2)+a=−3a+8,然后计算当0≤a≤1时对应的y的范围;(2)当a<0时,y=−4(a−2)−a=−5a+8,然后利用求差法比较大小.【解答】解:(1)14x2+(a−2)x+a2=0,∵△=(a−2)2−4×14×a2≥0,∴a≤1,根据题意得x1+x2=−4(a−2),x1x2=4a2,∵0≤a≤1,∴y=−4(a−2)+a=−3a+8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.23.【答案】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.【考点】根与系数的关系【解析】利用根与系数的关系求得x1+x2=−6,x1⋅x2=3,然后将其代入整理后的所求的代数式求值.【解答】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.24.【答案】解:a+b=−21=−2,ab=−31=−3.【考点】根与系数的关系【解析】此题暂无解析【解答】解:a+b=−21=−2,ab=−31=−3.25.【答案】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.【考点】根与系数的关系【解析】根据根与系数的关系得到a+b=1,ab=−1,再利用完全平方公式变形得到ba +ab=b2+a2 ab =(a+b)2−2abab,然后利用整体代入的方法进行计算.【解答】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.26.【答案】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x1+1x2=x1+x2x1x2=3−1=−3.【考点】根与系数的关系【解析】无无【解答】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x 1+1x 2=x 1+x 2x 1x 2=3−1=−3.27.【答案】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 1x 12+1x 22 =x 12+x 22x 12x 22=20(−2)2=5.【考点】根与系数的关系 【解析】(1)将原式变形为(x 1+x 2)2−2x 1x 2,然后代入计算即可; (2)将原式变形为含有x 1+x 2和x 1x 2,然后代入计算即可. 【解答】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 112+122 =x 12+x 22x 12x 22=202=5. 28. 【答案】 4(2)∵ m2=3,∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.【考点】根与系数的关系【解析】此题暂无解析【解答】解:(1)在方程x2−8x+3=0中,a=4,b=3,∴a2−b=42−3=13>0,符合题意,∴ a=4是该方程的中点值.故答案为:4.(2)∵m=3,2∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.29.【答案】(1)−1;(2)k=−6.【考点】根与系数的关系【解析】(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2= 4,x1×x2=−5,代入即可求得代数式的值;(2)先求得x2=1,x1=3,再代入求得答案.【解答】解:(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2=4,x1×x2=−5,所以x1+x2+x1×x2=4−5=−1;(2)x1+x2=4,x1=3x2,即3x2+x2=4,解得:x2=1,所以x1=3,即:x1x2=−k−3=3,解得:k=−6.30.【答案】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【考点】根与系数的关系【解析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=−2,x1⋅x2=2m,再结合完全平方公式可得出x12+x22=(x1+x2)2−2x1⋅x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=−1符合题意,此题得解.【解答】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【答案】−2;−15(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .【考点】根与系数的关系【解析】(1)直接利用根与系数的关系求解;(2)把m、n可看作方程7x2−7x−1=0,利用根与系数的关系得到m+n=1,mn=−17,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;(3)把p、3q可看作方程x2−9x+6=0的两个根,利用根与系数的关系得到p+3q=9,p⋅(3q)=6,再利用配方法得到p2+9q2=(p+3q)2−6pq,然后利用整体的方法计算;【解答】解:(1)x1+x2=−105=−2,x1x2=−15.故答案为:−2;−15.(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .32.【答案】【考点】根与系数的关系【解析】本题考查一元二次方程根与系数的关系.关于一元二次方程ax2+bx+c=0(a≠0),当方程有两根据x1、x2,则x1+x2=−ba ,x1⋅x2=ca.据此求解即可.【解答】解:x1+x2=−ba =−−21=2.故答案为:2.33.【答案】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.【考点】根与系数的关系【解析】根据一元二次方程ax2+bx+c=0的根与系数关系即韦达定理可得x1+x2−ba=4,x1x2=ca=2,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.34.【答案】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.【考点】根与系数的关系【解析】将x=1代入方程x2+x+a−1=0可得a的值,再将a的值代回方程,解方程得出另一个根.【解答】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2=6,x 1x 2=3,再利用通分和完全平方公式把x 2x 1+x 1x 2变形为(x 1+x 2)2−2x 1x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.36.【答案】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.【考点】根与系数的关系 【解析】由一元二次方程根与系数的关系可得x 1+x 2=−2,x 1⋅x 2=−2007.(1)将x 12+x 22变形为(x 1+x 2)2−2x 1⋅x 2,再代入计算即可求得结果; (2)将1x 1+1x 2变形为x 1+x 2⋅,再代入计算即可求得结果;(3)将(x 1−5)(x 2−5)变形为x 1⋅x 2−5(x 1+x 2)+25,再代入计算即可求得结果; (4)将|x 1−x 2|变形为√(x 1+x 2)2−4x 1⋅x 2,再代入计算即可求得结果. 【解答】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.【考点】根与系数的关系 【解析】(1)直接利用根与系数的关系解答即可;(2)通分变形后,整体代入(1)中的数值得出答案即可. 【解答】 解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.38.【答案】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.【考点】根与系数的关系 【解析】(1)由根与系数的关系可得x 1+x 2=−1,x 1x 2=−1,将其代入到1x 1+1x 2=x 1+x 2x 1x 2即可得;(2)将x 1+x 2=−1,x 1x 2=−1代入到(x 1−x 2)2=(x 1+x 2)2−4x 1x 2即可得;(3)根据x 22−x 12=−(x 12−x 22),结合(2)中结果即可得.【解答】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.39. 【答案】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.【考点】根与系数的关系 【解析】根据一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673,再将(x 1+2)(x 2+2)变形为x 1⋅x 2+2(x 1+x 2)+4代入计算即可求解. 【解答】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.40.【答案】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0 ∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1. 【考点】根与系数的关系 【解析】(1)先根据根与系数的关系得到x 1+x 2=−32,x 1⋅x 2=−12,再利用完全平方公式变形得到x 12+x 22=(x 1+x 2)2−2x 1x 2,然后利用整体代入的方法计算即可;(2)根据一元二次方程(k −1)x 2+(k 2−1)x +(k −1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k 的表达式,再将α2+β2=4变形,将表达式代入变形后的等式,解方程即可.【解答】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1.。

2020-2021学年人教版九年级数学上:根与系数的关系(含答案解析)

2020-2021学年人教版九年级数学上:根与系数的关系(含答案解析)

第 1 页 共 16 页2020-2021学年人教版九年级数学上:根与系数的关系一.选择题(共30小题)1.关于x 的一元二次方程x 2+2x +k +1=0的两根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围是( ) A .k >﹣2B .k >2C .﹣2<k ≤0D .0≤k <22.若x 1、x 2是方程x 2﹣5x +6=0的两个解,则代数式(x 1+1)(x 2+1)的值为( ) A .8B .10C .12D .143.关于x 的一元二次方程x 2﹣5x +2p =0的一个根为1,则另一根为( ) A .﹣6B .2C .4D .14.设方程x 2﹣3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为( ) A .3B .−32C .32D .﹣25.关于x 的方程x 2+2(m ﹣1)x +m 2﹣m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .﹣1B .﹣4C .﹣4或1D .﹣1或46.关于x 的方程(x ﹣1)(x +2)=p 2(p 为常数)的根的情况,下列结论中正确的是( ) A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.下列关于一元二次方程x 2+2x =0的说法正确的是( ) A .该方程只有一个实数根x =2 B .该方程只有一个实数根x =﹣2C .该方程的实数根为x 1=0,x 2=2D .该方程的实数根为x 1=0,x 2=﹣28.一元二次方程3x 2﹣8x ﹣a =0有一个根是x =3,则a 的值及方程的另一个根是( ) A .a =3,x =1B .a =3,x =−13C .a =﹣3,x =−53 D .a =﹣1,x =﹣39.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则1m+1n=( ) A .3B .﹣3C .13D .−1310.若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .1。

人教版数学九年级上册学案21.2.4《一元二次方程的根与系数的关系》(含答案)

人教版数学九年级上册学案21.2.4《一元二次方程的根与系数的关系》(含答案)

21.2.4 一元二次方程的根与系数的关系(第一课时)导学探究:阅读教材,回答下列问题:1、回忆:一元二次方程ax2 + bx + c = 0(a≠0)的求根公式是_____________.由求根公式可知, 一元二次方程的根的大小由系数a、b、c决定。

2.(1)方程(x-x1)(x-x2)= 0 与方程x2-(x1+x2)x+x1x2=0是同一个方程吗?_____(答“是”或“否”)。

(2)方程(x-x1)(x-x2)= 0的两个根据是_________________.方程x2-(x1+x2)x+x1x2=0的两个根是_____________________(3)方程x2-(x1+x2)x+x1x2=0的二次三项式系数为______, 一次项系数p=______, 常数项q=_____,反之,方程x2+px +q =0 两根x1x2的和、积分别与系数的关系是x1+ x2=______, x1x2=_______.3、一元二次方程ax2 + bx + c = 0(a≠0)的两根为x1=__________,x2 =___________.(1) 计算x1+ x2和 x1x2的值。

(2)请你根据(1)的结果,试着用文字表述这一结论。

归纳梳理1、若一元二次方程ax2 + bx + c = 0(a≠0)的两根为x1,x2,它们与系数a、b、c的关系是x1+ x2=________, x1x2=__________.一元二次方程的根与系数的关系:如果一元二次方程有实数根,那么两根的和等于_______________,两根的积等于____________________.2、运用一元二次方程根与系数的关系的前提条件是方程有实数根,即△______0.典例探究1.不解方程求两个根之和与积【例1】不解方程,求方程3x2+2=1﹣4x两根的和与积.总结:在使用根与系数的关系时,应注意:不是一般式的要先化成一般式;2.已知一元二次方程的两根求系数【例2】关于x的方程x2﹣px+q=0的两个根是0和﹣3,求p和q的值.总结:对于含有字母系数的一元二次方程,已知两根的值求字母系数的值,通常根据一元二次方程根与系数的关系求解,并用根的判别式进行检验.此方法要比直接将根代入求系数方便快捷得多.练2.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.23.已知一元二次方程的一个根求另一个根【例3】已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为.总结:已知含字母系数的一元二次方程的一根求另一根,一般有两种方法:把已知根代入方程,求得字母的值,解一元二次方程求出另一根;(2)根据方程系数中的已知数,利用根与系数的关系,选用两根之和或两根之积,直接求另一根.4.根据一元二次方程的系数判断两根的正负【例4】方程2x2+3x﹣5=0的两根的符号()A.同号 B.异号 C.两根都为正 D.两根都为负总结:不解方程判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定;首先计算判别式,看是大于0还是等于0,如果是等于0,则两根相等,同号;练4.方程ax2+bx﹣c=0(a>0、b>0、c>0)的两个根的符号为()A.同号 B.异号 C.两根都为正 D.不能确定21.2.4 一元二次方程根与系数的关系(第二课时)导学探究1.一元二次方程的一般形式是_______________.2. 一元二次方程的求根公式是______________________.3. 判别式与一元二次方程根的情况:4. 一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2与系数a,b,c的关系是什么?典例探究1.已知一元二次方程两根的关系求参数或参数的范围总结:已知一元二次方程两根x1,x2的不等关系求原方程中的字母参数时,一般考虑韦达定理和根的判别式,尤其是根的判别式不要忘记,这是保证方程有根的基本条件.练1.已知x1,x2是关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0的两个实数根,且x1,x2满足x1•x2﹣x12﹣x22≥0,求k的取值范围.【例2】已知关于x的方程x2﹣2(m+1)x+m2﹣3=0(1)当m取何值时,方程有两个实数根?(2)设x1、x2是方程的两根,且(x1﹣x2)2﹣x1x2=26,求m的值.总结:一元二次方程ax2+bx+c=0(a≠0)根的情况与判别式△的关系如下:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.课堂小练一、选择题1.已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是( )A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1 2.若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为( )A.k≥0 B.k≥0且k≠2 C.k≥ D.k≥且k≠23.一元二次方程 x2﹣3x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.下列一元二次方程没有实数根的是( )A.x2+2x+1=0B.x2+x+2=0C.x2-1=0D.x2-2x-1=05.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是( )A.﹣7 B.7 C.3 D.﹣36.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.67.若x、x2是方程x2+3x﹣5=0的两个根,则x1•x2的值为()1A.﹣3 B.﹣5 C.3 D.58.设方程x2﹣5x﹣1=0的两个根是x和x2,则x1+x2﹣x1x2的值是()1A.﹣6B.6C.﹣4D.4二、填空题9.方程x2﹣(k+1)x+k+2=0有两个相等的实数根.则k= .10.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.11.如果方程kx2+2x+1=0有实数根,则实数k的取值范围是 .12.已知x和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2= ;x1•x2= .113.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x=﹣1,x2=2,则b+c的值1是.三、解答题14.若﹣2是方程x2﹣3x+k=0的一个根,求方程的另一个根和k的值.15.已知关于x的方程x2+x+n=0(1)若方程有两个不相等的实数根,求n 的取值范围(2)若方程的两个实数根分别为﹣2,m,求m,n的值.参考答案16.答案为:D17.答案为:D.18.D19.B20.答案为:A21.B22.答案为:B23.B24.答案是:7或﹣1.25.答案为:k.26.答案为:k≤1.27.答案为:﹣1;﹣2.28.答案为:﹣3.29.解:设方程的另一个根为x,2根据题意,得:,解得:,∴方程的另一个根位5,k的值为﹣10.30.解:(1)∵方程x2+x+n=0有两个不相等的实数根,∴△=12﹣4n>0,解得:n<0.25.(2)由题意,得:m+(﹣2)=﹣1,∴m=1.又∵﹣2m=n,∴n=﹣2.。

九年级数学上册《一元二次方程的根与系数的关系》测试题含答案

九年级数学上册《一元二次方程的根与系数的关系》测试题含答案

九年级数学上册《一元二次方程的根与系数的关系》测试题复习巩固1.下列方程中,两个实数根之和为2的一元二次方程是()A.x2+2x-3=0 B.x2-2x+3=0C.x2-2x-3=0 D.x2+2x+3=02.设一元二次方程x2-2x-4=0的两个实根为x1和x2,则下列结论正确的是() A.x1+x2=2 B.x1+x2=-4C.x1x2=-2 D.x1x2=43.已知x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a,b 的值分别是()A.a=-3,b=1 B.a=3,b=1C.3=2a-,b=-1 D.3=2a-,b=14.若一元二次方程x2+kx-3=0的一个根是x=1,则该方程的另一个根是() A.3 B.-1C.-3 D.-25.已知方程x2-5x+2=0的两个根分别为x1,x2,则x1+x2-x1x2的值为()A.-7 B.-3 C.7 D.36.(2013山东莱芜)已知m,n是方程x2+22x+1=0的两根,则代数式223m n mn++的值为()A.9 B.±3 C.3 D.57.已知方程x2-4x-7=0的根是x1和x2,则x1+x2=__________,x1x2=__________.8.若方程x2-2x+a=0的一个根是3,则该方程的另一个根是__________,a=__________.9.若x1,x2是一元二次方程x2-3x-2=0的两个实数根,则x21+3x1x2+x22的值为__________.10.已知方程x2+3x-1=0的两实数根为α,β,不解方程求下列各式的值.(1)α2+β2;(2)α3β+αβ3;(3)βααβ+.能力提升11.关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1,x2,且x12+x22=7,则(x1-x2)2的值是()A.1 B.12 C.13 D.2512.若关于x 的一元二次方程x 2+(m 2-9)x +m -1=0的两个实数根互为相反数,则m 的值是__________.13.设a ,b 是方程x 2+x -2 015=0的两个不相等的实数根,则a 2+2a +b 的值为__________.14.在解方程x 2+px +q =0时,小张看错了p ,解得方程的根为1与-3;小王看错了q ,解得方程的根为4与-2.这个方程正确的根应该是什么?15.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.16.阅读材料:已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q +的值. 解:由p 2-p -1=0,1-q -q 2=0,可知p ≠0,q ≠0.又因为pq ≠1,所以p ≠1q .所以1-q -q 2=0可变形为2111=0q q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.所以p 与1q 是方程x 2-x -1=0的两个不相等的实数根.故p +1q =1,即1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知2m 2-5m -1=0,2152=0n n +-,且m ≠n ,求11m n+的值.参考答案复习巩固1.C 选项B 中的方程无实数根.本题易误选为B.2.A3.D 由根与系数的关系知,x 1+x 2=-2a ,x 1x 2=b .因此-2a =3,b =1,即32a =-,b =1.故选D. 4.C 设方程的另一个根为x 1,由x 1·1=-3,得x 1=-3.5.D 由根与系数的关系,得x 1+x 2=5,x 1x 2=2.故x 1+x 2-x 1x 2=5-2=3. 6.C 根据一元二次方程的根与系数的关系,得m +n =22-,mn =1.故222232213m n mn m n mn ++=(+)+=(-)+=.7.4 -78.-1 -3 设方程的另一个根是x 1,则113=23=x x a +⎧⎨⎩,,解得x 1=-1,a =-3. 9.7 x 12+3x 1x 2+x 22=(x 1+x 2)2+x 1x 2=32+(-2)=7. 10.解:因为α,β是方程x 2+3x -1=0的两个实数根,所以α+β=-3,αβ=-1.(1)α2+β2=(α+β)2-2αβ=(-3)2-2×(-1)=11.(2)α3β+αβ3=αβ(α2+β2)=(-1)×11=-11.(3)2211111βααβαβαβ++===--. 能力提升11.C 由根与系数的关系,得x 1+x 2=m ,x 1x 2=2m -1,则(x 1-x 2)2=2212x x +-2x 1x 2=7-2(2m -1)=9-4m ;又因为(x1-x2)2=(x1+x2)2-4x1x2=m2-4(2m-1),所以9-4m=m2-8m+4,解得m1=5,m2=-1.当m=5时,Δ<0,故m=-1.此时(x1-x2)2=9-4×(-1)=13.12.-3由根与系数的关系,得-(m2-9)=0,解得m=±3.但当m=3时,原方程无实根,故m=-3.13.2 014因为a,b是方程x2+x-2 015=0的两个不相等的实数根,故由根与系数的关系可得a+b=-1①,由根的定义,得a2+a-2 015=0,即a2+a=2 015②.再由①+②得a2+2a+b=2 014.14.解:由题意,得1×(-3)=q,4+(-2)=-p.从而可得p=-2,q=-3.因此原方程为x2-2x-3=0,解得x1=3,x2=-1.故这个方程正确的根为3与-1.15.解:(1)依题意,得Δ≥0,即[-2(k-1)]2-4k2≥0,解得12 k≤.(2)依题意,得x1+x2=2(k-1),x1x2=k2.以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1x2-1,即2(k-1)=k2-1,解得k1=k2=1.因为12k≤,所以k1=k2=1不合题意,舍去.②x1+x2<0时,则有x1+x2=-(x1x2-1),即2(k-1)=-(k2-1).解得k1=1,k2=-3.因为12k≤,所以k=-3.综合①②可得k=-3.16.解:由2m 2-5m -1=0知m ≠0. 因为m ≠n ,所以11m n ≠. 所以21520m m +-=. 根据21520m m +-=与21520n n +-=的特征,可知1m 与1n 是方程x 2+5x -2=0的两个不相等的实数根. 所以根据根与系数的关系,得115m n+=-.。

人教版九年级上册数学一元二次方程的根与系数的关系同步训练(含答案)

人教版九年级上册数学一元二次方程的根与系数的关系同步训练(含答案)

人教版九年级上册数学21.2.4 一元二次方程的根与系数的关系同步训练一、单选题1.已知一元二次方程x 2-4x -2=0的两根分别为x 1,x 2,则1211+x x 的值为( ) A .2 B .-1 C .12- D .-2 2.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .3 B .1 C .-3 D .4 3.若关于x 的一元二次方程22(21)10k x k x +-+=的两个实数根互为倒数,则k =( )A .1B .-1C .±1 D.1-4.若 x 1,x 2 是一元二次方程 x 2﹣3x ﹣6=0 的两个根,则 x 1+x 2 的值是( ) A .3 B .﹣3 C .﹣6 D .6 5.关于x 的一元二次方程x 2+x -a =0的一个根是2,则另一个根是( ) A .-1 B .-2 C .-3 D .26.已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .1 7.关于x 的方程230x mx +=+的一个根为1,则方程的另一个根与m 的值分别为( )A .3x =,4m =-B .3x =,4m =C .3x =-,4m =-D .3x =-,4m =8.若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9-B .3-或9C .3或6-D .3-或6 二、填空题9.已知方程(x ﹣1)(x +2)=2(x +2)的根是x 1,x 2,则x 1+x 2的值是 _____. 10.关于x 的一元二次方程2x 2+4mx +m =0有两个不同的实数根x 1,x 2,且2212316x x +=,则m =__________. 11.已知1x 、2x 是一元二次方程2410x x --=的两实数根,则代数式22124x x +-=_____.12.方程2230x x +-=的两根为1x 、2x 则12x x ⋅的值为______. 13.一元二次方程x 2﹣mx +m =0的两个实数根为x 1、x 2,则代数式x 1+x 1x 2+x 2=________.(用含m 的代数式表示)14.关于x 的一元二次方程2310170x x --=的两个根分别为1x 和2x ,则1211x x +=_________.15.方程260x x +-=与2240x x -+=的所有根的和为______. 16.一元二次方程x 2﹣3x +1=0的两个实数根为α、β,则αβ﹣α﹣β的值为 __.三、解答题17.己知:关于x 的方程2380x mx +-=有一个根是-4,求另一个根及m 的值.18.已知关于x 的方程2(21)(1)0x m x m m -+++=.(1)求证:无论m 为何实数,方程总有两个不相等的实数根;(2)设方程的两根分别为12,x x ,且12,x x 分别是一个菱形的两条对角线长,已知菱形的面积为6,求m 的值.19.已知关于x 的一元二次方程22310x x a ++-=.(1)若1a =-,解这个方程;(2)若该方程有实数根,求a 的取值范围.20.已知关于x 的方程()222110x m x m -+++=.(1)若方程总有两个不相等的实数根,求m 的取值范围;(2)若两实数根1x ,2x 满足()()12118x x ++=,求m 的值.参考答案:1.D2.A3.B4.A5.C6.A7.A8.A9.110.1 8 -11.1412.-313.2m14.1017-15.-116.2-17.另一个根是23,m的值为10.18.(2)319.(1)11x=-21x=-(2)23 a≤20.(1)m>0(2)1-+答案第1页,共1页。

专题根与系数的关系含答案

专题根与系数的关系含答案

专题:一元二次方程根的判别式和根与系数的关系例1.已知关于x的方程mx2-(2m-1)x+m-2=0.(1)当m取何值时,方程有两个不相等的实数根;(2)若x1、x2为方程的两个不等实数根,且满足x12+x22-x1x2=2,求m的值.例2.已知关于x的方程x2-4mx+4m2-9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求?m的值.例3.已知关于x的方程mx2+(4-3m)x+2m-8=0(m>0).(1)求证:方程有两个不相等的实数根;m,且点B(m,n)(2)设方程的两个根分别为x1、x2(x1<x2),若n=x2-x1-12在x轴上,求m的值..例4.已知关于x的一元二次方程:x2-2(m+1)x+m2+5=0有两个不相等的实数根.(1)求m的取值范围;(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.例5.已知关于x的方程x2-(2k+1)x+4(k-12)=0.(1)求证:无论k取什么实数值,这个方程总有实数根;(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k 的值;若不能,请说明理由.(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.训练1.已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)已知方程有两个不相等的实数根α,β,满足1α+1α=1,求m的值.2.已知一元二次方程x2-2x+m=0(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1和x2,且x1+3x2=3,求m的值.(3)若方程的两个实数根为x1和x2,且x12-x22=0,求m的值.3.已知关于x的方程x2+(m-3)x-m(2m-3)=0(1)证明:无论m为何值方程都有两个实数根;(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.4.已知关于x的一元二次方程x2-6x-k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1、x2为方程的两个实数根,且2x1+x2=14,试求出方程的两个实数根和k的值.5.已知关于x的方程x2-(2k-3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1、x2满足|x1|+|x2|=2|x1x2|-3,求k的值.6.已知关于x的一元二次方程x2-(m-2)x+1m-3=02(1)求证:无论m取什么实数时,这个方程总有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且2x1+x2=m+1,求m的值.7.已知关于x的一元二次方程(a-1)x2-5x+4a-2=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个等腰三角形(底和腰不相等)的三边长都是这个方程的根,求这个三角形的周长.8.设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?专题:一元二次方程根的判别式和根与系数的关系例1.解:(1)∵方程有两个不相等的实数根,例2.∴△=b2-4ac=[-(2m-1)]2-4m(m-2)=4m+1>0,,∵二次项系数≠0,∴m≠0,例3.解得:m>-14例4.∴当m>-1且m≠0时,方程有两个不相等的实数根;4例5.(2)∵x1、x2为方程的两个不等实数根,例6. ∴x 1+x 2=2m−1m ,x 1x 2=m−2m ,例7. ∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=(2m−1m )2-3(m−2)m =2,例8. 解得:m 1=√2+1,m 2=-√2+1(舍去);∴m =√2+1.例9.例10. 解:(1)∵△=(-4m )2-4(4m 2-9)=36>0,例11. ∴此方程有两个不相等的实数根;例12. (2)∵x =4m±√362=2m ±3,例13. ∴x 1=2m -3,x 2=2m +3,例14. ∵2x 1=x 2+1,∴2(2m -3)=2m +3+1,例15. ∴m =5.例16.例17. 解:(1)∵△=(4-3m )2-4m (2m -8),例18. =m 2+8m +16=(m +4)2例19. 又∵m >0∴(m +4)2>0即△>0例20. ∴方程有两个不相等的实数根;例21. (2)∵方程的两个根分别为x 1、x 2(x 1<x 2),例22. ∴x 1+x 2=-4−3m m ,x 1?x 2=2m−8m , 例23. n =x 2-x 1-12m ,且点B (m ,n )在x 轴上,例24. ∴x 2-x 1-12m =√(x 1+x 2)2−4x 2x 1-12m =√(4−3m m )2−4×2m−8m -12m =0,例25. 解得:m =-2,m =4,例26. ∵m >0,∴m =4.例27. .解:(1)∵方程x 2-2(m +1)x +m 2+5=0有两个不相等的实数根, 例28. ∴△=[-2(m +1)]2-4(m 2+5)=8m -16>0,解得:m >2.例29. (2)∵原方程的两个实数根为x 1、x 2,例30. ∴x 1+x 2=2(m +1),x 1?x 2=m 2+5.例31. ∵m >2,例32. ∴x 1+x 2=2(m +1)>0,x 1?x 2=m 2+5>0,例33. ∴x 1>0、x 2>0.例34. ∵x 12+x 22=(x 1+x 2)2-2x 1?x 2=|x 1|+|x 2|+2x 1?x 2,例35. ∴4(m +1)2-2(m 2+5)=2(m +1)+2(m 2+5),即6m -18=0,例36. 解得:m =3.例37.例38. 证明:(1)∵△=(2k +1)2-16(k -12)=(2k -3)2≥0, 例39. ∴方程总有实根;例40. 解:(2)∵两实数根互为相反数,例41. ∴x 1+x 2=2k +1=0,解得k =-0.5;例42. (3)①当b =c 时,则△=0,例43. 即(2k -3)2=0,∴k =32, 例44. 方程可化为x 2-4x +4=0,∴x 1=x 2=2,而b =c =2,∴b +c =4=a 不适合题意舍去; 例45. ②当b =a =4,则42-4(2k +1)+4(k -12)=0, 例46. ∴k =52, 例47. 方程化为x 2-6x +8=0,解得x 1=4,x 2=2,例48. ∴c =2,C △ABC =10,例49. 当c =a =4时,同理得b =2,∴C △ABC =10,例50. 综上所述,△ABC 的周长为10.例51.训练1.(1)证明:∵方程mx 2-(m +2)x +2=0(m ≠0)是一元二次方程,∴△=(m +2)2-8m =m 2+4m +4-8m =m 2-4m +4=(m -2)2≥0,∴方程总有两个实数根;(2)解:∵方程有两个不相等的实数根α,β,∴由根与系数的关系可得α+β=m+2m ,αβ=2m , ∵1α+1β=1,∴m+2m 2m =m+22=1,解得m =0,∵m ≠0,∴m 无解.2.解:(1)∵方程x 2-2x +m =0有两个实数根,∴△=(-2)2-4m ≥0,解得m ≤1;(2)由两根关系可知,x 1+x 2=2,x 1?x 2=m ,解方程组{x 1+x 2=2x 1+3x 2=3, 解得{x 1=32x 2=12,∴m =x 1?x 2=32×12=34;(3)∵x 12-x 22=0,∴(x 1+x 2)(x 1-x 2)=0,∵x 1+x 2=2≠0,∴x 1-x 2=0,∴方程x 2-2x +m =0有两个相等的实数根,∴△=(-2)2-4m =0,解得m =1.3.(1)证明:∵关于x 的方程x 2+(m -3)x -m (2m -3)=0的判别式△=(m -3)2+4m (2m -3)=9(m -1)2≥0,∴无论m 为何值方程都有两个实数根;(2)解:设方程的两个实数根为x 1、x 2,则x 1+x 2=-(m -3),x 1×x 2=-m (2m -3),令x 12+x 22=26,得:(x 1+x 2)2-2x 1x 2=(m -3)2+2m (2m -3)=26,整理,得5m 2-12m -17=0,解这个方程得,m =175或m =-1, 所以存在正数m =175,使得方程的两个实数根的平方和等于26. 4.(1)证明:在方程x 2-6x -k 2=0中,△=(-6)2-4×1×(-k 2)=4k 2+36≥36, ∴方程有两个不相等的实数根.(2)解:∵x 1、x 2为方程的两个实数根,∴x 1+x 2=6①,x 1?x 2=-k 2,∵2x 1+x 2=14②,联立①②成方程组{x 1+x 2=62x 1+x 2=14, 解之得:{x 1=8x 2=−2, ∴x 1?x 2=-k 2=-16,。

人教版九年级数学上册21.2.4一元二次方程的根与系数的关系同步测试及答案-最佳新修版

人教版九年级数学上册21.2.4一元二次方程的根与系数的关系同步测试及答案-最佳新修版

一元二次方程的根与系数的关系1已知x 1,x 2是一元二次方程x 2-2x =0的两根,则x 1+x 2的值是( B )A .0B .2C .-2D .42.[2013·湘潭]一元二次方程x 2+x -2=0的解为x 1,x 2,则x 1·x 2=( D )A .1B .-1C .2D .-23.[2013·包头]已知方程x 2-2x -1=0,则此方程( C )A .无实数根B .两根之和为-2C .两根之积为-1D .有一根为-1+ 2 4.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( C ) A .2 B .3 C .4 D .85.已知方程x 2-5x +2=0的两个解分别为x 1,x 2,则x 1+x 2-x 1x 2的值为( D )A .-7B .-3C .7D .3【解析】 由根与系数的关系得x 1+x 2=5,x 1x 2=2,所以x 1+x 2-x 1x 2=5-2=3.6.[2012·攀枝花]已知一元二次方程x 2-3x -1=0的两个根分别是x 1,x 2,则x 12x 2+x 1x 22的值为( A )A .-3B .3C .-6D .6【解析】 ∵一元二次方程x 2-3x -1=0的两个根分别是x 1,x 2,∴x 1+x 2=3,x 1x 2=-1,∴x 12x 2+x 1x 22=x 1x 2(x 1+x 2)=-1×3=-3.7.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( B ) A .5 B .-5C .1D .-18.若x 1,x 2是方程x 2+x -1=0的两个根,则x 12+x 22=__3__.【解析】 由根与系数的关系得x 1+x 2=-1,x 1x 2=-1,所以x 12+x 22=(x 1+x 2)2-2x 1x 2=(-1)2-2×(-1)=3.9.已知m 和n 是方程2x 2-5x -3=0的两根,则1m +1n =__-53__. 【解析】 ∵m 和n 是方程2x 2-5x -3=0的两根,∴m +n =--52=52,mn =-32,∴1m +1n =m +n mn =52-32=-53. 10.已知x 1,x 2是方程x 2+6x +3=0的两实数根,试求下列代数式的值:(1)x 12+x 22;(2)x 2x 1+x 1x 2; (3)(x 1+1)(x 2+1).解:由根与系数的关系得x 1+x 2=-6,x 1x 2=3.(1)x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6)2-2×3=36-6=30;(2)x 2x 1+x 1x 2=x 22+x 12x 1x 2=303=10; (3)(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=3-6+1=-2.11.已知2-5是关于x 的一元二次方程x 2-4x +c =0的一个根,求方程的另一个根. 解:设方程的另一个根为x 1,由x 1+2-5=4,得x 1=2+ 5.12.已知关于x 的方程x 2-mx -3=0的两实数根为x 1,x 2,若x 1+x 2=2,求x 1,x 2的值. 解: ∵x 1+x 2=2,∴m =2.∴原方程为x 2-2x -3=0,即(x -3)(x +1)=0,解得x 1=3,x 2=-1或x 1=-1,x 2=3.13.关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,且x 12+x 22=7,则(x 1-x 2)2的值是( C )A .1B .12C .13D .25【解析】 由根与系数的关系知:x 1+x 2=m ,x 1x 2=2m -1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=m 2-2(2m -1)=m 2-4m +2,∴m 2-4m +2=7,∴m 2-4m -5=0,解得m =5或m =-1.当m =5时,原方程为x 2-5x +9=0,Δ=(-5)2-4×1×9=25-36=-11<0,此时方程无实根.当m =-1时,原方程为x 2+x -3=0,方程有实根,∴当m =-1时,x 1+x 2=-1,x 1x 2=-3,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-1)2-4×(-3)=1+12=13,故选C.14.设a ,b 是方程x 2+x -2 012=0的两个实数根,则a 2+2a +b 的值为( A )A .2 011B .2 012C .2 013D .2 014【解析】 ∵a 是方程x 2+x -2 012=0的根,∴a 2+a -2 012=0,∴a 2+a =2 012.又由根与系数的关系得a +b =-1,∴a 2+2a +b =a 2+a +(a +b )=2 012-1=2 011,故选A.15.已知m ,n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为( C )A .9B .4C .3D .516.已知关于x 的一元二次方程mx 2-4x +6=0的两根为x 1,x 2,且x 1+x 2=-2,则m =__-2__.【解析】 ∵x 1+x 2=--4m =4m ,∴-2=4m,∴m =-2. 17.设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=__4__.【解析】 因为α,β是一元二次方程x 2+3x -7=0的两个根,则α2+3α-7=0,α+β=-3,α2+4α+β=α2+3α+α+β=4.18.关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.解:(1)∵原方程有两个实数根,∴Δ=9-4(m -1)≥0,解得m ≤134. (2)由根与系数的关系,得x 1+x 2=-3,x 1x 2=m -1,∴2×(-3)+(m -1)+10=0,解得m =-3,符合题意.19.已知:关于x 的方程kx 2-(3k -1)x +2(k -1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且│x 1-x 2│=2,求k 的值.解:(1)证明:Δ=[-(3k -1)]2-4k ·2(k -1)=k 2+2k +1=(k +1)2≥0,所以无论k 为何实数,方程总有实数根;(2)由根与系数关系,得x 1+x 2=3k -1k ,x 1x 2=2(k -1)k, ∵│x 1-x 2│=2,∴(x 1-x 2)2=4,即(x 1+x 2)2-4x 1x 2=4,故(3k -1k )2-8(k -1)k=4,整理,得3k 2-2k -1=0. 解得k 1=1,k 2=-13. 经检验,k 1=1,k 2=-13都是原分式方程的解,1∴k1=1,k2=-3.。

2021-2022学年人教版九年级上册知识点强化训练:根与系数的关系 含答案

2021-2022学年人教版九年级上册知识点强化训练:根与系数的关系  含答案

人教版九年级上册知识点强化训练:根与系数的关系一.选择题(共8小题)1.方程2x2﹣x﹣1=0的两根之和是()A.﹣2B.﹣1C.D.2.下列一元二次方程中,两实数根之和为3的是()A.x2+3x﹣3=0B.2x2﹣3x﹣3=0C.x2﹣3x+3=0D.x2﹣3x ﹣3=03.已知x1,x2是x2﹣4x+1=0的两个根,则x1•x2是()A.﹣4B.4C.1D.﹣14.若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5B.﹣1C.5D.15.已知方程x2﹣3x+1=0的两个根分别是x1,x2,则x12x2+x1x22的值为()A.﹣6B.﹣3C.3D.66.若关于x的一元二次方程x2+mx+m2﹣3m+3=0的两根互为倒数,则m的值等于()A.1B.2C.1或2D.07.如果α、β是一元二次方程x2+3x﹣1=0的两根,则α2+2α﹣β的值是()A.3B.4C.5D.68.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.0二.填空题(共7小题)9.已知方程2x2﹣6x+3=0的两个根是x1,x2,则x1+x2=.10.已知方程2x2+4x﹣3=0的两根分别为x1、x2,则x1+x2=,x1x2=.11.设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=.12.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n =.14.若关于x的一元二次方程x2﹣4x+3=0的两实数根分别为x1、x2,则+的值为.15.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.三.解答题(共6小题)16.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.17.已知x1、x2是方程2x2﹣5x+1=0的两个实数根,求下列各式的值:(1)x1x22+x12x2;(2)x12+x22.18.关于x的方程x2+(2a﹣3)x+a2=0(1)有两个不等的实数根,求a的取值范围;(2)若x1、x2是方程的两根,且=1,求a.19.已知关于x的一元二次方程x2﹣(m﹣1)x﹣2(m+3)=0.(1)试证:无论m取任何实数,方程都有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x12+x22=16,求m的值.20.已知关于x的一元二次方程x2﹣2x﹣m2+1=0.(1)求证:该方程有两个实数根;(2)若该方程的两个实数根都为正数,求m的取值范围;(3)若该方程的两个实数根x1、x2满足x1﹣x2=2,求m的值.21.已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.参考答案一.选择题(共8小题)1.解:2x2﹣x﹣1=0x1+x2=﹣=,故选:C.2.解:A、∵a=1,b=3,c=﹣3,∴x1+x2=﹣=﹣3,不符合题意;B、∵a=2,b=﹣3,c=﹣3,∴x1+x2=﹣=,不符合题意;C、∵a=1,b=3,c=3,∴△=9﹣12=﹣3<0,原方程无解,不符合题意;D、∵a=1,b=﹣3,c=﹣3,△=9+12=21>0,∴x1+x2=﹣=3,符合题意.故选:D.3.解:∵x1,x2是x2﹣4x+1=0的两个根,∴x1•x2=1,故选:C.4.解:根据题意得x1+x2=3,x1x2=﹣2,所以x1+x2﹣x1•x2=3﹣(﹣2)=5.故选:C.5.解:由题意可知:x1+x2=3,x1x2=1,∴原式=x1x2(x1+x2)=1×3=3,故选:C.6.解:∵关于x的一元二次方程x2+mx+m2﹣3m+3=0的两根互为倒数,∴,解得:m=2.故选:B.7.解:∵α、β是一元二次方程x2+3x﹣1=0的两根∴α2+3α﹣1=0,α+β=﹣3∴α2+2α﹣β=α2+3α﹣α﹣β=α2+3α﹣(α+β)=1+3=4.故选:B.8.解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.二.填空题(共7小题)9.解:x1+x2=﹣=3.故答案为3.10.解:∵x1、x2是方程2x2+4x﹣3=0的两根,∴x1+x2=﹣=﹣2,x1x2==﹣.故答案为:﹣2;﹣.11.解:∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.故答案为:4.12.解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.13.解:∵m、n是方程x2﹣2x﹣5=0的两个根,∴m+n=2,mn=﹣5,m2﹣2m﹣5=0,∴m2=2m+5,∴m2+mn+2n=2m+5+mn+2n=﹣5+2×2+5=4.故答案为:4.14.解:∵方程x2﹣4x+3=0的两实数根分别为x1、x2,∴x1+x2=4,x1•x2=3,∴+==.故答案为:.15.解:当a=b时,原式=1+1=2;当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====﹣6.故答案为:2或﹣6.三.解答题(共6小题)16.解:(1)∵方程x2+3x+m﹣1=0的两个实数根,∴△=32﹣4(m﹣1)=13﹣4m≥0,解得:m≤.(2)∵方程x2+3x+m﹣1=0的两个实数根分别为x1、x2,∴x1+x2=﹣3,x1x2=m﹣1.∵2(x1+x2)+x1x2+10=0,即﹣6+(m﹣1)+10=0,∴m=﹣3.17.解:根据根与系数的关系得x1+x2=,x1x2=.(1)原式=x1x2(x1+x2)=×=;(2)原式=(x1+x2)2﹣2x1x2=()2﹣2×=.18.解:(1)∵有两个不等的实数根,∴△=(2a﹣3)2﹣4a2>0,整理得:9﹣12a>0,解得:a,即a的取值范围为:a,(2)根据题意得:x1+x2=3﹣2a,x1x2=a2,∵+=1,∴=1,解得:a1=1,a2=﹣3,经检验:a1=1,a2=﹣3时,a2≠0,∴原方程的解为:a1=1,a2=﹣3,又∵a,∴a=﹣3.19.(1)证明:a=1,b=﹣(m﹣1),c=﹣2(m+3).△=b2﹣4ac=[﹣(m﹣1)]2﹣4×1×[﹣2(m+3)]=m2+6m+25=(m+3)2+16.∵(m+3)2≥0,∴(m+3)2+16>0,即△>0,∴无论m取任何实数,方程都有两个不相等的实数根;(2)解:∵x1,x2为方程x2﹣(m﹣1)x﹣2(m+3)=0的两个实数根,∴x1+x2=m﹣1,x1•x2=﹣2(m+3),∴x12+x22=(x1+x2)2﹣2x1•x2=16,∴(m﹣1)2﹣2[﹣2(m+3)]=16,∴m2+2m﹣3=0,∴m1=﹣3,m2=1.20.(1)证明:∵△=b2﹣4ac=(﹣2)2﹣4(﹣m2+1)=4m2≥0,∴方程有两个实数根;(2)根据题意得x1+x2=2>0,x1x2=﹣m2+1>0,即m2﹣1<0,∴﹣1<m<1;(3)根据题意得x1+x2=2,x1x2=﹣m2+1,解方程组得,∴,﹣m2+1=0,解得m=±1.21.解:(1)△=(k﹣1)2﹣4(k﹣2)=(k﹣3)2,∵(k﹣3)2≥0,∴△≥0,∴此方程总有两个实数根.(2)由根与系数关系得x1+x2=1﹣k,x1x2=k﹣2,∵x12﹣3x1x2+x22=1,∴(x1+x2)2﹣5x1x2=1,∴(1﹣k)2﹣5(k﹣2)=1,解得k1=2,k2=5.由(1)得无论k取何值方程总有两个实数根,∴k的值为2或5.。

人教版九年级上 21.2.4一元二次方程根和系数的关系(含答案)

人教版九年级上 21.2.4一元二次方程根和系数的关系(含答案)

21.2.4一元二次方程根与系数的关系1.一元二次方程的根与系数的关系:如果方程()200ax bx c a ++=≠有两个实数根1x ,2x ,那么12x x +=a b -,12x x ⋅=ac 2.一元二次方程的根与系数的关系的重要变形公式(1)()2221212122x x x x x x +=+-; (2)()()221212124x x x x x x -=+-;(3)12121211x x x x x x ++=; (4)()212121221122x x x x x x x x x x +-+=一、单选题1.若方程3x 2-4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2=A .-4B .3C .34-D .34 2.如果关于x 的方程20x px q ++=的两根分别为13x =,21x =,那么p 、q 的值是( ). A .3p =,4q = B .4p =-,3q = C .4p =,3q =- D .3p =-,4q =-3.若关于x 的一元二次方程22(21)10k x k x -++=的两个实数根,.则k 的取值范围为( )A .14k ->B .14k ≥--1C .104k k -≠>且34D .104k k ≥-≠且 4.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1•x 2的值是( )A.3B.﹣3C.2D.﹣25.设x 1、x 2是一元二次方程x 2+x-3=0的两根,则x 13-4x 22+15等于( )A.8B.-4C.6D.0 6.已知关于x 的方程230x x a ++=有一个根为2-,则它的两根之积为( ) A .3 B .2 C .2- D .3-7.方程22m 1x mx 04--+=的大根与小根之差是 ( ) A .0 B .1 C .m D .m+1 8.一元二次方程2430x x +-=的两根为1x ,2x ,则12x x 的值是( ) A .4 B .4- C .3 D .3- 9.已知12x x 、是关于x 的一元二次方程220x ax b ++=的两个实数根,且123x x +=,121=x x ,则a b 、的值分别是( )A .-3,1B .3,1C .32-,-1D .32-,1 10.已知方程 x 2-2x -3=0 的两个实数根为12,x x ,则代数式1212x x x x +-的值为( ) A .-5B .5C .-1D .1二、填空题11.若x =x 的方程20x m -+=的一个根,则方程的另一个根是_________. 12.一元二次方程250x x a ++=的两根为m ,n ,若2mn =,则26m m n ++=______. 13.已知方程x 2+2x -2 = 0 ,则它的两根的倒数和为_________.14.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+n 2=__________.三、解答题15.已知关于x 的方程()2110mx m x +++=(m 为常数) (1)求证:不论m 为何值,该方程总有实数根;(2)若该方程有一个根是1m,求m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年人教版九年级上册知识点强化训练:根与系数的关系一.选择题(共8小题)
1.方程2x2﹣x﹣1=0的两根之和是()
A.﹣2B.﹣1C.D.
2.下列一元二次方程中,两实数根之和为3的是()
A.x2+3x﹣3=0B.2x2﹣3x﹣3=0C.x2﹣3x+3=0D.x2﹣3x﹣3=0 3.已知x1,x2是x2﹣4x+1=0的两个根,则x1•x2是()
A.﹣4B.4C.1D.﹣1
4.若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5B.﹣1C.5D.1
5.已知方程x2﹣3x+1=0的两个根分别是x1,x2,则x12x2+x1x22的值为()A.﹣6B.﹣3C.3D.6
6.若关于x的一元二次方程x2+mx+m2﹣3m+3=0的两根互为倒数,则m的值等于()A.1B.2C.1或2D.0
7.如果α、β是一元二次方程x2+3x﹣1=0的两根,则α2+2α﹣β的值是()A.3B.4C.5D.6
8.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()
A.B.C.D.0
二.填空题(共7小题)
9.已知方程2x2﹣6x+3=0的两个根是x1,x2,则x1+x2=.
10.已知方程2x2+4x﹣3=0的两根分别为x1、x2,则x1+x2=,x1x2=.11.设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=.
12.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=.
14.若关于x的一元二次方程x2﹣4x+3=0的两实数根分别为x1、x2,则+的值为.
15.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.
三.解答题(共6小题)
16.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1、x2.(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
17.已知x1、x2是方程2x2﹣5x+1=0的两个实数根,求下列各式的值:(1)x1x22+x12x2;
(2)x12+x22.
18.关于x的方程x2+(2a﹣3)x+a2=0
(1)有两个不等的实数根,求a的取值范围;
(2)若x1、x2是方程的两根,且=1,求a.
19.已知关于x的一元二次方程x2﹣(m﹣1)x﹣2(m+3)=0.(1)试证:无论m取任何实数,方程都有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x12+x22=16,求m的值.
20.已知关于x的一元二次方程x2﹣2x﹣m2+1=0.
(1)求证:该方程有两个实数根;
(2)若该方程的两个实数根都为正数,求m的取值范围;
(3)若该方程的两个实数根x1、x2满足x1﹣x2=2,求m的值.
21.已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.
(1)求证:方程总有两个实数根;
(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.
参考答案
一.选择题(共8小题)
1.解:2x2﹣x﹣1=0
x1+x2=﹣=,
故选:C.
2.解:A、∵a=1,b=3,c=﹣3,∴x1+x2=﹣=﹣3,不符合题意;
B、∵a=2,b=﹣3,c=﹣3,∴x1+x2=﹣=,不符合题意;
C、∵a=1,b=3,c=3,∴△=9﹣12=﹣3<0,原方程无解,不符合题意;
D、∵a=1,b=﹣3,c=﹣3,△=9+12=21>0,∴x1+x2=﹣=3,符合题意.
故选:D.
3.解:∵x1,x2是x2﹣4x+1=0的两个根,
∴x1•x2=1,
故选:C.
4.解:根据题意得x1+x2=3,x1x2=﹣2,
所以x1+x2﹣x1•x2=3﹣(﹣2)=5.
故选:C.
5.解:由题意可知:x1+x2=3,x1x2=1,
∴原式=x1x2(x1+x2)
=1×3
=3,
故选:C.
6.解:∵关于x的一元二次方程x2+mx+m2﹣3m+3=0的两根互为倒数,∴,
解得:m=2.
故选:B.
7.解:∵α、β是一元二次方程x2+3x﹣1=0的两根
∴α2+3α﹣1=0,α+β=﹣3
∴α2+2α﹣β=α2+3α﹣α﹣β=α2+3α﹣(α+β)=1+3=4.故选:B.
8.解:∵x1+x2=4,
∴x1+3x2=x1+x2+2x2=4+2x2=5,
∴x2=,
把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,
故选:A.
二.填空题(共7小题)
9.解:x1+x2=﹣=3.
故答案为3.
10.解:∵x1、x2是方程2x2+4x﹣3=0的两根,
∴x1+x2=﹣=﹣2,x1x2==﹣.
故答案为:﹣2;﹣.
11.解:∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.
∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,
∴m=4.
故答案为:4.
12.解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,
则原式=x12﹣4x1+2x1+2x2
=x12﹣4x1+2(x1+x2)
=2020+2×4
=2020+8
=2028,
故答案为:2028.
13.解:∵m、n是方程x2﹣2x﹣5=0的两个根,
∴m+n=2,mn=﹣5,m2﹣2m﹣5=0,
∴m2=2m+5,
∴m2+mn+2n
=2m+5+mn+2n
=﹣5+2×2+5
=4.
故答案为:4.
14.解:∵方程x2﹣4x+3=0的两实数根分别为x1、x2,
∴x1+x2=4,x1•x2=3,
∴+==.
故答案为:.
15.解:当a=b时,原式=1+1=2;
当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====﹣6.
故答案为:2或﹣6.
三.解答题(共6小题)
16.解:(1)∵方程x2+3x+m﹣1=0的两个实数根,
∴△=32﹣4(m﹣1)=13﹣4m≥0,
解得:m≤.
(2)∵方程x2+3x+m﹣1=0的两个实数根分别为x1、x2,
∴x1+x2=﹣3,x1x2=m﹣1.
∵2(x1+x2)+x1x2+10=0,即﹣6+(m﹣1)+10=0,
∴m=﹣3.
17.解:根据根与系数的关系得x1+x2=,x1x2=.
(1)原式=x1x2(x1+x2)=×=;
(2)原式=(x1+x2)2﹣2x1x2=()2﹣2×=.
18.解:(1)∵有两个不等的实数根,
∴△=(2a﹣3)2﹣4a2>0,
整理得:9﹣12a>0,
解得:a,
即a的取值范围为:a,
(2)根据题意得:
x1+x2=3﹣2a,
x1x2=a2,
∵+=1,
∴=1,
解得:a1=1,a2=﹣3,
经检验:a1=1,a2=﹣3时,
a2≠0,
∴原方程的解为:a1=1,a2=﹣3,
又∵a,
∴a=﹣3.
19.(1)证明:a=1,b=﹣(m﹣1),c=﹣2(m+3).
△=b2﹣4ac=[﹣(m﹣1)]2﹣4×1×[﹣2(m+3)]=m2+6m+25=(m+3)2+16.∵(m+3)2≥0,
∴(m+3)2+16>0,即△>0,
∴无论m取任何实数,方程都有两个不相等的实数根;
(2)解:∵x1,x2为方程x2﹣(m﹣1)x﹣2(m+3)=0的两个实数根,
∴x1+x2=m﹣1,x1•x2=﹣2(m+3),
∴x12+x22=(x1+x2)2﹣2x1•x2=16,
∴(m﹣1)2﹣2[﹣2(m+3)]=16,
∴m2+2m﹣3=0,
∴m1=﹣3,m2=1.
20.(1)证明:∵△=b2﹣4ac=(﹣2)2﹣4(﹣m2+1)
=4m2≥0,
∴方程有两个实数根;
(2)根据题意得x1+x2=2>0,x1x2=﹣m2+1>0,即m2﹣1<0,
∴﹣1<m<1;
(3)根据题意得x1+x2=2,x1x2=﹣m2+1,
解方程组得,
∴,﹣m2+1=0,解得m=±1.
21.解:(1)△=(k﹣1)2﹣4(k﹣2)=(k﹣3)2,∵(k﹣3)2≥0,
∴△≥0,
∴此方程总有两个实数根.
(2)由根与系数关系得x1+x2=1﹣k,x1x2=k﹣2,∵x12﹣3x1x2+x22=1,
∴(x1+x2)2﹣5x1x2=1,
∴(1﹣k)2﹣5(k﹣2)=1,
解得k1=2,k2=5.
由(1)得无论k取何值方程总有两个实数根,
∴k的值为2或5.。

相关文档
最新文档