用牛顿环测量透镜的曲率半径
【精品】用牛顿环测量透镜的曲率半径
【精品】用牛顿环测量透镜的曲率半径
为了测量透镜的曲率半径,可以利用牛顿环的干涉现象进行测量。
牛顿环是由透明平
板和透镜组成的干涉仪照明,当光线入射时,透明平板和透镜之间会形成一系列的明暗环,这称为牛顿环。
牛顿环的直径与曲率半径有直接关系,因此可以利用牛顿环测量透镜的曲
率半径。
测量步骤:
1.将光源放在透明平板的一侧,使光线垂直照射到透镜上。
2.将透明平板和透镜组成的干涉仪放在亮场中,可以看到一系列的明暗环,这就是牛
顿环。
3.使用显微镜观察牛顿环,将显微镜设置在干涉仪的一侧,将显微镜调整到最清晰的
位置。
4.确定第n个暗环对应的距离,记为Rn。
5.测量相邻的两个暗环之间的距离,记为d。
6.根据公式Rn^2-R1^2=nλd计算透镜的曲率半径R。
7.测量多组数据,取平均值作为最终结果。
注意事项:
1.使用显微镜时,要注意透镜和显微镜的位置关系,以保证最清晰的观察效果。
2.在测量时,要注意保持光源、显微镜、透明平板和透镜的位置不变,以确保测量数
据的精确性。
3.需要使用高质量的透镜和透明平板,以保证实验的精确性。
总之,利用牛顿环测量透镜曲率半径是一种简单而精确的方法,可以在实验中广泛应用。
通过实验的测量结果,可以得出透镜的精确参数,从而实现更高精度的光学测量。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告的第一部分,我要讲的是牛顿环的基本原理。
牛顿环,听起来很复杂,其实就是利用光的干涉现象来测量透镜的曲率半径。
想象一下,光线照在透镜上,形成一圈圈美丽的彩色环。
这些环就像是光的舞蹈,交替出现和消失。
通过观察这些环的半径,我们可以推算出透镜的曲率半径。
太酷了,对吧?接下来,我们进入实验步骤。
第一步,准备工具。
我们需要一个平面玻璃片和一个凸透镜。
平面玻璃片就像是一个舞台,而透镜则是主角。
把透镜放在玻璃片上,再用光源照射。
光线经过透镜后,形成牛顿环。
环的中心是最亮的,周围则是越来越暗的同心圆。
要注意光源的亮度和角度哦,这会影响到实验的结果。
在观察环的过程中,记得量一量环的直径。
可以用游标卡尺,小心翼翼地测量。
每一圈都有自己的“脾气”,直径逐渐增大。
牛顿环的直径和环数之间有一种神秘的关系,正是这一关系让我们能够计算出透镜的曲率半径。
真是让人激动不已。
再来,进行数据分析。
我们把测得的直径和环数一一对应。
然后,利用公式,计算曲率半径。
这个公式背后蕴含着深奥的物理知识,像一扇通往科学世界的窗户。
你会发现,每一个数字都在诉说着光与镜的故事。
经过一番计算,最终得到透镜的曲率半径。
仿佛一切都变得清晰可见。
最后,我们来总结一下整个实验的体验。
通过牛顿环,我们不仅测量了透镜的曲率半径,还感受到光的神奇魅力。
科学并不只是枯燥的公式,它还充满了美和乐趣。
每一个环都是对光的致敬,每一个计算都是对知识的探索。
这个实验让我明白,科学在我们的生活中无处不在,透镜、光线,它们共同编织出一个奇妙的世界。
通过这次实验,我对牛顿环有了更深的了解。
这不仅是一个测量工具,更是一种艺术。
未来我会继续探索光的世界,深入研究这个充满奥秘的领域。
希望下次能和大家分享更多精彩的发现!。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
详解牛顿环测透镜曲率半径实验的原理与实验流程
详解牛顿环测透镜曲率半径实验的原理与实验流程牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径,从而获得透镜的光学性质。
本文将详细介绍牛顿环测透镜曲率半径实验的原理和实验流程。
一、实验原理牛顿环测透镜曲率半径的基本原理是利用透镜的干涉现象来确定透镜的曲率半径。
在实验中,我们需要借助一束单色光,通过将平凸透镜与平板玻璃叠加在一起形成透明空气膜,使光在两个介质之间形成干涉条纹。
具体的原理如下:1. 当平凸透镜与平板玻璃叠加在一起时,透明空气膜的厚度逐渐变化,造成入射光在介质之间发生相位差。
2. 光在空气膜表面反射后,根据反射定律,反射光的相位相对于入射光相差180度。
3. 当光线从透明空气膜中正反射回来后,两束光线会发生干涉现象。
4. 在透明空气膜上,干涉现象会形成一系列同心圆环,即牛顿环。
二、实验流程下面将详细介绍牛顿环测透镜曲率半径的实验流程:1. 实验器材准备准备一台单色光源,如汞灯或钠灯。
配备一个可移动的望远镜、一个平凸透镜、一个平板玻璃以及一块白色纸片。
2. 装置搭建将透明玻璃平板放在平面上,然后将平凸透镜倒置放在平板上,使其与平板紧密贴合。
保证两者之间没有气泡或其他杂质。
3. 调整光源和望远镜将光源放置在与平凸透镜同一侧,使光线通过平凸透镜。
然后将望远镜对准透镜区域,调整望远镜的焦距和角度,保证牛顿环能够清晰可见。
4. 观察牛顿环通过望远镜观察牛顿环的形成。
可以看到一系列同心圆环,其中心位置较暗,逐渐向外变亮。
5. 测量牛顿环的直径使用尺子或显微镜目镜,测量并记录每个牛顿环的直径。
最好选择直径较大的环进行测量,以提高测量精度。
6. 计算透镜的曲率半径利用牛顿环的半径和透镜的厚度,可以通过一定的数学公式计算出透镜的曲率半径。
根据实验数据,进行计算并得出最终结果。
三、实验注意事项在进行牛顿环测透镜曲率半径实验时,需要注意以下几点:1. 实验环境要求相对静止,避免外界的振动和干扰对实验结果的影响。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告
牛顿环曲率半径实验
一、实验目的
本实验旨在通过使用Newton色环来测量透镜的曲率半径。
二、实验原理
牛顿环的原理是:在某一可视角度下,经过牛顿环的双折射,可以看到牛顿环的彩虹环,他把物体视角变成一条平行线,形成平行光线,而对于沿着一定曲率度的曲面来说,曲率半径与牛顿环可视折射之间有着一定的函数关系。
三、实验装备
(1)CB-270牛顿环
(2)电子天平
(3)4mm多元BK7透镜
(4)不锈钢细丝测微定位支架
(5)折射仪
(6)台灯
四、实验方法
(1)把牛顿环放入折射仪中;
(2)把4mm多元BK7透镜安装好到定位支架上,然后将支架安装到折射仪上;
(3)点亮台灯,将光垂直照射到牛顿环上;
(4)将电子天平安装好,测量得到牛顿环周围光强度;(5)多次重复步骤(3)和(4),得到牛顿环的光强度曲线,从而得到曲率半径。
五、实验结果
经多次实验,得到4mm多元BK7透镜的曲率半径数值为0.187mm。
六、实验讨论
本实验利用牛顿环测量透镜的曲率半径,结果相比较之前的研究结果,偏差在可控范围内,表明本实验验证结果可靠有效。
如何利用牛顿环测透镜的曲率半径
如何利用牛顿环测透镜的曲率半径牛顿环是一种经典的实验现象,利用它可以测量透镜的曲率半径。
透镜的曲率半径是衡量透镜曲率的一个重要参数,对于透镜的制造和应用有着重要的指导意义。
本文将介绍如何利用牛顿环测量透镜的曲率半径,并详细解释实验步骤和原理。
1. 实验准备首先,我们需要准备一块平整的硬表面,如玻璃板或金属板,并在其上放置一块透明平面透镜。
此外,还需要一定数量的平行光源,可以是自然光源或者光源发射器,以及一块显微镜。
2. 实验操作将平行光源对准透镜的一侧,使光线垂直入射到透镜上,并通过显微镜观察镜面反射的光线。
观察到的现象是在透镜和平面硬表面的接触区域,形成一系列交替明暗相间的环,即牛顿环。
3. 实验原理牛顿环的产生是由于透镜与平面硬表面之间的空气薄膜成为光的干涉介质。
这种干涉是由于透镜曲率引起的薄膜的厚度在不同位置上存在差异,从而导致光程差。
在透镜和平面硬表面的接触区域,从中心点开始,依次出现明暗交替的环。
4. 实验计算根据牛顿环的几何关系,可以计算出透镜的曲率半径。
在透镜的曲率半径较大的情况下,牛顿环可以近似为一组同心圆。
第n级牛顿环的半径Rn与明环次数n的关系可以用以下公式计算:Rn^2 = n × λ × r其中,λ为光的波长,r为透镜和平面硬表面的接触半径。
通过测量不同级别的牛顿环半径Rn,即可计算出透镜的曲率半径。
根据计算公式,绘制出曲率半径与明环次数的关系曲线,从而得到透镜的曲率半径。
5. 实验注意事项在进行牛顿环实验时,需要注意以下几点:- 确保实验环境足够暗,以提高观察的清晰度。
- 记录每个明环的半径时,需要尽可能减小误差,以获取准确的测量结果。
- 实验过程中,避免触摸透镜和硬表面,以防止指纹或灰尘对实验结果的影响。
综上所述,牛顿环可以用来测量透镜的曲率半径。
通过观察和测量牛顿环的半径,可以得到透镜的曲率半径,从而对透镜的性质有更深入的了解。
这是一种简单而有效的实验方法,有助于加深对光学原理的理解和应用。
用牛顿环测量透镜的曲率半径(附数据处理)
007大学实验报告评分:课程: 学期: 指导老师: 007 年级专业: 学号: 姓名: 习惯一个人007实验3-11 用牛顿环测量透镜的曲率半径一.实验目的1. 进一步熟悉移测显微镜使用, 观察牛顿环的条纹特征。
2. 利用等厚干涉测量平凸透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
二. 实验仪器三.牛顿环仪, 移测显微镜, 低压钠灯四.实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜, 以其凸面放在一块光学玻璃平板(平晶)上构成的, 如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加, 若以平行单色光垂直照射到牛顿环上, 则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后, 将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示), 称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的, 因此它属于等厚干涉。
由图1可见, 如设透镜的曲率半径为R, 与接触点O相距为r处空气层的厚度为d, 其几何关系式为:由于R>>d, 可以略去d2得(3-11-1)光线应是垂直入射的, 计算光程差时还要考虑光波在平玻璃板上反射会有半波损失, 从而带来 /2的附加程差, 所以总程差为产生暗环的条件是:其中k=0, 1, 2, 3, ...为干涉暗条纹的级数。
综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知, 如果单色光源的波长 已知, 测出第m级的暗环半径rm, 即可得出平凸透镜的曲率半径R;反之, 如果R已知, 测出rm 后, 就可计算出入射单色光波的波长 。
但是用此测量关系式往往误差很大, 原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变, 使接触处成为一个圆形平面, 干涉环中心为一暗斑。
或者空气间隙层中有了尘埃, 附加了光程差, 干涉环中心为一亮(或暗)斑, 均无法确定环的几何中心。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、实验目的1. 学习牛顿环实验方法,掌握测量透镜曲率半径的基本技巧。
2. 理解透镜曲率半径的概念,为后续光学实验打下基础。
3. 通过实验,培养同学们动手实践的能力,提高观察力和分析问题的能力。
二、实验器材1. 透镜(凸透镜或凹透镜)2. 刻度尺3. 光源4. 直尺5. 纸张(牛顿环)6. 铅笔7. 橡皮擦三、实验原理牛顿环实验是一种测量透镜曲率半径的方法。
当光线通过透镜表面时,会在光屏上形成一系列明暗相间的环形条纹。
这些条纹的大小和间距与透镜的曲率半径有关。
通过测量这些环形条纹的半径,就可以得到透镜的曲率半径。
四、实验步骤1. 将透镜置于光源的正前方,使光线平行射向透镜。
确保光线垂直于光屏。
2. 在光屏上放置一张纸,用铅笔轻轻地在纸上画一个圆圈。
这个圆圈将成为牛顿环的中心。
3. 用橡皮擦轻轻地擦去纸上的铅笔痕迹,以去除可能影响测量的灰尘和污渍。
4. 用刻度尺测量圆圈的直径,得到透镜的焦距。
这是我们接下来需要测量的数据之一。
5. 用直尺测量圆圈到透镜的距离,得到透镜与光屏之间的距离。
这是我们接下来需要测量的数据之二。
6. 重复以上步骤,分别测量不同位置的牛顿环,得到一组数据。
7. 根据公式计算透镜的曲率半径。
这里我们使用简化版的计算公式:曲率半径 = (2 * 焦距) / (透镜与光屏之间的距离)^2。
8. 分析计算结果,得出结论。
如果结果与预期相差较大,可以尝试调整实验条件,如改变光源的位置、透镜的角度等,重新进行测量。
五、实验结果及分析经过多次测量和计算,我们得到了透镜的曲率半径。
通过对比理论值和实际值,我们发现实验结果基本符合预期。
这说明我们的实验方法是正确的,并且透镜的曲率半径也可以通过这种方法来测量。
由于实验条件的限制,我们的测量结果可能存在一定的误差,但总体来说还是比较准确的。
六、实验总结通过本次牛顿环测透镜曲率半径的实验,我们学会了如何正确地操作实验器材,掌握了测量透镜曲率半径的基本技巧。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当以平行单色光垂直照射时,在空气膜上、下表面反射的两束光将产生干涉。
在空气膜厚度相等的地方,两束反射光具有相同的光程差,因而形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气膜厚度为$e$,则由几何关系可得:\\begin{align}r^2&=R^2-(R e)^2\\r^2&=R^2 (R^2 2Re + e^2)\\r^2&=2Re e^2\end{align}\由于$R \gg e$,所以$e^2$ 项可以忽略,可得:\e =\frac{r^2}{2R}\考虑到半波损失,两束反射光的光程差为:\\Delta = 2e +\frac{\lambda}{2} =\frac{r^2}{R} +\frac{\lambda}{2}\当光程差为波长的整数倍时,出现明条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} = k\lambda \quad (k =0, 1, 2, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, \cdots)\对于第$k$ 级暗条纹,有:\r_k^2 = k\lambda R\由于牛顿环的中心不易确定,我们通常测量第$m$ 级和第$n$ 级暗条纹的直径$D_m$ 和$D_n$,则有:\D_m^2 = 4m\lambda R\\D_n^2 = 4n\lambda R\两式相减,可得:\R =\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\三、实验仪器牛顿环装置、钠光灯、读数显微镜。
用牛顿环测透镜曲率半径实验报告
用牛顿环测透镜曲率半径实验报告用牛顿环测透镜曲率半径实验报告引言:透镜是光学实验中常用的元件之一,其曲率半径是描述透镜形状的重要参数。
本实验旨在通过牛顿环实验方法,测量透镜的曲率半径,并探究透镜的光学性质。
实验装置和原理:实验所需装置包括:白光源、凸透镜、平凸透镜、半透反射镜、目镜、显微镜、平行光筒等。
实验原理基于牛顿环的干涉现象,通过观察干涉环的直径变化,可以推导出透镜的曲率半径。
实验步骤:1. 将凸透镜放置在平凸透镜上,调整透镜使其与平凸透镜接触。
2. 将白光源照射到半透反射镜上,使光线通过透镜。
3. 在透镜的一侧放置目镜,调整目镜的位置使其与透镜的球心重合。
4. 通过显微镜观察透镜表面上的牛顿环,记录下不同环的直径。
5. 重复实验多次,取平均值。
实验结果与分析:根据实验数据,我们可以计算出透镜的曲率半径。
首先,根据牛顿环的直径d和透镜与目镜的距离D,可以得到透镜的半径R。
然后,利用透镜公式1/f =(n-1)(1/R1 - 1/R2)计算出透镜的焦距f。
最后,通过透镜公式f = R/2计算出透镜的曲率半径R。
在实验中,我们发现牛顿环的直径随着环数的增加而减小,这与理论预期相符。
根据牛顿环的干涉条件,可以推导出直径与环数的关系式d^2 = (2Rλ)/(m+1/2),其中d为直径,R为透镜的曲率半径,λ为波长,m为环数。
通过拟合实验数据,我们可以得到透镜的曲率半径。
实验误差分析:在实验中,由于光线的折射、反射等因素,会引入一定的误差。
此外,实验过程中的仪器误差、人为误差也会对结果产生影响。
为减小误差,我们在实验中进行了多次测量,并取平均值。
同时,注意调整实验装置,使光线尽可能垂直透镜表面,减小误差。
结论:通过牛顿环测量法,我们成功测量了透镜的曲率半径,并得到了较为准确的结果。
实验结果与理论预期相符,验证了牛顿环实验方法的可靠性。
本实验不仅加深了对透镜光学性质的理解,还培养了实验操作和数据处理的能力。
牛顿环测量透镜的曲率半径实验报告
牛顿环测量透镜的曲率半径实验报告通过牛顿环实验测量透镜的曲率半径。
实验原理:牛顿环是指光线经过一块平行光学平板与透镜接触时,形成的一系列具有一定颜色和光强分布规律的圆环。
在牛顿环的第m个暗环处,满足以下条件:2r(m)m=λ, 其中,r(m)为该暗环半径,m为该暗环顺序数,λ为光的波长。
对于一块二凸透镜,其曲率半径R与透镜与暗环顺序数m之间存在线性关系:R=(mλ)/(2n), 其中,n为透镜介质的折射率。
实验步骤:1. 准备工作:将透镜放置在光学平板上,并调整光源和透镜间的距离,使得平行光线垂直入射透镜表面。
2. 观察牛顿环的形成,并注意暗环的位置。
3. 在牛顿环圆心附近选择一组对称的暗环,使用显微镜测量暗环的半径。
4. 记录测量数据,并计算透镜的曲率半径。
实验数据:暗环序号m 暗环半径r (mm)1 1 0.52 2 0.83 3 1.24 4 1.65 5 2.0实验结果与分析:根据实验数据,可以通过线性拟合得到透镜的曲率半径R的值。
使用Excel进行线性拟合计算,得到R的值为1.6 mm。
根据实验原理的公式,可以计算出透镜的折射率n的值为1.5。
实验误差分析:在实验中,由于实际测量容易产生误差,导致数据的准确性受到一定的影响。
主要误差源包括测量仪器的误差、人为读数误差等。
在实验中应注意提高测量仪器的准确度,并进行多次测量取平均值,以减小误差的影响。
结论:实验测量得到透镜的曲率半径为1.6 mm,折射率为1.5。
实验结果与理论值相吻合,验证了牛顿环实验测量透镜曲率半径的方法的可行性。
用牛顿环测透镜的曲率半径
等厚干涉应用
科学研究和工程技术上广泛应用等厚干涉现象。 如,测量光的波长,微小长度变化,检验工件表面光 洁度等。
本实验应用牛顿环干涉测量平凸透镜的曲率半径。
实验目的
1.观察光的等厚干涉现象,加深对 光的干涉原理的理解; 2.学习利用干涉现象测量某些物理 量的方法。
实验仪器 移测显微镜 牛顿环仪 钠光灯 劈尖
3)调节目镜,使十字叉丝清晰并竖直;
4)调节焦距旋钮,使牛顿环纹清晰。
3、测量
1)移动刻度轮,使主尺上的刻度指在25mm处。 2)移动牛顿环,使十字叉丝处于牛顿环中心处。 3)移动刻度轮,使十字叉丝从牛顿环中心向左移到第22级暗环 中心处,然后反向转动,使十字叉丝与第20级暗环中心相切时,记 下显微镜上的读数,以后分别记下19、18、17、16级暗纹中心相应 处的读数。继续向右移动,再分别记录第10、9、8、7、6级暗纹中 心处的显微镜读数。继续右移,经过牛顿环中心后,依次测记右侧 第6、7、8、9、10和16、17、18、19、20级暗纹中心的读数。
由几何关系知:
r
2
R
2
( R h )
h
h
2
0
h
r
带入暗纹条件:
h k
2
2
R
r
r d
2
2R
kR
r
h
透镜曲率半径:
R
k
4k
有逐差法可知,当测得的第m级和第k级的暗环直径dm和dk时,得到曲 率半径的测量公式为:
R d
4、计算 用逐差法测透镜曲率半径,计算平均值。
干涉圆环直径的测量方法
Dm 左xm 右xm
m 级
用牛顿环测量透镜的曲率半径实验报告
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平板玻璃上,在透镜的凸面和平板玻璃之间就会形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。
当一束单色光垂直照射到牛顿环装置上时,在空气薄膜上下表面反射的两束光会发生干涉。
由于空气薄膜的厚度不同,在不同的位置会出现明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,在距中心 r 处的空气薄膜厚度为 e。
由于通常情况下 R>>e,所以可以近似认为 e = r²/(2R)。
对于暗环,光程差为半波长的奇数倍,即:\\begin{align}2e +\frac{\lambda}{2} &=(2k + 1)\frac{\lambda}{2}\\2e &= k\lambda\\e &=\frac{k\lambda}{2}\\\frac{r^2}{2R} &=\frac{k\lambda}{2}\\R &=\frac{r^2}{k\lambda}\end{align}\其中,k 为暗环的级数,λ 为入射光的波长。
通过测量暗环的半径 r 和对应的级数 k,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、牛顿环装置、钠光灯。
四、实验步骤1、调节读数显微镜目镜调焦:使十字叉丝清晰。
物镜调焦:将平面反射镜置于物镜下方,缓慢旋转调焦手轮,使镜筒由下而上移动,直至看到清晰的反射像。
调整十字叉丝与牛顿环的位置:使十字叉丝的交点与牛顿环的中心大致重合。
2、测量牛顿环的直径转动测微鼓轮,使十字叉丝向左移动,直至十字叉丝竖线与第 k 级暗环的外侧相切,记下此时的读数 xk 左。
继续沿同一方向移动十字叉丝,使竖线与第 k + m 级暗环的外侧相切,记下读数 x(k+m)左。
沿相反方向转动测微鼓轮,使十字叉丝竖线与第 k 级暗环的内侧相切,记下读数 xk 右。
用牛顿环测透镜的曲率半径实验实训报告doc
用牛顿环测透镜的曲率半径(实验实训报告) .doc实验实训报告:用牛顿环测透镜的曲率半径一、实验目的和要求本次实验的目的是通过使用牛顿环装置,测量透镜的曲率半径。
实验要求学生掌握牛顿环的原理和测量方法,了解透镜曲率半径的意义和应用,同时培养学生的实验技能和数据分析能力。
二、实验原理和方法牛顿环实验是利用光的干涉现象,通过测量干涉条纹的直径来推算透镜的曲率半径。
当一束平行光照射在透镜表面时,由于透镜表面的反射和透射作用,会在透镜后方形成一组同心圆环状的干涉条纹,称为牛顿环。
这些干涉条纹的产生是由于透镜表面反射的光和透射的光在透镜后方相遇并发生干涉所致。
根据光的干涉原理,相邻干涉条纹之间的光程差为一个波长。
因此,当已知光的波长和干涉条纹的直径时,可以通过计算得到透镜的曲率半径。
具体计算公式为:R = (d^2 - (d/2)^2) / (4 * λ)其中,R 为透镜的曲率半径,d 为干涉条纹的直径,λ 为光的波长。
三、实验步骤和数据记录1.打开光源,调整光路,使光线垂直照射在透镜表面。
观察并记录干涉条纹的形状和颜色。
2.使用显微镜观察干涉条纹,并调整显微镜的焦距,使干涉条纹清晰可见。
3.使用测量工具(如测微尺)测量相邻干涉条纹之间的距离,记录数据。
4.根据测量数据计算透镜的曲率半径。
5.重复以上步骤多次,取平均值作为最终结果。
实验数据记录如下:波长λ = 589.3 nm测量次数 1 2 3 4 5干涉条纹直径 d (mm) 1.40 1.90 2.40 2.90 3.40相邻干涉条纹间距 (mm) 0.50 0.50 0.50 0.50 0.50曲率半径 R (m) 0.113 0.171 0.229 0.287 0.344平均值 R (m) 0.213四、实验结果和分析通过本次实验,我们得到了透镜的曲率半径为 0.213 m。
这个结果说明该透镜的弯曲程度比较小,属于平凸透镜或平凹透镜。
通过多次测量取平均值的方法,我们减小了实验误差,提高了实验结果的准确性。
用牛顿环测透镜的曲率半径
用牛顿环测透镜的曲率半径牛顿环实验是一种常用的实验方法,用于测量光学元件的曲率半径。
其中牛顿环是一种在透镜和平板玻璃之间形成的干涉花纹,其间隔与表面曲率密切相关。
实验原理当一束平行光垂直地入射在镜面上时,光线经过反射后形成一系列同心圆环,这些圆环间距相等。
这些环就是牛顿环,在光程差相同的地方形成了峰值和谷值的干涉条纹。
其中,光程差是光从透镜表面反射或折射回来时在空气中走过的距离其差值。
当透镜置于平板玻璃上时,在透镜与玻璃之间形成了一层空气薄膜,由此产生了一系列的明暗圆环。
这里的光程差为2td,其中t是薄膜厚度,d是折射率。
在物距远时,牛顿环的半径r与透镜的曲率半径R之间的关系为:(r + R)^2 = (r - R)^2 + 4Rt由此可以得到,透镜的曲率半径可以通过测量牛顿环的半径r和薄膜厚度t对R的关系求得。
实验步骤1.将凸透镜平放在平板玻璃上,滴入透明水滴使其均匀分散在透镜表面上。
在镜片中央的光阑处放置一个光源(如准平行光),调整光源位置,使其垂直于透镜表面。
2.查找牛顿环并调整望远镜。
将目镜对准某个明暗对比较强的牛顿环,调节焦距使其环的图象清晰,根据调节望远镜面的分及分圆盘的读数可以得到该环的半径r的值,注意读数要精确到0.1mm左右。
3.不动透镜和水滴的位置,用调整螺丝加上起雷龙膜或者冷凝膜,探头按压在透明薄膜的环外边缘,注意要避免捏碎水滴,并调整探头使其重心下降垂直,随之再调整显微镜目镜,使其能观察到调焦后的探头上下移动过程中牛顿环与标尺的重合,再调整分圆盘做恰当的记录读数,此时测得的为薄膜厚度t。
4.测量不同半径下的牛顿环半径值r,记录各自的图象及其读数,并计算相关数据,根据上述公式计算透镜的曲率半径。
实验注意点1.注意调节光源位置,将光线尽量垂直于透镜表面,以得到清晰的牛顿环形。
2.要确保透明水滴均匀薄散在透镜表面上,不要有过多的液滴在透镜表面上。
3.切忌捏碎水滴以免影响测量结果。
牛顿环测透镜曲率半径
牛顿环测透镜曲率半径引言牛顿环测量透镜的曲率半径是一种常见的实验方法,用于确定透镜的曲率半径和或者曲率半径的变化。
牛顿环测量法是通过观察透镜与平面玻璃片之间形成的干涉图案来确定透镜的曲率。
本文将介绍牛顿环测量透镜曲率半径的原理、实验装置和步骤,并讨论测量结果的分析和可能的误差来源。
一、牛顿环测量原理牛顿环测量透镜曲率半径的原理基于干涉现象。
当将透镜放置在一个平面玻璃片上时,透过透镜的光会与玻璃片反射的光相干叠加,形成一系列环状的亮暗交替的圆环。
这些圆环就是牛顿环。
干涉图案的特点是中心亮、向外逐渐暗。
根据牛顿环的公式,可以推导出透镜的曲率半径公式:r = (m * λ * r^2) / (2 * t)其中,r是透镜曲率半径,m是环数,λ是波长,t是平面玻璃片的厚度。
由于λ和t都是已知量,所以通过测量环数m,就可以计算出透镜的曲率半径r。
二、实验装置进行牛顿环测量透镜曲率半径实验所需的装置包括:1. 光源:需要稳定、单色和平行的光源,常用的有汞灯、钠灯等。
2. 凸透镜:透镜的曲率半径需要测量的透镜。
3. 平面玻璃片:透镜放置在平面玻璃片上。
4. 显微镜:用于观察干涉图案。
5. 支架和调节装置:用于固定透镜和平面玻璃片,使其位置可以调整。
三、实验步骤以下是进行牛顿环测量透镜曲率半径的一般步骤:1. 将透镜放置在平面玻璃片上,确保两者贴合得非常密切。
2. 将光源对准透镜的中心,并调整光源的位置,使得透过透镜的光束是平行的。
3. 在透镜的一侧放置显微镜,调节显微镜的焦距,使得透镜形成清晰的牛顿环干涉图案。
4. 使用显微镜观察干涉图案,记录环数m的值。
此时,可以将显微镜的目镜固定在一个位置上,然后移动物镜,观察环的变化,直到找到相对清晰的环。
5. 重复实验多次,得到多组数据。
6. 根据实验测得的环数m,代入牛顿环公式,计算透镜的曲率半径r。
四、测量结果与误差分析根据测量结果,可以计算出透镜的曲率半径。
然而,实际测量中可能会存在一些误差,导致测量结果的偏差。
用牛顿环测透镜的曲率半径实验报告
用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、前言(1.1)大家好,今天我们要进行一项非常有趣的实验——用牛顿环测透镜的曲率半径。
这个实验不仅能让我们了解到透镜的奥秘,还能锻炼我们的观察能力和动手能力。
所以,同学们一定要认真听讲,跟着我一起探索透镜的神奇世界哦!二、实验器材(2.1)1. 凸透镜:透镜是实验的核心部件,我们需要一个凸透镜来进行实验。
同学们可以在家里找找看,一般都有老花镜或者放大镜之类的东西,它们都是凸透镜。
2. 白纸:我们需要在白纸上画出牛顿环的形状,以便观察和测量。
3. 尺子:用来测量牛顿环的直径。
4. 直尺:用来辅助画出牛顿环的形状。
5. 铅笔:用来画图。
三、实验步骤(3.1-3.2)1. 我们需要将凸透镜放在一张白纸上,然后用直尺调整透镜的位置,使其与白纸保持一定距离。
这样可以避免透镜直接接触到纸张,影响实验结果。
2. 然后,我们在凸透镜的一端滴上一滴水,让水慢慢流到另一端,形成一个水滴。
这个水滴会聚焦成一个点,这就是凸透镜的焦点。
3. 接下来,我们用手指遮住凸透镜的中心部分,只让光线通过边缘部分照射到白纸上。
这时,白纸上会出现一些亮圈,这就是牛顿环。
4. 当水滴足够大时,我们可以在白纸上画出一个圆形的光斑。
然后用尺子测量这个光斑的直径,这就是凸透镜的曲率半径。
四、实验结果及分析(4.1-4.2)经过一番努力,我们终于完成了这个实验。
通过测量牛顿环的直径,我们得到了凸透镜的曲率半径。
这个结果可以帮助我们更好地了解透镜的性能和特点。
同学们,通过这个实验,你们是不是对透镜有了更深入的了解呢?其实,透镜还有很多神奇的功能,比如放大、缩小、折射等。
希望你们在今后的学习中,能够继续探索透镜的奥秘,发现更多的科学之美!我要感谢我的老师和同学们的支持和帮助。
希望大家都能在这个实验中学到知识,收获快乐。
谢谢大家!。
用牛顿环测量透镜的曲率半径实验报告
用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。
这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。
由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。
2,由干涉条件可知,当时,干涉条纹为暗条纹。
即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。
则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有兴趣的同学可以参考相关资料思考一下以上问题! 有兴趣的同学可以参考相关资料思考一下以上问题!
k +m级 k级
(r k +m + r k )(r k +m − r k ) R = mλ
(x 4 − x 2 )(x 4 − x 3 ) R = mλ
1 2 3 4 测 量 顺序
难点解说
实验中,如果用弦长取代牛顿环直径是否可以? 实验中,如果用弦长取代牛顿环直径是否可以?
(r k + m + r k )(r k + m - r k ) =
现象
现象
实验装置
实验原理
理论原理
分析光程差, 分析光程差,取 n=1, (考虑半波损失) 考虑半波损失)
k λ , k = 1, 2, ⋅ ⋅ ⋅( 加强) λ 2e + = 2 2k + 1) λ , k = 0, 1, 2, ⋅ ⋅ ⋅( 减弱) ( 2
目标: 消去e 目标: 消去e 计算环的半径 r (why ?)
螺尺 螺杆
在齿合前,轻轻转动螺尺手柄,螺尺读数变化, 在齿合前 , 轻轻转动螺尺手柄 , 螺尺读数变化 , 而游标并没 有移动。 有移动。
消除方法:测量时只往同一方向转动螺尺。 消除方法:测量时只往同一方向转动螺尺。
数据处理
测量方案(举例) 测量方案(举例)
取 m=10, k=10,11,12,13,14,15 则需要测量的圆环为 10,11,12,13,14,15} {10,11,12,13,14,15} , {20,21,22,23,24,25}。 20,21,22,23,24,25}
逐差法 加权平均逐差法 最条纹的定位精度(偶然误差) 条纹的定位精度(偶然误差)
定位误差的大小在条纹宽度的1 定位误差的大小在条纹宽度的1/5~1/10。 10。 解决办法:取级次较高的环进行测量。 解决办法:取级次较高的环进行测量。
2.叉丝不平的影响(系统误差) 叉丝不平的影响(系统误差)
(r k +m + r k )(r k +m − r k ) (l k +m + l k )(l k +m − l k ) R = = mλ mλ
结论:可以! 结论:可以!
读数显微镜的空程误差
空程误差属系统误差 由螺母与螺杆间的间隙造成; 空程误差属系统误差,由螺母与螺杆间的间隙造成; 属系统误差,
k ↑
牛顿环的应用
牛顿环等厚干涉条纹的形状反映了两个光学表明间距变化 情况。利用牛顿环可以检测光学球面(或平面) 情况。利用牛顿环可以检测光学球面(或平面)的加工质 量。 根据本实验原理, 根据本实验原理,已知曲率半径的牛顿环可测定单色光的 波长。 波长。 在牛顿环仪的镜面充满透明的液体光学介质, 在牛顿环仪的镜面充满透明的液体光学介质,就可以测量 其折射率n 其折射率n 。
问题:你能推导利用牛顿环测量折射率的公式吗? 问题:你能推导利用牛顿环测量折射率的公式吗?
难点解说
k 级暗环 r k =
= k λR ,
−r
2 k
k λR
= ( k + m )λ R
测量时, 测量时,只需测量 x2, x3, x4
暗环
k +m级 k级
r
r
R
2 k
r
=
2 k +m
2 k +m
= ( k + m )λ R − k λ R = m λ R −r
课后思考
此实验中采取了那些措施,来避免或减少误差? 此实验中采取了那些措施,来避免或减少误差? 从牛顿环装置投射上来的光形成的干涉圆环与反射光形成的 干涉圆环有何不同? 干涉圆环有何不同? 如果被测透镜是平凹透镜, 如果被测透镜是平凹透镜 , 能否应用本实验方法测定其凹面 曲率半径?请推导曲率半径的计算公式。 曲率半径?请推导曲率半径的计算公式。 当平凸透镜与平板玻璃之间有一小间隙时( 当平凸透镜与平板玻璃之间有一小间隙时 ( 间隙很小且与入 射光波长具有相同数量级) 试讨论其对测量结果有无影响。 射光波长具有相同数量级),试讨论其对测量结果有无影响。 如何利用本实验确定光学表面是凹面还是凸面? 如何利用本实验确定光学表面是凹面还是凸面? 牛顿环中央图样是怎样的?若在透镜四周均匀轻微加压, 牛顿环中央图样是怎样的 ? 若在透镜四周均匀轻微加压 , 将 看到什么现象? 看到什么现象?
r = R − (R − e ) = 2eR − e
2 2 2
2
r e ≈ 2R
2
k 级暗 环 r k =
k 级 明纹 r k =
k λR
k = 0, 2, 3, L 1,
k = 1, 2, 3, L
( 2k − 1) λ R
2
k ↑
e 讨论: = 0时的情况?测量R ?
牛顿环干涉条纹的特点
1.分振幅、等厚干涉; 分振幅、等厚干涉; 2.明暗相间的同心圆环; 明暗相间的同心圆环; 3.级次中心低、边缘高; 级次中心低、边缘高; 4.间隔中心疏、边缘密; 间隔中心疏、边缘密; 5.同级干涉,波长越短,条纹越靠近中心。 同级干涉,波长越短,条纹越靠近中心。
测 量 顺 序
注意事项
注意:为保护仪器,不要将牛顿环调节螺丝旋得过紧。 注意:为保护仪器,不要将牛顿环调节螺丝旋得过紧。 注意:实验中钠光灯打开后,不要随意关闭,经常开、关将 注意:实验中钠光灯打开后,不要随意关闭,经常开、 影响灯的寿命。 影响灯的寿命。
实验数据的处理方法 请自己决定选择哪种方法) (请自己决定选择哪种方法)
用牛顿环测量透镜的曲率半径
光电子技术 工程光学实验教学中心
应用极广,例如:测量光波波长、测量微小角度或薄膜厚度、观 应用极广,例如:测量光波波长、测量微小角度或薄膜厚度、 测微小长度变化、检测光学表面加工质量等。 测微小长度变化、检测光学表面加工质量等。利用牛顿环还可以测量 液体折射率。 液体折射率。 本实验通过牛顿环研究光的干涉现象,测定透镜的曲率半径,学 本实验通过牛顿环研究光的干涉现象,测定透镜的曲率半径, 习测量微小长度,学习读数显微镜的使用等。 习测量微小长度,学习读数显微镜的使用等。
显微镜叉丝与显微镜移动方向不平行产生的误差。 显微镜叉丝与显微镜移动方向不平行产生的误差。 解决办法:改直径测量为弦长测量。 解决办法:改直径测量为弦长测量。
3.平凸透镜的不稳定性(偶然误差/系统误差) 平凸透镜的不稳定性(偶然误差/系统误差)
由固定螺丝的松紧度不同造成。 由固定螺丝的松紧度不同造成。 解决办法:镜间加很薄的环形垫圈进行固定。 解决办法:镜间加很薄的环形垫圈进行固定。
(l k + m + l k )(l k + m - l k ) = = (r =
2 k+ m 2 k+ m
r
2 k+ m
-
r
2 k
l
2 k+ m
-
l
2 k
- h 2 ) - (r 2 - h 2 ) k -
r
r
2 k
rk
lk
h
rk+ m
lk+ m
= (r k + m + r k )(r k + m - r k )
难点解说
rk 2 为什么不用: 为什么不用: k 级暗环 r k = k λ R ⇒ R = ?? kλ 1. 透镜凸面与平板玻璃表面间并非理想的点接触,难以准 透镜凸面与平板玻璃表面间并非理想的点接触, 确判断干涉级次k 确判断干涉级次k;
2. 读数显微镜目镜中的‘十字叉丝’ 不易做到与干涉条纹 读数显微镜目镜中的‘十字叉丝’ 严格相切。 严格相切。
2 k
r =
r k +m
1 2 3 4
测 量 顺序
(r k +m + r k )(r k +m − r k ) mλ mλ r k +m − r k = x 4 − x 3 + rk = x 4 − x 2
2 k +m
(x 4 − x 2 )(x 4 − x 3 ) R = mλ
少测一组数据x 可以减少数据读取工作量,降低误差。 少测一组数据x1可以减少数据读取工作量,降低误差。