腐蚀与防护-第十一章 高温腐蚀

合集下载

腐蚀与防护-第十一章 高温腐蚀

腐蚀与防护-第十一章 高温腐蚀

• 抛物线规律:
多数金属和合金的氧化动力学曲线为抛 物线。原因是生成致密的氧化膜,氧化速率 与膜厚成反比,反应受扩散控制
y kt C
n
(n 2)
n<2,氧化的扩散阻滞并非与膜厚的增长成 正比,如:应力、孔洞、晶界对扩散的影响 n>2,扩散阻滞作用比膜增厚所产生的阻滞 更严重,如:掺杂等
• 增强氧化物膜与基体金属表面的粘附力
(4)铁和耐热合金钢的抗氧化性
• 铁的高温氧化
200~300℃出现可见的氧化膜 570℃以下,氧化物为Fe3O4和Fe2O3,抗氧化性强 超过570℃时,在氧化膜内层生成FeO,结构疏散,
抗氧化性差
• 耐热钢的抗高温氧化性
加入Cr、Al、Si,提高抗氧化性;但过大则加工性恶化。 加入Mo、W、V、Nb、Ti等,提高热强性 合金元素的大量加入往往使钢的组织发生变化,奥氏体 钢耐热性最好
煤、油等各种燃料燃烧后产生的混合气氛中常 含有少量的硫及其它一些杂质,如低熔点的盐类 Na2SO4、K2SO4和低熔点的氧化物V2O5等,它们 沉积于被氧化的金属表面,形成熔盐,使原来金属 表面的保护性氧化膜破坏,从而造成对基体金属材 料加速腐蚀的现象。 这种高温腐蚀破坏过程不同于单纯的高温氧化, 故称为热腐蚀
金属氧化膜的结构和性质
(1)金属氧化物的类型
• 严格化学计量比组成的化合物
有晶格缺陷,占化合物总数较少,如:MgO、CaO、
ThO2等
• 非化学计量比的化合物
① 金属离子过剩型氧化物(n型半导体),电子导电 ② 金属离子不足型氧化物(p型半导体),空穴导电
(2)金属氧化物的组成和晶体结构
• 组成
• 立方规律:
在一定温度范围内,某些金属的氧化 服从立方规律

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护一、名词解释:1. 腐蚀:腐蚀是材料由于环境的作用而引起的破坏和变质。

2. 高温腐蚀:在高温条件下,金属与环境介质中的气相或凝聚相物质发生反应而遭受破坏的过程称为高温氧化,亦称高温腐蚀。

3. 极化:由于电极上有净电流通过,电极电位(ΔEt)显著地偏离了未通净电流时的起始电位(ΔE0)的变化现象。

4. 去极化:能消除或抑制原电池阳极或阴极极化过程的叫作去极化。

5. 非理想配比:是指金属与非金属原子数之比不是准确的符合按化学分子式的比例,但仍保持电中性。

6. 全面腐蚀: 全面腐蚀:指暴露于腐蚀环境中,在整个金属表面上进行的腐蚀。

7. 点腐蚀:(孔蚀)是一种腐蚀集中在金属(合金)表面数十微米范围内且向纵深发展的腐蚀形式,简称点蚀。

8. 应力腐蚀(SCC):是指金属材料在特定腐蚀介质和拉应力共同作用下发生的脆性断裂。

9. 腐蚀疲劳:是指材料或构件在交变应力与腐蚀环境的共同作用下产生的脆性断裂。

10. 干大气腐蚀:干大气腐蚀是在金属表面不存在液膜层时的腐蚀。

11. 潮大气腐蚀:指金属在相对湿度小于100%的大气中,表面存在看不见的薄的液膜层发生的腐蚀。

12. 湿大气腐蚀:是指金属在相对湿度大于100%的大气中,表面存在肉眼可见的水膜发生的腐蚀。

13. 缓蚀剂:是一种当它以适当的浓度和形式存在于环境(介质)地,可以防止或减缓腐蚀的化学物质或复合物质。

14. 钝化:电化学腐蚀的阳极过程在某些情况下会受到强烈的阻滞,使腐蚀速度急剧下降,这种现象叫金属的钝化。

15. 平衡电极电位(可逆电极电位)E:当金属电极上只有惟一的一种电极反应,并且该反应处于动态平衡时,金属的溶解速度等于金属离子的沉积速度时,电极所获得的不变电位值。

16. 非平衡电极电位(不可逆电极电位):金属电极上可能同时存在两个或两个以上不同物质参与的电化学反应,当动态平衡时,电极上不可能出现物质交换与电荷交换均达到平衡的情况,这种情况下的电极电位称为非平衡电极电位。

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

高温高压条件下的腐蚀机理与防护技术研究

高温高压条件下的腐蚀机理与防护技术研究

高温高压条件下的腐蚀机理与防护技术研究在工业生产过程中,涉及到腐蚀的问题是不可避免的。

特别是在高温高压条件下,腐蚀现象更加明显,因此相关领域对于高温高压腐蚀机理与防护技术的研究一直是热门问题之一。

一、高温高压腐蚀状况在高温高压的气体、液体环境中,金属材料很容易出现腐蚀现象。

这是因为在高温下,金属表面的化学反应速率会提高,易于发生氧化、硫化、氯化等化学反应。

此外,在高压下,化学物质之间的反应容易发生,加速金属材料的腐蚀,特别是在酸性、碱性状况下,腐蚀更加明显。

所以,一些要求环境温度高、压力大、强腐蚀性的生产过程中,特别是化工、锅炉、轨道交通领域必须在腐蚀的基础上进行材料选择和防护管理。

二、腐蚀机理我们需要了解腐蚀机理,才能更好地采取措施对高温高压环境下的金属材料进行防腐和防护。

腐蚀包括化学腐蚀、电化学腐蚀、冲蚀腐蚀几种形式,各种腐蚀在高温高压环境下发生的机理不同。

其中化学腐蚀是指在化学试剂作用下发生的腐蚀,化学腐蚀可以分为酸性腐蚀和碱性腐蚀两种类型。

而电化学腐蚀,主要是由金属材料在化学反应中发生电化学反应,形成负极和正极。

当电化学反应的速度大于金属的防护能力时,就会发生电化学腐蚀现象。

冲蚀腐蚀是由于流体中液流的冲击效应导致的金属表面剥蚀现象。

在高压下,冲击力会变大,这会使液流的速度较大,形成节点和环的不稳定流场现象,从而形成冲蚀腐蚀。

三、防腐技术在高温高压环境下,采用不同的金属材料进行防腐防护是一种常见的手段。

1. 选择正确的材料在高温高压腐蚀条件下,合金材料相对于纯金属具有较好的抗腐蚀性能。

合金材料中经常加入耐腐蚀的金属元素,如钨、钼、铬等,这些元素可以显著提高材料的抗腐蚀性能。

此外,还可以采用多层复合材料进行防护。

多种金属材料复合在一起,可以形成一种更为抗腐蚀性能的复合材料,具有更高的强度和韧性。

2. 防蚀涂层在高温高压腐蚀环境下,涂层是非常必要的一种防护手段。

涂层的作用是形成一层高污染度的保护层,以减缓化学物质的侵蚀速度。

高温腐蚀的防护方法

高温腐蚀的防护方法

高温腐蚀的防护方法高温腐蚀是指在高温环境下金属材料与环境气氛中的气体、液体或固体反应而产生的腐蚀现象。

高温腐蚀严重影响着金属材料的性能和使用寿命,因此需要采取一系列防护措施来减轻高温腐蚀的损害。

以下是一些常用的高温腐蚀防护方法。

1. 材料选择:选择耐高温腐蚀的材料是最基本的防护措施。

一些耐高温腐蚀的合金材料,如镍基合金、铬基合金、钛合金等,常用于高温环境下的工程装备。

2. 表面涂层:在金属表面进行涂层可以提供一层物理和化学屏障,阻挡高温氧化物进入金属内部,从而延缓高温腐蚀的发生。

常用的表面涂层有镀层、热喷涂、化学镀、电化学沉积等方法。

3. 稳定化处理:某些金属材料在高温下容易产生相变或氧化,从而导致高温腐蚀。

通过稳定化处理,可以提高材料的耐高温性能。

例如,钛合金可以进行沉淀强化处理,提高其耐高温氧化的能力。

4. 防氧化剂:在高温环境下,某些金属材料容易氧化,形成含氧化物的膜层,增加材料的耐腐蚀性能。

常用的防氧化剂有硅氧烷类、硼酸盐类、硅酸盐类等。

5. 清洁保护:高温环境中的杂质会加速腐蚀的发生。

保持材料表面的清洁和干燥对于减缓高温腐蚀至关重要。

可以采用吹扫、蒸汽清洗、酸洗等方式清除表面的杂质,并在材料表面形成一层保护膜。

6. 封闭防护:对于一些无法直接进行防护的部件,可以采用封闭的防护措施。

例如,在高温炉内部,可以采用陶瓷罩或金属罩将金属结构封闭起来,减少高温气氛对金属的侵蚀。

7. 防尘防油:在一些高温腐蚀环境下,杂质的存在会加速腐蚀的发生。

因此,及时清除油污、尘土等杂质,保持工作环境的清洁,是减缓高温腐蚀的有效手段。

8. 设备维护:定期对设备进行检查和维护,及时发现和修复材料表面的腐蚀点。

此外,注意设备的保养和保护,增加材料的使用寿命。

总结起来,高温腐蚀的防护方法包括材料选择、表面涂层、稳定化处理、防氧化剂、清洁保护、封闭防护、防尘防油和设备维护等。

根据具体的高温腐蚀环境和材料特性,可以综合运用多种方法来减轻腐蚀的损害,保障设备的正常运行。

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护名词解释:1、高温氧化:金属与环境介质中的气相或凝聚想物质发生化学反应而遭到破坏的过程称高温氧化。

2、缓蚀率:缓蚀剂的缓蚀效率,即缓蚀剂降低的腐蚀速度与原腐蚀速度的比值。

3、PB比:氧化物与金属的体积差对氧化物的保护性的影响,即氧化生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积的比值叫PB比。

4、平衡电极电位:当金属电极上只有唯一一种电极反应,并且该反应处于动态平衡时,金属的溶解速度等于金属离子的沉积速度,则此时电极获得的不变的电位值,称为平衡电极电位。

5、去极化:凡是能消除或印制原电池阳极或阴极极化过程的均叫做去极化。

6、应力腐蚀:是指金属材料在特定腐蚀介质或拉应力共同作用下发生的脆性断裂。

7、自腐蚀电位:在一个电极表面同时进行两个不同的氧化还原过程,当平衡时仅仅是电荷平衡而无物质平衡的电极电位,即外电流为零时的电极电位,称作自腐蚀电位。

简答:1、高温氧化条件下,金属氧化膜具有保护作用的条件有哪些?(充分条件)必要条件:PBR值大于1充分条件:(1)膜要致密,连续无孔洞,晶体缺陷少。

(2)稳定性好,蒸气压低,熔点高。

(3)膜与基体的附着力强,不易脱落。

(4)生长内应力小。

(5)与金属基体具有相近的热膨胀系数。

(6)膜的自愈能力强。

2、简述提高合金抗氧化的可能途径有哪些?通常利用合金化来提高金属的抗氧化性。

方法有:(1)、减少基体氧化膜中晶格缺陷的浓度;(2)、生成具有保护性的稳定相;(3)、通过选择性氧化生成优异的保护膜。

3、流速对扩散控制下的腐蚀速度有什么影响?溶液流速增加使扩散层厚度减小,腐蚀速度增加。

对于活化体系,腐蚀速度随溶液流速增加而增加,但当流速增大到一定值后,由于氧供应充足,阴极由氧的扩散控制变成了活化控制,此时活化控制的腐蚀速度与介质的流速无关。

对于可钝化体系,在氧扩散控制的条件,体系未进入钝态前,腐蚀速度随流速增加而增加。

当速度达到或超过临界值时,即极限扩散电流密度已达到或超过临界钝化电流密度时,金属由活化态变为钝态,此时阳极的腐蚀由阳极扩散控制转变为阳极电阻极化控制,腐蚀速度为维钝电流密度,但当溶液流速继续增加时,腐蚀过程又转为氧扩散控制,腐蚀速度将迅速增加。

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度失和深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

高温腐蚀与防护

高温腐蚀与防护

高温腐蚀与防护高温腐蚀与防护引言:随着工业化进程的加速发展,高温腐蚀问题也日益突出。

高温环境下的腐蚀对于许多行业来说都是一个严重的问题,不仅会导致设备的损坏和寿命的缩短,还可能危及人员的安全。

因此,研究高温腐蚀问题以及防护措施变得尤为重要。

本文将就高温腐蚀的原因、分类和常见的防护方法进行探讨。

一、高温腐蚀的原因:高温腐蚀是指在高温条件下,金属或合金与工作环境中的化学物质发生反应,使金属发生化学变化,引起金属腐蚀。

高温腐蚀的主要原因有以下几点:1. 高温氧化:金属在高温条件下与氧气反应,形成金属氧化物,如金属氧化膜,可进一步加速金属的腐蚀速度。

2. 高温硫化:含硫化合物在高温条件下与金属反应,形成硫化物,如金属硫化膜,也是引起高温腐蚀的重要原因之一。

3. 高温盐腐蚀:金属与含有氯、氟和硝酸盐等营养盐的工作环境中发生反应,形成金属盐腐蚀产物。

4. 高温蒸汽腐蚀:金属与含有蒸汽或水的环境中发生反应,形成金属腐蚀产物。

二、高温腐蚀的分类:根据高温腐蚀的发生机理和类型,可以将高温腐蚀分为几种类型:1. 氧化腐蚀:主要发生在高温下与氧气接触的金属表面,形成金属氧化膜。

氧化腐蚀是高温腐蚀中最常见的一种类型。

2. 硫化腐蚀:主要发生在存在硫的环境中,形成金属硫化膜。

硫化腐蚀会导致金属表面的腐蚀速度加快。

3. 氯化腐蚀:主要发生在存在氯化物的环境中,形成金属盐腐蚀产物。

氯化腐蚀对金属的侵蚀能力非常强,容易引发严重的腐蚀问题。

4. 氢腐蚀:在高温下,金属与氢气发生反应,形成金属氢化物,从而引起氢腐蚀。

氢腐蚀对金属的强度、韧性和延展性都有很大的影响。

三、高温腐蚀的防护方法:为了保护金属在高温条件下免受腐蚀的影响,需要采取一系列的防护方法。

根据不同的腐蚀类型和工作环境,以下是几种常见的高温腐蚀防护方法:1.表面涂层:通过在金属表面涂上耐高温、抗腐蚀的涂层,来保护金属免受高温腐蚀的侵蚀。

常用的涂层材料有陶瓷涂层、金属涂层等。

《材料腐蚀与防护》实验报告

《材料腐蚀与防护》实验报告
本实验旨在评定材料的高温耐腐蚀性能,通过具体实验步骤和数据分析,探究金属铝粉在高温环境下的腐蚀情况。实验采用了高温炉、抛光机、电子天平等仪器,以及金属铝粉作为实验材料。实验原理主要基于化学腐蚀和电化学腐蚀机理,通过重量法和厚度法评价高温腐蚀性能。在实验过程中,首先清洗烘干陶瓷坩埚并称重,然后加入铝粉进行高温腐蚀。一定温度和时间后取出坩埚,冷却后称量质量变化,并计算腐蚀失重(增重)率。接蚀层厚度和显微结构。通过实验结果分析,可以深入了解材料在高温环境下的腐蚀机理,为材料防护提供理论依据。

材料腐蚀与防护-第十一章-无机非金属材料的腐蚀

材料腐蚀与防护-第十一章-无机非金属材料的腐蚀
无机非金属材料除石墨以外,其腐蚀不是由电化学 过程引起的,而是由于化学作用或物理作用所引起。
9.2 无机非金属材料的腐蚀
9.2.1 一般性机理特性
影响无机非金属材料耐蚀性的因素
1)材料的化学成分和矿物组成
* 硅酸盐材料成分中以酸性氧化物Si02为主,耐酸而不耐碱。 当Si02(尤其是无定型Si02)与碱液接触时发生如下反 应而受到腐蚀:
第十一章 无机非金属材料的腐蚀
9.1 概述
1)定义:无机非金属材料-----是以某些元素的氧 化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸 盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。除有 机高分子材料和金属材料以外的固体材料。
无机非金属材料是20世纪40,随着现代科学技术的发 展从传统的硅酸盐材料演变而来的。无机非金属材料是 与有机高分子材料和金属材料并列的三大材料之一。
3)腐蚀介质
* 硅酸盐材料的腐蚀速度与酸的性质无关(除氢氛酸和高 温磷酸外), 而与酸的浓度有关。
* 酸的电离度越大, 对材料的破坏作用也越大。
* 酸的温度升高, 离解度增大, 其破坏作用也就增强。
* 酸的粘度会影响它们通过孔隙向材料内部扩散的速度, 其腐蚀作用也不同。
9.2.2 典型材料的耐蚀性
* 化学反应包括: a) 水解; b) 在酸、碱、盐水溶液中的腐蚀; c) 玻璃的风化;
除以上普遍性的腐蚀外, d) 由于相分离所导致的选择性腐蚀。
水解与腐蚀
* 含有碱金属或碱土金属离子R(Na+、Ca2+等)的硅酸盐玻璃 与水或酸性溶液接触时,不是“溶解”,而是发生了“水 解”,这时,所要破坏的是Si-O-R,而不是Si-O-Si。 这种反应起源: H+与玻璃中网络外阳离子(主要是碱 金属离子)的离子交换:

《材料腐蚀与防护》课程笔记

《材料腐蚀与防护》课程笔记

《材料腐蚀与防护》课程笔记第一章绪论1.1 材料腐蚀学科特点材料腐蚀学科是研究材料在环境作用下性能退化的一门科学,它具有以下特点:- 多学科交叉:腐蚀现象涉及化学反应、电化学过程、材料科学、物理学、生物学等多个领域,因此材料腐蚀学科是一门典型的交叉学科。

- 实践性强:腐蚀问题无处不在,从日常生活到工业生产,都存在着材料腐蚀的问题,这要求腐蚀学科的研究具有很强的实践性和应用性。

- 复杂性:腐蚀过程往往受多种因素的影响,如环境条件、材料性质、应力状态等,这些因素的相互作用使得腐蚀问题非常复杂。

- 经济影响大:材料腐蚀会导致设备损坏、结构失效,从而造成巨大的经济损失和安全风险。

1.2 材料腐蚀学科的发展材料腐蚀学科的发展可以分为以下几个阶段:- 古代认知阶段:在古代,人们就已经意识到金属会随着时间的推移而腐蚀,但由于科学技术的限制,只能采取一些简单的防护措施,如涂油、包裹等。

- 近代科学阶段:19世纪末到20世纪初,随着化学和物理学的发展,科学家们开始系统地研究腐蚀现象,提出了电化学腐蚀理论。

- 现代技术阶段:20世纪中叶,随着电子技术、材料科学和电化学技术的进步,腐蚀学科得到了快速发展,出现了许多新的腐蚀防护技术和方法。

- 当代综合管理阶段:21世纪初,腐蚀学科进入了综合管理阶段,强调腐蚀控制的系统性和科学性,发展了腐蚀监测、风险评估和管理信息系统。

1.3 腐蚀的定义腐蚀是材料在环境介质的化学、电化学或物理作用下,其表面或内部发生变质,从而导致材料性能下降、结构破坏的过程。

这个过程通常伴随着能量的变化。

1.4 腐蚀的分类腐蚀可以根据不同的标准进行分类:- 按照腐蚀机理分类:化学腐蚀、电化学腐蚀、物理腐蚀。

- 按照腐蚀环境分类:大气腐蚀、水腐蚀、土壤腐蚀、高温腐蚀等。

- 按照腐蚀形态分类:均匀腐蚀、局部腐蚀(如点蚀、缝隙腐蚀、晶间腐蚀等)、应力腐蚀开裂、腐蚀疲劳等。

1.5 腐蚀速度表示方法腐蚀速度是衡量材料腐蚀程度的重要参数,常用的表示方法有:- 质量损失法:通过测量材料在一定时间内的质量损失来计算腐蚀速度,单位通常是毫克/平方厘米·小时(mg/cm²·h)。

【金属腐蚀与防护】高温腐蚀

【金属腐蚀与防护】高温腐蚀

ΔG0-T 图使用举例
例:在1600℃时,NiO在多高的真空度下才能发 生热分解? 解:从ΔG0-T图中的O点开始, 通过在2Ni+O2=2NiO直线上 横坐标为1600℃ 的点作直线, 使它与pO2轴相交, 即可求的pO2~1.2×10-4atm。 当真空度高于1.2×10-4atm时, NiO才有可能热分解
ΔG0-T 图
• ΔG0-T 图: 判断高温腐蚀热力学倾向 • 1944年Ellingham 一些氧化物的ΔG0-T图 • 1948年Richardson和Jeffes 添加了pO2、pCO/pCO2、 pH2/pH2O三个辅助坐标 • 直接读出给定温度(T)下, 金属氧化反应的ΔG0值
一些氧化物的ΔG0-T
与缺陷相关氧化物的性质
氧化物中的扩散
• 金属的氧化过程 受所生成氧化膜中的扩散过程控制 • 氧化的化学反应、氧化膜中微观结 构的变化 通过固态扩散进行的 氧化物 内存在化学位梯度、电化学 位梯度、 各种缺陷 • 体扩散:通过点缺陷(晶格缺陷) 进行扩散 • 短路扩散:沿着线缺陷和面缺陷 (位错、晶界)进行
例:在980℃时,铜和铁在20%H2-80%H2O气体中 被腐蚀的可能性? 解:980℃处作垂线,分别与2Fe+O2=2FeO线和 4Cu+O2=2Cu2O相交。 从H点分别与相应的交点连线, 并延长交于pH2/pH2O轴。 对于铁,H2/H2O约为2 对于铜, H2/H2O约为10-5~10-4 所以铁在此混合气体中可能被氧化 ( H2O →H2),而混合气体中只要有 0.1% 的H2就足以使铜免于氧化
• CO2和H2O气体常见的氧化性介质 • 与氧一样都可使金属生成同样的金属氧化物: M + CO2 → MO + CO M+ H2O → MO+ H2 • CO或H2的生成 金属被氧化了 • pCO/pCO2和pH2/pH2O的值在一定程度上 决定了腐蚀气体的“氧化性”的强弱

腐蚀与防护技术工程作业指导书

腐蚀与防护技术工程作业指导书

腐蚀与防护技术工程作业指导书第1章腐蚀与防护技术概述 (3)1.1 腐蚀现象及其危害 (3)1.2 腐蚀防护的重要性 (4)1.3 腐蚀防护技术发展概况 (4)第2章腐蚀类型与腐蚀原理 (5)2.1 化学腐蚀 (5)2.2 电化学腐蚀 (5)2.3 物理腐蚀 (5)2.4 生物腐蚀 (6)第3章金属材料的腐蚀行为 (6)3.1 常见金属材料的腐蚀特点 (6)3.1.1 钢铁材料 (6)3.1.2 铜及铜合金 (6)3.1.3 铝及铝合金 (6)3.1.4 不锈钢 (7)3.2 影响金属材料腐蚀的因素 (7)3.2.1 内部因素 (7)3.2.2 外部因素 (7)3.3 腐蚀速率与腐蚀程度评价 (7)3.3.1 腐蚀速率 (7)3.3.2 腐蚀程度 (7)第4章防腐蚀涂料技术 (7)4.1 防腐蚀涂料概述 (7)4.2 涂料的选择与施工 (8)4.2.1 涂料的选择 (8)4.2.2 涂料的施工 (8)4.3 涂层的检测与评价 (8)4.3.1 涂层厚度检测:采用磁性测厚仪、涡流测厚仪等设备,检测涂层的厚度。

(8)4.3.2 涂层附着力检测:采用划格法、拉开法等,检测涂层的附着力。

(8)4.3.3 涂层硬度检测:采用铅笔硬度计、巴氏硬度计等,检测涂层的硬度。

(8)4.3.4 涂层耐腐蚀功能检测:通过盐雾试验、湿热试验等,评价涂层的耐腐蚀功能。

84.3.5 涂层外观检测:通过肉眼观察或使用光学仪器,检查涂层的外观质量。

(9)4.3.6 涂层其他功能检测:根据需要,对涂层的耐磨性、柔韧性等功能进行检测。

(9)第5章阴极保护技术 (9)5.1 阴极保护原理 (9)5.1.1 电解质溶液中的电化学反应 (9)5.1.2 阴极保护的作用 (9)5.2 牺牲阳极保护法 (9)5.2.1 牺牲阳极材料的选择 (9)5.2.2 牺牲阳极的安装与维护 (10)5.3 外加电流保护法 (10)5.3.1 外加电流保护系统组成 (10)5.3.2 外加电流保护法的应用 (10)5.4 阴极保护系统的设计与应用 (10)5.4.1 阴极保护系统设计原则 (10)5.4.2 阴极保护系统应用实例 (10)第6章防腐蚀涂层与衬里技术 (11)6.1 防腐蚀涂层概述 (11)6.2 橡胶衬里 (11)6.2.1 橡胶衬里种类及功能特点 (11)6.2.2 橡胶衬里施工工艺 (11)6.2.3 橡胶衬里质量控制要点 (11)6.3 塑料衬里 (11)6.3.1 塑料衬里种类及功能特点 (11)6.3.2 塑料衬里施工方法 (12)6.3.3 塑料衬里质量控制要点 (12)6.4 陶瓷衬里 (12)6.4.1 陶瓷衬里功能特点 (12)6.4.2 陶瓷衬里施工技术 (12)6.4.3 陶瓷衬里质量控制要点 (12)第7章电镀与化学镀技术 (12)7.1 电镀原理与工艺 (12)7.1.1 电镀基本原理 (12)7.1.2 电镀工艺流程 (12)7.2 常见电镀技术应用 (13)7.2.1 镀锌 (13)7.2.2 镀铬 (13)7.2.3 镀镍 (13)7.2.4 镀金 (13)7.3 化学镀原理与工艺 (13)7.3.1 化学镀基本原理 (13)7.3.2 化学镀工艺流程 (13)7.4 化学镀技术应用 (13)7.4.1 化学镀镍 (13)7.4.2 化学镀铜 (14)7.4.3 化学镀金 (14)7.4.4 化学镀合金 (14)第8章防腐蚀设计与施工 (14)8.1 防腐蚀设计原则与方法 (14)8.1.1 设计原则 (14)8.1.2 设计方法 (14)8.2 防腐蚀结构设计 (14)8.2.1 结构设计要求 (14)8.2.2 结构设计要点 (15)8.3 防腐蚀施工技术 (15)8.3.1 表面处理 (15)8.3.2 防腐蚀涂层施工 (15)8.3.3 阴极保护施工 (15)8.4 防腐蚀工程质量控制 (15)8.4.1 质量控制措施 (15)8.4.2 质量检测 (15)8.4.3 质量问题处理 (15)第9章腐蚀监测与检测技术 (16)9.1 腐蚀监测方法 (16)9.1.1 重量法 (16)9.1.2 电化学法 (16)9.1.3 超声波法 (16)9.1.4 涡流法 (16)9.2 腐蚀检测技术 (16)9.2.1 磁粉检测 (16)9.2.2 渗透检测 (16)9.2.3 涂层检测 (16)9.2.4 红外热成像检测 (16)9.3 在线监测与远程监控系统 (16)9.3.1 在线监测系统 (16)9.3.2 远程监控系统 (16)9.3.3 数据传输与处理 (16)9.4 腐蚀监测数据分析与应用 (16)9.4.1 数据分析方法 (17)9.4.2 数据应用 (17)9.4.3 案例分析 (17)第10章腐蚀防护案例分析 (17)10.1 工业领域的腐蚀防护案例 (17)10.1.1 案例一:化工设备腐蚀防护 (17)10.1.2 案例二:石油开采腐蚀防护 (17)10.2 基础设施领域的腐蚀防护案例 (17)10.2.1 案例一:桥梁腐蚀防护 (17)10.2.2 案例二:建筑钢结构腐蚀防护 (17)10.3 海洋工程领域的腐蚀防护案例 (17)10.3.1 案例一:船舶腐蚀防护 (17)10.3.2 案例二:海上风电场腐蚀防护 (17)10.4 腐蚀防护技术的发展趋势与展望 (18)第1章腐蚀与防护技术概述1.1 腐蚀现象及其危害腐蚀是材料在环境作用下发生的破坏过程,表现为材料功能下降、结构失效和外观损伤。

烟气脱硫装置的腐蚀与防护

烟气脱硫装置的腐蚀与防护

烟气脱硫装置的腐蚀与防护烟气脱硫装置是一种被广泛应用于煤电厂、炼油厂和钢铁厂等工业领域的污染物处理设备。

它主要用于去除烟气中的二氧化硫(SO2)等有害气体,以减少对环境的影响。

然而,在操作过程中,脱硫装置常常会受到腐蚀的影响,降低其效果和寿命。

因此,在烟气脱硫装置的设计与运行中,腐蚀与防护成为一个非常重要的问题。

一、腐蚀原因1.酸性腐蚀:烟气中的SO2会与大气中的氧气反应生成硫酸,形成酸性环境,加速金属材料的腐蚀。

2.高温腐蚀:烟气脱硫装置中的烟气温度一般较高,特别是在脱硫设备中,因为脱硫反应需要较高的温度,这会导致设备中的金属材料遭受高温腐蚀。

3.氯化物腐蚀:一些煤中含有氯化物,当气相中的SO2与气相中的氯化物反应后,会生成硫酰氯(SO2Cl2),进一步加速金属材料的腐蚀。

二、腐蚀防护方法1.材料选择:根据对不同腐蚀介质的选择,选择耐腐蚀性能好的材料。

例如,对于酸性腐蚀介质,应选用耐酸性能好的材料,如不锈钢、耐酸陶瓷等。

对于高温腐蚀介质,应选择温度耐受性好的材料,如高温合金、陶瓷等。

2.涂层防护:在金属表面涂覆具有耐腐蚀性能的涂层,以提高金属材料的耐腐蚀性能。

常用的涂层材料有耐酸性好的聚合物涂层、耐高温耐蚀涂层等。

3.防蚀层:在金属表面形成一层密封的防蚀层,以隔离金属材料与腐蚀介质的接触。

常用的防蚀层材料有氧化铝、氧化铬等。

4.电化学防护:通过施加外电流或者降低金属材料与腐蚀介质形成电偶对的电位差,以减缓腐蚀的速度。

常用的电化学防护方法有阳极保护、阴极保护等。

5.操作条件控制:通过调整操作条件,如烟气中的硫含量、氧含量等,以减少腐蚀产生的条件。

6.监测与维护:定期对脱硫设备进行检查与维护,及时发现腐蚀状况并采取相应的修复措施。

三、总结烟气脱硫装置的腐蚀与防护是一个复杂而重要的问题。

通过合理的材料选择、涂层防护、防蚀层、电化学防护、操作条件控制以及定期的监测与维护,可以减少腐蚀对设备的影响,延长设备的寿命,提高污染物去除效果。

高温金属腐蚀与防护措施

高温金属腐蚀与防护措施
和维护。
汽车工业领域
发动机部件
汽车发动机中的高温金属腐蚀会影响性能和寿命。防护措施包括使用耐腐蚀材料、涂层 保护和油品添加剂。
刹车系统
刹车系统中的高温金属腐蚀可能导致刹车性能下降和安全问题。防护措施包括使用耐腐 蚀材料、定期更换刹车片和进行定期维护。
CHAPTER 05
未来研究方向与展望
新材料开发
高温金属腐蚀与防护 措施
汇报人:可编辑 2024-01-06
目录
• 高温金属腐蚀概述 • 高温金属腐蚀类型 • 防护措施 • 实际应用案例 • 未来研究方向与展望
CHAPTER 01
高温金属腐蚀概述
定义与特点
定义
高温金属腐蚀是指金属在高温环境中 与周围介质发生化学或电化学反应, 导致金属性能劣化的现象。
特点
高温金属腐蚀通常发生在高温、高压 、高湿度的环境下,涉及复杂的化学 和电化学反应,腐蚀速率较快,对金 属材料的破坏性较大。
腐蚀机理
01
02
03
氧化腐蚀
金属与氧气反应生成氧化 物,如铁在高温下与氧气 反应生成铁氧化物。
硫化腐蚀
金属与硫化氢等硫化物反 应生成金属硫化物,如镍 在高温下与硫化氢反应生 成镍硫化物。
耐高温金属材料
研发能够在更高温度下保 持稳定性能的金属材料, 提高设备的使用寿命和安 全性。
轻质金属材料
利用新型合金和复合材料 技术,开发轻质、高强度 的金属材料,降低设备重 量和能耗。
抗腐蚀金属材料
通过合金化、表面处理等 手段,提高金属材料的抗 腐蚀性能,减少腐蚀对设 备性能的影响。
防护技术改进
渗碳腐蚀
金属与含碳气体反应生成 金属碳化物,如钛在高温 下与二氧化碳反应生成钛 碳化物。

炼油设备的腐蚀与防护

炼油设备的腐蚀与防护

炼油设备的腐蚀与防护引言石油炼制是将原油转化为可使用的燃料和化工产品的过程。

在炼油过程中,炼油设备扮演着至关重要的角色。

然而,由于炼油设备在高温、高压和多种化学物质的环境下运行,常常遭受腐蚀的侵袭。

本文将探讨炼油设备的腐蚀原因、常见的腐蚀类型以及相应的防护措施。

腐蚀原因炼油设备的腐蚀主要是由于以下原因引起的:1.化学腐蚀:炼油过程中使用的酸、碱等化学物质会对设备表面产生腐蚀性作用,加速设备的腐蚀。

2.电化学腐蚀:当炼油设备表面存在异质金属,形成电池反应,并产生电流,引发设备的电化学腐蚀。

3.高温腐蚀:在高温环境下,炼油设备中的金属会与酸、碱等气体或液体发生反应,导致设备的高温腐蚀。

4.磨蚀腐蚀:在炼油设备中,流体流动过程中会带来颗粒的冲刷和撞击,导致设备表面的磨蚀腐蚀。

腐蚀类型根据腐蚀过程的不同,炼油设备的腐蚀可分为以下几种类型:1.点蚀腐蚀:在设备表面形成许多小孔,造成局部点蚀。

2.板蚀腐蚀:在设备表面形成片状腐蚀,并逐渐扩大形成大面积的腐蚀。

3.斑蚀腐蚀:在设备表面形成不规则的大斑点蚀,可能引起设备的局部破裂。

4.高温氧化腐蚀:在高温下,设备表面的金属与氧气反应生成金属氧化物,导致设备表面的腐蚀。

防护措施为了减缓炼油设备的腐蚀速度,以下是一些常见的防护措施:1.材料选择:选择适用于炼油条件的高耐蚀性材料,如不锈钢、镍合金等。

在选材时要考虑设备的工作环境和所需的物理性能。

2.防蚀涂层:在设备表面涂覆防蚀涂层,如耐蚀漆、耐酸碱涂层等,以提供额外的保护层。

3.阳极保护:对于容易发生电化学腐蚀的设备,可以采用阳极保护技术,通过外加电流形成保护电场,减少设备的电化学腐蚀。

4.清洗与维护:定期对设备进行清洗和维护,及时清除设备表面的杂质和腐蚀产物,以延缓腐蚀的发生。

5.腐蚀监测:使用腐蚀监测技术对设备进行实时监测,及时发现腐蚀情况,采取相应的防护措施。

结论炼油设备的腐蚀是炼油过程中不可避免的问题,但通过合理的防护措施,可以减缓腐蚀速度,延长设备的使用寿命,提高炼油效率。

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

腐蚀与防护课后作业

腐蚀与防护课后作业

1.请你谈谈对金属高温腐蚀的理解。

(20分)①、定义:金属材料与环境介质在高温下发生不可逆转的化学反应而退化的过程称为高温腐蚀②、形成条件:高温腐蚀条件:高温和介质;高温与材料熔点和活度有关,不同材料高温是变化的;介质:不同介质有不同高温腐蚀类型。

金属材料在高温下与环境气氛中的氧、硫、碳、氮等元素发生化学或者电化学反应而导致的变质或者破坏。

高温腐蚀并无严格的温度界限,通常认为,当工作温度达到其熔点的0.3~0.4以上时,就可认为是高温腐蚀环境。

③、原理:氧化是高温腐蚀中最常见的一种形式;将金属高温氧化反应方程式写成2Me + O2 = 2MeO 当∆G < 0,金属发生氧化,转变为氧化物MeO。

∆G 的绝对值愈大,氧化反应的倾向愈大。

当∆G = 0,反应达到平衡。

当∆G > 0,金属不可能发生氧化;反应向逆方向进行,氧化物分解。

④、分类:高温气体介质腐蚀、高温液体介质腐蚀、高温固体介质腐蚀;⑤、影响因素:影响高温腐蚀的因素有:材料的合金成分以及制备工艺;温度---温度升高,金属氧化的速率显著增大;氧压----对于金属过剩型氧化物,速率与氧压无关,对于金属离子不足型氧化物,随着氧压增大,速率先增大后平缓;气体介质----燃烧产物对金属的高温氧化影响很大;含硫气体加速高温腐蚀;⑥、预防措施:选择适当的抗腐蚀材料;表面施加防护涂层;控制环境中的盐和其他杂质的含量;改进构件的结构设计;采取冷却技术等等;2.请简述碳钢材料在土壤环境下发生电化学腐蚀过程,并采取哪些有效措施进行防护。

(20分)①、金属在土壤中的腐蚀特点金属材料受到周围土壤介质的化学,电化学作用而产生的破坏,称为金属的土壤腐蚀。

土壤中的金属的腐蚀发生在含水的环境下,在性质上属电化学过程。

随由于着环境及土壤性质的改变,金属管道的土壤腐蚀越来越严重。

由于土壤具有多相性和不均匀性, 并且具有很多微孔可以渗透水及气体, 因此不同土壤具有不同的腐蚀性,又由于土壤具有相对的稳定性, 使得土壤腐蚀和其他电化学腐蚀过程不同。

高温腐蚀的防护方法

高温腐蚀的防护方法

高温腐蚀的防护方法高温腐蚀是指材料在高温下遭受化学反应导致的腐蚀现象。

在高温环境中,金属和非金属材料的表面容易被气体、液体或固体物质腐蚀,导致材料性能的恶化甚至失效。

因此,为了保护材料免受高温腐蚀的影响,需要采取一些特殊的防护方法。

下面将介绍几种常见的高温腐蚀防护方法。

1. 表面涂层技术:表面涂层是一种常见的高温腐蚀防护方法。

通过在材料表面涂布一层能够抵抗高温腐蚀的涂层,可以有效地隔离材料与腐蚀介质的接触。

一般使用的表面涂层材料有金属涂层、陶瓷涂层和复合涂层等。

金属涂层常用的有镀锌、镀铝、镀铬等;陶瓷涂层常用的有氧化铝、碳化硅等;复合涂层则是在基材表面涂布多种材料的组合涂层,如MCrAlY(M为金属,如镍、钴等)。

2. 合金选择:针对不同的高温腐蚀环境,选择适合的高温合金材料也是一种重要的防护方法。

高温合金是一类能够在高温环境下保持良好性能的材料,具有特殊的抗腐蚀性能和耐高温稳定性。

常见的高温合金有镍基合金、钴基合金、铁基合金等。

这些材料通过合金元素的加入,能够提高材料的抗氧化、抗硫化、抗氯化等能力。

3. 封闭保护层:在高温腐蚀环境中,通过在材料表面形成一层密封的保护层,可以防止腐蚀介质对材料表面的进一步侵蚀。

常见的保护层有硅化物层、硝化物层、氮化物层等。

这些保护层可以通过热蒸发、物理气相沉积等方法在材料表面形成,从而降低腐蚀的发生。

4. 稀土添加:稀土元素具有优良的高温腐蚀防护性能,在高温环境中能够抑制氧化和硫化等腐蚀反应的发生。

在合金材料中添加适量的稀土元素,可以有效提高材料的高温腐蚀抗性能。

稀土元素的加入可以通过合金熔炼、涂层沉积等方式进行。

以上是几种常见的高温腐蚀防护方法。

需要根据具体的高温腐蚀环境和材料要求选择合适的防护方法,同时也需要考虑经济性、可行性和可持续性等因素。

随着科学技术的不断进步,高温腐蚀防护方法也将不断创新和完善,以满足各种复杂高温腐蚀环境下材料的需求。

腐蚀与防护名词解释整理资料

腐蚀与防护名词解释整理资料

腐蚀与防护名词解释整理资料1. 金属腐蚀:金属腐蚀就是指金属与环境介质之间发生化学、电化学或物理作用而引起的变质和破坏。

2.电化学腐蚀:电化学腐蚀是指金属与电解质溶液(大多数为水溶液)发生了电化学反应(即形成了微观电池),在反应过程中有电流产生。

3. 高温氧化:在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称为高温腐蚀,亦称高温氧化。

4. 阳极极化:若电极上通过阳极电流时,发生净的氧化反应,其电极电位随着电流的增大向正的方向移动,称之为阳极极化。

5. 过电位:一个电极的工作电极电位ε(有电流通过电极)与其平衡电极电位的绝对差值称为电极的过电位,η。

6. 极化剂:能消除或减轻原电池极化过程的叫作去极化,能够起到这种作用的物质叫做去极化剂。

(即起加速腐蚀的作用)7. 阳极去极化:对腐蚀电池阳极极化起去极化作用的称为阳极去极化;8.阴极去极化:对腐蚀电池阴极极化起去极化作用的称为阴极去极化。

9. 析氢腐蚀:由氢去极化引起的金属腐蚀称为析氢腐蚀。

10. 耗氧腐蚀:由氧去极化引起的金属腐蚀称为耗氧腐蚀。

11. 钝化:像铁那样的金属或合金在某种条件下,由活化态转为钝态的过程称为钝化;钝性:金属(合金)钝化后所具有的耐蚀性称为钝性。

12. 均匀腐蚀:均匀腐蚀是腐蚀作用均匀地发生在整个金属表面上,金属表面上各部分的腐蚀速度基本相同。

不均匀腐蚀虽然同样发生在整个金属表面上,但各部分的腐蚀速度有一定差异。

13. 点蚀:点蚀(或孔蚀)是一种腐蚀集中在金属或合金表面数十微米范围内且向纵深发展的腐蚀形式。

14. 缝隙腐蚀:介质中的金属,尤其是不锈钢,在有缝隙的地方或被其他物覆盖的表面上易发生较为严重的局部腐蚀,这种腐蚀称为缝隙腐蚀,有时也称沉积腐蚀或垫衬腐蚀。

15. 晶间腐蚀:晶间腐蚀是金属材料在特定的腐蚀介质中沿材料的晶界发生的一种局部腐蚀。

16. 剥层腐蚀:剥层腐蚀是指具有晶间腐蚀倾向的材料经轧制或锻压加工后,在一定的腐蚀条件下,沿着与表面平行的晶界方向发生的晶间腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 温度 热腐蚀必须有熔融盐,因此有下限门槛温度
• 介质成分 硫的影响大,尤其燃气中含有NaCl时加重热腐蚀
• 其它因素 燃气压力:压力增大,腐蚀速率增大 燃气流速:一般流速增大,腐蚀加重,尤其含有固态燃灰 颗 时粒,时 提尤高甚流;速但可当减燃轻气这中些有挥挥发发性性氧成化分物(的如不利Mo影O响3、WO3) 气动力学因素:产生沉积越多,越容易发生热腐蚀 合金的制备工艺:热腐蚀常发生在合金成分&组织不均匀 处
(4)铁和耐热合金钢的抗氧化性 • 铁的高温氧化
200~300℃出现可见的氧化膜 570℃以下,氧化物为Fe3O4和Fe2O3,抗氧化性强 超过570℃时,在氧化膜内层生成FeO,结构疏散,
抗氧化性差
• 耐热钢的抗高温氧化性
加入Cr、Al、Si,提高抗氧化性;但过大则加工性恶化。 加入Mo、W、V、Nb、Ti等,提高热强性 合金元素的大量加入往往使钢的组织发生变化,奥氏体 钢耐热性最好
金属热腐蚀的控制措施
• 选择适当的抗热腐蚀的合金。查专门手册 • 合金表面施加防护涂层
(5)镍基高温合金的抗氧化性
• 镍基合金是目前高温高负荷条件下使用的 优良耐蚀合金
• 适量加Cr,提高抗氧化性
• Ni-Cr二元体系中,加W、Mo,可增强 合金的固溶强度;加Al、Ti,可形成Ni3 (Al、Ti)强化相;加Si、Mn、Y、Th等 增加锈皮与合金基体的结合力
金属材料的热腐蚀
(1)热腐蚀的定义 煤、油等各种燃料燃烧后产生的混合气氛中常
G 比 G 稍正,但仍为负值。
( 注意除以标准大气压P0 )
常态下,氧化反应的 G 随温度升高有由负向正
变化的趋势,即金属自发氧化的趋势随温度上升而 减小,这与人们的直觉相反,然而这正是金属冶炼 要在高温下进行的热力学依据
(2)金属氧化物的分解压
M O2 MO2
K
MO2 p'
M O2
1 p'
含有少量的硫及其它一些杂质,如低熔点的盐类 Na2SO4、K2SO4和低熔点的氧化物V2O5等,它们 沉积于被氧化的金属表面,形成熔盐,使原来金属 表面的保护性氧化膜破坏,从而造成对基体金属材 料加速腐蚀的现象。
这种高温腐蚀破坏过程不同于单纯的高温氧化, 故称为热腐蚀
(2)热腐蚀的特征
• 是覆盖着熔融的硫酸盐或其它化合物薄层下的高 温腐蚀
金属高温氧化的热力学基础
(1)金属氧化可能性的判断
• 金属氧化过程的自由能变化
G 0 ,反应自发进行
M O2 MO2
G G RT ln MO2 M O2
G G RT ln pO2
G G RT ln pO2
热力学数据表明,自然界中绝大多数金属氧化物的
G 均为负值,即使在常压条件下( pO2 2.13104 Pa )
• 分为孕育期和加速期,加速期内腐蚀速率迅速增 大,并伴有腐蚀产物的大量剥落
• 有一定的温度区间
• 在形态上,热腐蚀的表面层为疏松多孔的、无附 着力的氧化物&硫化物的混合物,在合金内部往 往存在着沿晶界分布的硫化物
• 常伴有固态介质(燃烧颗粒)的冲刷作用和粘合 产物(如积炭)
(3)热腐蚀介质
熔盐:硫酸盐、碳酸盐、硝酸 盐、氯化物、氢氧化物及低熔点的 氧化物
在一定温度范围内,某些金属的氧化 服从立方规律
y3 kt C
如Cu在100~300℃及各气压下,Zr在 600~900 ℃、1×105Pa氧中的恒温氧化
金属的高温氧化过程比较复杂,不同 的金属、不同的温度可能遵循的规律不同
(3)金属氧化的机理
• 金属氧化的扩散模型 金属表面形成致密的氧化膜,扩散是氧
(3)系统标准吉布斯自由能-温度关系图
• G T 图只能应用于平衡系统
• 所有凝聚相都是纯物质,不是溶液或固溶体 • 金属的氧化倾向性按照Cu、Pb、Ni、Co、P、
Fe、Cr、Mn、Si、Ti、Al、Mg、Ca排列,依次 增大
(4)金属氧化物的高温稳定性
• 分解压 • 熔点:熔点低,不利于稳定
• 抛物线规律:
多数金属和合金的氧化动力学曲线为抛 物线。原因是生成致密的氧化膜,氧化速率 与膜厚成反比,反应受扩散控制
yn kt C (n 2)
n<2,氧化的扩散阻滞并非与膜厚的增长成 正比,如:应力、孔洞、晶界对扩散的影响 n>2,扩散阻滞作用比膜增厚所产生的阻滞 更严重,如:掺杂等
• 立方规律:
两种氧化物形成共晶时,熔点降低 • 蒸汽压:蒸汽压越小,氧化物越稳定 • 挥发性:易挥发,氧化物膜对基体无保护作用
金属氧化膜的结构和性质
(1)金属氧化物的类型
• 严格化学计量比组成的化合物 有晶格缺陷,占化合物总数较少,如:MgO、CaO、 ThO2等
• 非化学计量比的化合物 ① 金属离子过剩型氧化物(n型半导体),电子导电 ② 金属离子不足型氧化物(p型半导体),空穴导电
护性氧化膜的金属和合金;多采用金 属的合金化提高其氧化性能
(3)提高合金氧化的途径
• 通过选择性氧化生成优异的保护膜 如:Cr2O3、 Al2O3、 SiO2
• 生成具有尖晶石结构的复合氧化膜 通式:AO·B2O3
• 控制氧化膜的晶格缺陷浓度,降低离子的扩散 速率(原子价规律)
• 增强氧化物膜与基体金属表面的粘附力
Hale Waihona Puke 高温腐蚀高温腐蚀的定义• 材料在高温下与环境介质发生化学或电化 学反应,导致材料变质的现象称为高温腐 蚀(High Temperature Corrosion)
• 高温: 对于金属指再结晶温度以上,即大约
在0.3~0.4倍材料熔点以上的温度
变形金属加热时组织和性能变化示意图
高温腐蚀的分类
按环境介质的状态 • 高温气体介质腐蚀
O2
G
RT ln K
RT ln
1 p'
O2
G RT ln pO2 p'
O2
• 常温下绝大多数金属氧化物的分解压远小 于大气中氧的分压,即在此状态下金属都 有自发氧化的趋势
• 随着温度的升高,金属氧化物的分解压增 大,金属自发氧化的热力学趋势减小
• 调节体系氧分压能够改变金属的自发氧化 热力学倾向,根据这一原理可以实施金属 的可控气氛热处理
(2)金属氧化的动力学规律
氧化反应速率通常以单位时间内氧化膜的 生长厚度表示(dy/dt)
金属氧化的动力学曲线大致遵循直线、 抛物线、立方、对数及反对数五种规律
• 直线规律:
金属氧化时,若不能生成氧化膜,或 在反应期间形成气相或液相产物而脱离金 属表面,则氧化速率恒定不变(k),由 形成氧化物的化学反应所决定
M、A分别为分子量、原子量,n为一个氧化物分子中金属原 子原子的个数。
当PBR>1,金属氧化膜是完整的(能够完全覆盖整个金属 表面),具有保护性 PBR过大,如大于2.5时,内应力过大,易使膜破裂,如 钨的氧化膜的值为3.4,保护性很差
当PBR<1,金属氧化膜是疏松多孔的,保护性差
(4)金属氧化膜的保护性
③ 在MO/M界面,金属M电离成M2+ 综合步骤②和③
M 2 O2 MO
M 2 O2 MO
为了维持反应的进行,必须有两种迁移: O2-和M2+通过氧化膜的迁移
迁移的存在形式: • 通过晶格扩散,T较高 • 通过晶界扩散,T较低 • 同时通过晶格、晶界扩散,如Ti、Zr等在中
温区(400~600℃)长时间氧化时
• 气体介质 燃烧产物对金属的高温氧化影响很大
含硫气体(硫蒸气、SO2、H2S)加 速高温腐蚀 硫化物的性质: • 热力学稳定性差,生成自由能比氧化物高 • 体积大,表面膜易破裂 • 晶格缺陷较多 • 易生成低熔点共晶体 Cr、Al可有效的抗硫蚀
合金的氧化
(1)合金氧化的特点
• 合金组元的选择性氧化 • 相的选择性氧化 • 内氧化:氧的溶解和扩散 • 合金氧化膜的组成和结构有多种可能形式 • 可能生成固溶体或复合氧化物
研究高温腐蚀的意义
• 氧化是高温腐蚀中最常见的一种形式 热力学表明,几乎所有的金属(除Pt、Au等)在 大气环境中都有自发发生氧化的倾向。 氧化的损耗占钢产量的7~10%
• 高温腐蚀涉及的范围很广。如:锅炉、反应釜、 内燃机、涡轮发动机……;冶金、石油、航空航天 等部门
• 新的高科技时代,为提高效率,许多装备要提高运 行温度;许多新技术需要在高温下实现。
其中最常见的是硫酸盐,如硫 酸钠,大于其熔点(884℃)称为 高温热腐蚀,低的称为低温热腐蚀
(4)典型热腐蚀 (硫酸盐高温热腐蚀)的机理
• 硫化模型
2NaCl SO3 H2O Na2SO4 2HCl Na2SO4 3R Na2O 3RO S M S MS M MS M gMS(共晶)
• 完整性。膜的PBR值在1~2.5之间 • 致密性。组织结构致密,金属和O2-在其中扩散系数下,
电导率低 • 稳定性。难溶、不挥发,不易与介质作用 • 附着性。膜与基体结合良好,有相近的膨胀系数,不易
剥落 • 力学性。具有足够的强度和韧性,可经受一定的应力、
应变和摩擦作用
(5)氧化膜的机械损伤
• 结构内应力 • 冷热交变内应力 • 在构件的尖角、棱边、急剧转弯处应力集中,
(2)金属氧化物的组成和晶体结构
• 组成
一般是单一氧化物,也有多种氧化物,如: FeO、Fe2O3等 • 晶体结构类型
氧化钠型(MgO)、氟化钙型(UO2)、金红 石型(SnO2)、刚玉型(Al2O3)、尖晶石型 (LiMn2O4)
(3)金属氧化膜的完整性
PBR VOX MOX M VM nAM OX
y kt C
碱金属、碱土金属的高温氧化
• 对数和反对数规律:
金属的氧化膜非常薄(一般小于100nm),在低温 或室温时的氧化
相关文档
最新文档