绝对值不等式

合集下载

绝对值与不等式的解法

绝对值与不等式的解法

绝对值与不等式的解法绝对值和不等式是高中数学中重要的概念和解题方法。

绝对值常常出现在不等式中,对于解决这类问题,我们需要掌握一些基本的解法和技巧。

本文将介绍绝对值与不等式的解法,包括绝对值不等式和绝对值方程两个方面。

一、绝对值不等式的解法绝对值不等式是指形如|f(x)| ≤ g(x),或|f(x)| ≥ g(x) 这样的数学不等式。

解决这类问题的关键在于将绝对值不等式转化为不等式组或分段函数。

下面以一个具体的例子来说明解答绝对值不等式的步骤。

例题:解不等式 |2x - 3| ≤ 5首先,我们需要根据绝对值的定义进行分情况讨论。

当 2x - 3 ≥ 0 时,|2x - 3| = 2x - 3;当 2x - 3 < 0 时,|2x - 3| = -(2x - 3)。

针对每一种情况,我们可以得到以下两个不等式:当 2x - 3 ≥ 0 时,2x - 3 ≤ 5,解得x ≤ 4;当 2x - 3 < 0 时,-(2x - 3) ≤ 5,解得x ≥ -1。

因此,综合两种情况的解集,得到最终的解为 -1 ≤ x ≤ 4。

二、绝对值方程的解法绝对值方程是指形如 |f(x)| = g(x) 的方程。

解决这类问题的关键在于将绝对值方程转化为分段函数,并通过分析不同情况求解。

下面以一个具体的例子来说明解答绝对值方程的步骤。

例题:解方程 |4x - 7| = 3同样地,我们根据绝对值的定义进行分情况讨论。

当4x - 7 ≥ 0 时,|4x - 7| = 4x - 7;当 4x - 7 < 0 时,|4x - 7| = -(4x - 7)。

针对每一种情况,我们可以得到以下两个方程:当 4x - 7 ≥ 0 时,4x - 7 = 3,解得 x = 2;当 4x - 7 < 0 时,-(4x - 7) = 3,解得 x = 1/4。

因此,综合两种情况的解集,得到最终的解为 x = 2 或 x = 1/4。

绝对值不等式性质及公式

绝对值不等式性质及公式
综合③,④我们得到有关绝对值(absolutevalue)的重要不等式
|a|-|b|小于等于|a+b|小于等于|a|+|b|
2.|a|<|b|可逆a&amp;sup2;<b&amp;sup2;
另外
|a|-|b|小于等于|a+b|小于等于|a|+|b|,当且仅当ab小于等于0时左边等
号成立,ab&ge;0时右边等号成立。
|a|-|b|小于等于|a-b|小于等于|a|+|b|,当且仅当ab&ge;0时左边等号成
立,ab小于等于0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹙b的距离等于它
们到原点的距离之和。2.当a,b异号时它们பைடு நூலகம்别位于原点的两边,此时a
与﹙b的距离小于它们到原点的距离之和。
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹙a,(a<0),}
因此,有
﹙|a|小于等于a小于等于|a|
﹙|b|小于等于b小于等于|b|
同样地
①,②相加得
﹙﹙|a|+|b|)小于等于a+b小于等于|a|+|b|
即|a+b|小于等于|a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b|小于等于|a+b|+|-b|,
即|a|-|b|小于等于|a+b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对

绝对值基本不等式

绝对值基本不等式

绝对值基本不等式在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。

它们都是通过非负数来度量的。

公式:||a|-|b||≤|a±b|≤|a|+|b|几何意义:1、当a,b同号时它们坐落于原点的同一边,此时a与﹣b的距离等同于它们至原点的距离之和。

2、当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。

(|a-b|表示a-b与原点的距离,也表示a与b之间的距离) 相关公式:绝对值关键不等式推论过程:我们知道|x|={x,(x\ue0);x,(x=0);-x,(x\uc0);因此,存有:-|a|≤a≤|a| ......①-|b|≤b≤|b| ......②-|b|≤-b≤|b|......③由①+②得:-(|a|+|b|)≤a+b≤|a|+|b|即为|a+b|≤|a|+|b| ......④由①+③得:-(|a|+|b|)≤a-b≤|a|+|b|即 |a-b|≤|a|+|b| ......⑤另:|a|=|(a+b)-b|=|(a-b)+b||b|=|(b+a)-a|=|(b-a)+a|由④知:|a|=|(a+b)-b|≤|a+b|+|-b| =\ue |a|-|b|≤|a+b|.......⑥|b|=|(b+a)-a|≤|b+a|+|-a| =\ue |a|-|b|≥-|a+b|.......⑦|a|=|(a-b)+b|≤|a-b|+|b| =\ue |a|-|b|≤|a-b|.......⑧|b|=|(b-a)+a|≤|b-a|+|a| =\ue |a|-|b|≥-|a-b|.......⑨由⑥,⑦得:| |a|-|b| |≤|a+b|......⑩由⑧,⑨得:要注意等号成立的条件(特别是求最值),即:|a-b|=|a|+|b|→ab≤0|a|-|b|=|a+b|→b(a+b)≤0|a|-|b|=|a-b|→b(a-b)≥0注:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0同理可以得|a|-|b|=|a-b|→b(a-b)≥0另“→”指可双向推出数学分析解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值符号。

绝对值不等式

绝对值不等式

绝对值不等式绝对值不等式是数学中常见的一类不等式,它与绝对值的性质和运算相关。

通过研究绝对值不等式,我们可以解决许多实际问题,同时也提升了我们的数学思维和解题能力。

一、绝对值的定义绝对值是表示一个数离原点的距离。

对于一个实数x,它的绝对值记作|x|,定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。

例如,|5|=5,|-3|=3。

二、绝对值不等式的性质1. 绝对值的非负性质:对于任意实数x,有|x|≥0。

2. 绝对值的等价性:若|x|=0,则x=0。

3. 绝对值的三角不等式:对于任意实数x和y,有|x+y|≤|x|+|y|。

三、一元绝对值不等式的求解方法当我们遇到一元绝对值不等式时,可以采用以下两种方法求解:1. 列举法:根据不等式的性质及绝对值的定义,列举出满足不等式条件的数。

例题1:|x-2|<3根据绝对值的定义,可以得到以下两个不等式:x-2<3 ==> x<5;-(x-2)<3 ==> -x+2<3 ==> 2-x<3 ==> x>-1。

综合以上两个不等式的解,得到-1<x<5。

2. 分类讨论法:将绝对值拆分成正负两种情况,分别求解。

例题2:|2x-3|>4当2x-3>0时,可以得到以下不等式:2x-3>4 ===> 2x>7 ===> x>3.5。

当2x-3<0时,可以得到以下不等式:-(2x-3)>4 ===> -2x+3>4 ===> -2x>1 ===> x<-0.5。

综合以上两个情况的解,得到x>3.5或x<-0.5。

四、二元绝对值不等式的求解方法对于二元绝对值不等式,我们需要分别对两个变量进行分类讨论,并结合不等式的特点进行求解。

例题3:|x-2|+|y+1|<5当x-2>0且y+1>0时,可以得到以下不等式:x-2+y+1<5 ==> x+y<6。

高考数学 绝对值不等式

高考数学 绝对值不等式

绝对值不等式[知识梳理]1.绝对值不等式(1)定理如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当(a -b)(b-c)≥0时,等号成立,即b落在a,c之间.(3)由绝对值不等式定理还可以推得以下几个不等式①|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|.②||a|-|b||≤|a±b|≤|a|+|b|.2.绝对值不等式的解法(1)形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)①绝对值不等式|x|>a与|x|<a的解集.②|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.|ax+b|≤c⇔-c≤ax+b≤c(c>0),|ax+b|≥c⇔ax+b≤-c或ax+b≥c(c>0).[诊断自测]1.概念思辨(1)不等式|x-1|+|x+2|<2的解集为∅.()(2)若|x |>c 的解集为R ,则c ≤0.( )(3)|ax +b |≤c (c ≥0)的解集,等价于-c ≤ax +b ≤c .( )(4)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )答案 (1)√ (2)× (3)√ (4)√2.教材衍化(1)(选修A4-5P 19T 5)解不等式|2x +1|+|x -2|>4.解 当x ≤-12时,原不等式可化为-2x -1+2-x >4,所以x <-1,此时x <-1;当-12<x <2时,原不等式可化为2x +1+2-x >4,所以x >1,此时1<x <2;当x ≥2时,原不等式可化为2x +1+x -2>4,所以x >53,此时x ≥2.综上,原不等式的解集为(-∞,-1)∪(1,+∞).(2)(选修A4-5P 20T 9)设函数f (x )=|x -4|+|x -3|.①解不等式f (x )≥3;②若f (x )≥a 对一切x ∈R 恒成立,求实数a 的取值范围.解 ①当x ≤3时,原不等式可化为4-x +3-x ≥3,即x ≤2,所以x ≤2;当3<x <4时,原不等式可化为4-x +x -3≥3,即1≥3,无解; 当x ≥4时,原不等式可化为x -4+x -3≥3,即x ≥5,所以x ≥5. 综上,原不等式的解集为{x |x ≤2或x ≥5}.②f (x )≥a 对一切x ∈R 恒成立的充要条件是a ≤f (x )min .因为f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1,即f (x )的最小值为1,所以a ≤1.即实数a 的取值范围是(-∞,1].3.小题热身(1)(优质试题·山东高考)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)答案 A解析 ①当x <1时,原不等式等价于1-x -(5-x )<2,即-4<2,∴x <1.②当1≤x ≤5时,原不等式等价于x -1-(5-x )<2,即x <4,∴1≤x <4.③当x >5时,原不等式等价于x -1-(x -5)<2,即4<2,无解.综合①②③知x <4.故选A.(2)(2014·重庆高考)若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,12 解析 令f (x )=|2x -1|+|x +2|,易求得f (x )min =52,依题意得a 2+12a +2≤52⇔-1≤a ≤12.题型1 绝对值不等式的解法典例 (优质试题·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.(1)去绝对值符号转化为分段函数;(2)根据(1)作出的图象,采用数形结合方法求解.解 (1)f (x )=⎩⎪⎨⎪⎧ x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或1<x <3或x >5. 方法技巧解|x -a |+|x -b |≥c 或|x -a |+|x -b |≤c 的一般步骤1.零点分段法(1)令每个含绝对值符号的代数式为零,并求出相应的根;(2)将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间;(3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集;(4)取各个不等式解集的并集求得原不等式的解集.2.利用|x -a |+|x -b |的几何意义数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.3.图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.见典例.提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.冲关针对训练(优质试题·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.题型2 绝对值不等式性质的应用典例 (优质试题·全国卷Ⅲ)已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.(1)将不等式化为|x -a |≤c 的形式求解;(2)利用绝对值不等式性质消去a .解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).[条件探究]将典例(1)中条件“a=2时”变为“g(x)=|2x-1|,若g(x)≤5时,恒有f(x)≤6”,试求a的最大值.解g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有a-3≤-2,a≤1.故a的最大值为1.方法技巧绝对值不等式性质的应用利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|a-c|+|c-b|(a,b ∈R),通过确定适当的a,b,利用整体思想或使函数、不等式中不含变量,可以(1)求最值,(2)证明不等式.见典例.冲关针对训练(2018·福建漳州模拟)已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a 的取值范围.解因为对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围为[-1,+∞)∪(-∞,-5].1.(优质试题·河西区三模)若存在实数x,使|x-a|+|x-1|≤3成立,则实数a的取值范围是()A.[-2,1] B.[-2,2] C.[-2,3] D.[-2,4]答案 D解析由|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,不等式|x-a|+|x-1|≤3有解,可得|a-1|≤3,即-3≤a-1≤3,求得-2≤a≤4.故选D.2.(优质试题·潍坊一模)若关于x的不等式|x+1|+|x-2|+m-7>0的解集为R,则实数m的取值范围为()A.(4,+∞) B.[4,+∞)C.(-∞,4) D.(-∞,4]答案 A解析不等式|x+1|+|x-2|+m-7>0,移项:|x+1|+|x-2|>7-m,根据绝对值不等式的几何意义,可知:|x+1|+|x-2|的最小值是3,解集为R,只需要3>7-m恒成立即可,解得m>4.故选A.3.(优质试题·北仑区校级期中)关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,则实数a的取值范围是()C .a <1或a >2D .a ≤1或a ≥2答案 B 解析 关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集, 则a 2-3a <(|x -1|-|x -3|)max 即可,而|x -1|-|x -3|的最大值是2, ∴只需a 2-3a -2<0,解得:3-172<a <3+172. 故选B.4.(优质试题·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].[基础送分 提速狂刷练]1.(优质试题·洛阳模拟)已知关于x 的不等式|2x +1|-|x -1|≤log 2a (其中a >0).(1)当a =4时,求不等式的解集;(2)若不等式有解,求实数a 的取值范围.解 (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12;当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23;当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32.若f (x )≤log 2a 有解,则log 2a ≥-32,⎣⎭2.(优质试题·广东潮州二模)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝ ⎛⎭⎪⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围.解 (1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎪⎨⎪⎧ -3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4⇔⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧ -32≤x ≤1,x +4>4或⎩⎨⎧ x >1,3x +2>4⇔x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞).(2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,32. 3.(优质试题·湖北黄冈调研)已知函数f (x )=|2x -a |+|2x -1|(a ∈R ).(1)当a =-1时,求f (x )≤2的解集;(2)若f (x )≤|2x +1|的解集包含集合⎣⎢⎡⎦⎥⎤12,1,求实数a 的取值范围. 解 (1)当a =-1时,f (x )=|2x +1|+|2x -1|,f (x )≤2⇒⎪⎪⎪⎪⎪⎪x +12+⎪⎪⎪⎪⎪⎪x -12≤1,上述不等式的几何意义为数轴上点x 到两点-12,12距离之和小于或等于1,则-12≤x ≤12,即原不等式的解集为⎣⎢⎡⎦⎥⎤-12,12. (2)∵f (x )≤|2x +1|的解集包含⎣⎢⎡⎦⎥⎤12,1, ∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f (x )≤|2x +1|恒成立, ∴当x ∈⎣⎢⎡⎦⎥⎤12,1时,|2x -a |+2x -1≤2x +1恒成立, ∴2x -2≤a ≤2x +2在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立, ∴(2x -2)max ≤a ≤(2x +2)min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1, ∴0≤a ≤3.故实数a 的取值范围是[0,3].4.(2018·山西八校联考)设函数f (x )=|x +1|+|x -a |.(1)若f (x )≥5对于x ∈R 恒成立,求实数a 的取值范围;(2)当a =1时,函数f (x )的最小值为t ,且正实数m ,n 满足m +n=t ,求证:1m +1n ≥2.解 (1)|x +1|+|x -a |表示数轴上的动点x 到两定点-1,a 的距离之和,故当a ≥4或a ≤-6时,|x +1|+|x -a |≥5对于x ∈R 恒成立,即实数a 的取值范围为(-∞,-6]∪[4,+∞).(2)证明:因为|x +1|+|x -1|≥|x +1+1-x |=2,所以f (x )min =2,即t =2,故m +n =2,又m ,n 为正实数,所以1m +1n =⎝ ⎛⎭⎪⎪⎫m +n 2⎝ ⎛⎭⎪⎫1m +1n =12⎝ ⎛⎭⎪⎫1+1+n m +m n ≥12×(2+2)=2,当且仅当m =n =1时取等号.5.(优质试题·沈阳模拟)设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a , 则-1a =-6,3a =2,无解;当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知h (x )在⎝ ⎛⎭⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎫-14,32 上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意,知-72≤7-3m ,则实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,72. 6.(2018·江西模拟)设f (x )=|x -1|+|x +1|(x ∈R ).(1)求证:f (x )≥2;(2)若不等式f (x )≥|2b +1|-|1-b ||b |对任意非零实数b 恒成立,求x 的取值范围.解 (1)证明:f (x )=|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2.(2)g (b )=|2b +1|-|1-b ||b |≤|2b +1-1+b ||b |=3, ∴f (x )≥3,即|x -1|+|x +1|≥3,当x ≤-1时,-2x ≥3,∴x ≤-1.5;当-1<x ≤1时,2≥3不成立;当x >1时,2x ≥3,∴x ≥1.5.综上所述x 的取值范围为(-∞,-1.5]∪[1.5,+∞).。

含绝对值的不等式及其解法

含绝对值的不等式及其解法

含绝对值的不等式及其解法绝对值不等式及其解法。

绝对值不等式是指不等式中含有绝对值的表达式,常见形式为|ax + b| < c 或 |ax + b| > c。

解决这类不等式需要一些特殊的技巧和方法。

首先,我们来看 |ax + b| < c 的不等式。

要解决这个不等式,我们可以将其分解为两个不等式,即 ax + b < c 和 ax + b > -c。

然后分别解这两个不等式,得到的解集合的交集就是原不等式的解集合。

举个例子,假设我们要解决 |3x 2| < 7 的不等式。

首先将其分解为两个不等式,3x 2 < 7 和 3x 2 > -7。

然后分别解这两个不等式,得到 x < 3 和 x > -1。

因此原不等式的解集合为 -1 < x < 3。

接下来,我们来看 |ax + b| > c 的不等式。

对于这种不等式,我们同样可以将其分解为两个不等式,即 ax + b > c 或 ax + b < -c。

然后分别解这两个不等式,得到的解集合的并集就是原不等式的解集合。

举个例子,假设我们要解决 |2x 5| > 3 的不等式。

同样将其分解为两个不等式,2x 5 > 3 和 2x 5 < -3。

然后分别解这两个不等式,得到 x > 4 和 x < 1。

因此原不等式的解集合为 x < 1 或x > 4。

在解决绝对值不等式时,我们需要注意一些特殊情况,比如当c 为负数时,解集为空集;当 a 为零时,不等式简化为一个普通的线性不等式等等。

总的来说,解决绝对值不等式需要将其分解为多个简单的不等式,然后分别解决这些简单的不等式,并将它们的解集合合并或交集,得到原不等式的解集合。

希望这篇文章能够帮助你更好地理解和解决含绝对值的不等式。

带有绝对值的不等式解法

带有绝对值的不等式解法

带有绝对值的不等式解法
带有绝对值的不等式通常需要根据绝对值的性质进行分类讨论,然后根据不同情况分别解出不等式。

以下是带有绝对值的不等式的一般解法步骤:
1. 首先,需要确定绝对值内的表达式的符号。

2. 根据表达式的符号,将不等式分成两种情况进行讨论。

3. 对于每种情况,将绝对值符号去掉,并解出不等式。

4. 最后,将两种情况下的解集合并起来,得到最终的解集。

以下是一些常见的带有绝对值的不等式的解法示例:
1. 绝对值不等式:|x|<a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x<a。

当x<0时,|x|=-x,则原不等式可化为-x<a,即x>-a。

因此,不等式的解集为-a<x<a。

2. 绝对值不等式:|x|>a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x>a。

当x<0时,|x|=-x,则原不等式可化为-x>a,即x<-a。

因此,不等式的解集为x<-a或x>a。

3. 绝对值不等式:|x-a|<b(其中a、b为常数)
当x\ge a时,|x-a|=x-a,则原不等式可化为x-a<b,即x<a+b。

当x<a时,|x-a|=a-x,则原不等式可化为a-x<b,即x>a-b。

因此,不等式的解集为a-b<x<a+b。

需要注意的是,对于带有绝对值的不等式,解集可能包含零值,也可能不包含零值,具体情况需要根据不等式的具体形式进行讨论。

1。

绝对值不等式性质及公式

绝对值不等式性质及公式
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹣a,(a<0),}
因此,有
﹣|a|a|a|
﹣|b|b|b|
同样地
①,②相加得
﹣﹙|a|+|b|)a+b|a|+|b|
即|a+b||a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b||a+b|+|-b|,
即|a|-|b||a+b|
综合③,④我们得到有关绝对值(absolute value)的重要不等式
|a|-|b||a+b||a|+|b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。
公式:|a|-|b||a+b||a|+|b|
性质
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质:1.|ab|=|a||b|;|a/b|=|a|/|b|
2.|a|<|b|可逆asup2;<bsup2;
另外
|a|-|b||a+b||a|+|b|,当且仅当ab0时左边等号成立,ab0时右边等号成立。
|a|-|b|Leabharlann a-b||a|+|b|,当且仅当ab0时左边等号成立,ab0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。2.当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。

绝对值不等式成立条件

绝对值不等式成立条件

绝对值不等式成立条件绝对值不等式是初中数学中的重要内容,它在解决一些实际问题时具有很大的帮助。

在学习绝对值不等式时,我们需要了解其成立条件。

本文将从定义、性质、举例等方面全面详细地介绍绝对值不等式的成立条件。

一、定义绝对值不等式是指形如|a|<b或|a|>b的不等式,其中a和b均为实数。

当a与0之间的距离小于b时,称|a|<b成立;当a与0之间的距离大于b时,称|a|>b成立。

二、性质1. 若|a|=0,则必有a=0。

2. 若|a|=|-a|,则称其具有奇偶性,即当a为偶数时,有|a|=|-a|=a;当a为奇数时,有|a|=|-a|=-a。

3. 若k>0,则有k|x|=|kx|;若k<0,则有k|x|=|-kx|=k|-x|。

4. 绝对值函数y=|x-a|(或y=||x-a||)在点x=a处不可导,在点x=a处左右导数分别为-1和1。

三、成立条件1. |ax+b|<c当c>0时,① a≠0且c>|b/a|② a=0且|b|<c当c=0时,a=0且b=0当c<0时,该不等式无解。

2. |ax+b|>c当c>0时,① a≠0且|b/a|>c② a=0且|b|>c当c=0时,a≠0且b≠0当c<0时,该不等式无解。

四、举例说明1. |x-2|<3的解集为(-1,5)。

解:将不等式转化为x-2<3和-(x-2)<3,得到x<5和x>-1。

综合起来得到(-1,5)。

2. |2x+3|>5的解集为(-∞,-4/2)∪(1,-∞)。

解:将不等式转化为2x+3>5或-(2x+3)>5,得到x>-4/2或x<-1。

综合起来得到(-∞,-4/2)∪(1,-∞)。

总结:绝对值不等式是初中数学中的重要内容,它在解决一些实际问题时具有很大的帮助。

在学习绝对值不等式时,我们需要了解其成立条件。

含绝对值的不等式

含绝对值的不等式

{
}
(2) | 2 x + 1 | + | x − 2 |> 4
x > 2 或 2 x + 1 + x − 2 > 4
1 x<− 或 原不等式等价于: 原不等式等价于: 2 解(2) ) − 2 x − 1 − x + 2 > 4
1 − ≤ x ≤ 2 2 2 x + 1 − x + 2 > 4
1 37 37 = −3 x − + ≤ 6 12 12
2
(
)
所以…… 所以
当 a ≠ 0 时, f (a) = 0 , f (−a) = −2a | a |≠ 0, f (x) 是非奇非偶函数
x < a x ≥ a 或 2 (2)x | x − a |≥ 2a ⇔ 2 ) 2 x − ax + 2a ≤ 0 x − ax − 2a 2 ≥ 0 x ≥ a ⇔ x ∈φ 或 ( x − 2a )( x + a ) ≥ 0
2 备用:已知二次函数 备用 已知二次函数 f ( x ) = ax + bx + c (a, b, c ∈ R ) ,
37 当 证明: 若 f (− 1) ≤ 1, f (0) ≤ 3, f (1) ≤ 1 ,证明: x ≤ 1时, f ( x ) ≤ 12 证明: 证明:因为 f (− 1) = a − b + c , f (0) = c , f (1) = a + b + c
含绝对值的不等式
一、基础知识
a (a ≥ 0 ) 1、绝对值的基本性质: 设a ∈ R, 则 a = 、绝对值的基本性质: − a ( a < 0 )

绝对值不等式的解法

绝对值不等式的解法

绝对值不等式的解法什么是绝对值不等式?绝对值不等式是数学中一类常见的不等式类型,它涉及到绝对值函数(|x|)。

绝对值函数定义了一个实数的非负值,即对于实数x,|x|的值总是与x的符号无关,而只与x的大小有关。

绝对值不等式的一般形式为:|f(x)| ≤ a 或|f(x)| ≥ a,其中f(x)是一个函数,a是一个正实数。

绝对值不等式的求解方法当遇到绝对值不等式时,我们需要找到使得不等式成立的x 的范围,也就是求解不等式的解集。

下面将介绍几种常见的绝对值不等式的解法。

1. 图形法图形法是解决绝对值不等式的直观方法。

我们可以通过绘制函数y = f(x)的图像来分析绝对值不等式。

对于不等式|f(x)| ≤ a,我们可以绘制函数y = f(x)的图像,并考察函数值在y轴上的绝对值是否小于等于a。

如果在x的某个范围内,函数图像位于y轴上的绝对值小于等于a,则该范围内的x属于解集。

对于不等式|f(x)| ≥ a,同样可以绘制函数y = f(x)的图像。

但在该情况下,我们需要考察函数图像位于y轴上的绝对值是否大于等于a。

如果在x的某个范围内,函数图像位于y轴上的绝对值大于等于a,则该范围内的x属于解集。

2. 分情况讨论法绝对值不等式的另一种解法是通过分情况讨论来找到解集的范围。

对于不等式|f(x)| ≤ a,我们可以将绝对值函数分为两种情况进行讨论: - 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≤ a。

- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≤ a,进一步化简为f(x) ≥ -a。

上述两种情况分别给出了绝对值不等式的解集范围。

我们需要根据具体函数f(x)和给定的a值来确定最终的解集。

对于不等式|f(x)| ≥ a,同样可以采用类似的分情况讨论法:- 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≥ a。

- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≥ a,进一步化简为f(x) ≤ -a。

5 第5讲 绝对值不等式

5 第5讲 绝对值不等式

第5讲 绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集 a >0 a =0 a <0 |x |<a {x |-a <x <a } ∅∅ |x |>a{x |x >a 或x <-a }{x |x ∈R 且x ≠0}R①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c . 2.绝对值三角不等式定理1:如果a ,b 是实数,那么|a +b |≤|a |+|b |.当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当(a -b )(b -c )≥0时,等号成立.上述定理还可以推广得到以下几个不等式: (1)|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |; (2)||a |-|b ||≤|a +b |≤|a |+|b |; (3)||a |-|b ||≤|a -b |≤|a |+|b |.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)若|x |>c 的解集为R ,则c ≤0.( ) (2)不等式|x -1|+|x +2|<2的解集为∅.( )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( ) 答案:(1)× (2)√ (3)× (4)× (5)√ [教材衍化]1.(选修4-5P20T7改编)不等式3≤|5-2x |<9的解集为________.解析:由题意得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3,即⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3, 解得⎩⎪⎨⎪⎧-2<x <7,x ≥4或x ≤1,所以不等式的解集为(-2,1]∪[4,7). 答案:(-2,1]∪[4,7)2.(选修4-5P20T8改编)不等式|x -1|-|x -5|<2的解集是________.解析:①当x ≤1时,原不等式可化为1-x -(5-x )<2,所以-4<2,不等式恒成立,所以x ≤1;②当1<x <5时,原不等式可化为x -1-(5-x )<2,所以x <4,所以1<x <4; ③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为{x |x <4}. 答案:{x |x <4} [易错纠偏](1)含参数的绝对值不等式讨论不清; (2)存在性问题不能转化为最值问题求解.1.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.解析:因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.答案:22.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________. 解析:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以|x +1|+|x -2|的最小值为3.要使原不等式有解,只需|a |≥3,则a ≥3或a ≤-3. 答案:(-∞,-3]∪[3,+∞)绝对值不等式的解法(1)(2020·嘉兴市高考模拟)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为________;|f (2x )|+|g (x )|的最小值为________.(2)解不等式|x +3|-|2x -1|<x2+1.【解】 (1)因为f (x )=x -2,g (x )=2x -5, 所以|f (x )|+|g (x )|≤2, 即|x -2|+|2x -5|≤2,x ≥52时,x -2+2x -5≤2,解得52≤x ≤3, 2<x <52时,x -2+5-2x ≤2,解得x ≥1,即2<x <52,x ≤2时,2-x +5-2x ≤2,解得x ≥53,即53≤x ≤2.综上,不等式的解集是[53,3];|f (2x )|+|g (x )|=|2x -2|+|2x -5|≥|2x -2-2x +5|=3,故|f (2x )|+|g (x )|的最小值是3. 故填[53,3],3.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,所以x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,所以-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,所以x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.|x -a |+|x -b |≥c (或≤c )型不等式的解法(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥7-|x -1|;(2)若f (x )≤1的解集为[0,2],求a 的值. 解:(1)当a =2时,不等式为|x -2|+|x -1|≥7,所以⎩⎪⎨⎪⎧x <1,2-x +1-x ≥7或⎩⎪⎨⎪⎧1≤x ≤2,2-x +x -1≥7或⎩⎨⎧x >2x -2+x -1≥7, 所以不等式的解集为(-∞,-2]∪[5,+∞). (2)f (x )≤1即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],所以⎩⎪⎨⎪⎧a -1=0a +1=2,解得a =1.绝对值不等式性质的应用(1)(2020·宁波市九校联考)已知f (x )=|x +1x -a |+|x -1x-a |+2x -2a (x >0)的最小值为32,则实数a =________.(2)(2020·宁波效实中学高三模拟)确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”(x ,y ,a ,m ∈R )的什么条件.【解】 (1)f (x )=|x +1x -a |+|x -1x -a |+2x -2a ≥|(x +1x -a )-(x -1x -a )|+2x -2a=|2x |+2x -2a =2x +2x -2a ≥22x·2x -2a =4-2a . 当且仅当2x =2x ,即x =1时,上式等号成立.由4-2a =32,解得a =54.故填54.(2)因为|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , 所以“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m=2.5,故“|x-a|<m且|y-a|<m”不是“|x-y|<2m”的必要条件.故为充分不必要条件.两数和与差的绝对值不等式的性质(1)对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.1.若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解析:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.故a的取值范围为(-∞,3].答案:(-∞,3]2.(2020·温州模拟)已知a,b,c∈R,若|a cos2x+b sin x+c|≤1对x∈R成立,则|a sin x +b|的最大值为________.解析:由题意,设t=sin x,t∈[-1,1],则|at2-bt-a-c|≤1恒成立,不妨设t=1,则|b+c|≤1;t=0,则|a+c|≤1,t=-1,则|b-c|≤1,若a,b同号,则|a sin x+b|的最大值为|a+b|=|a+c+b-c|≤|a+c|+|b-c|≤2;若a,b异号,则|a sin x+b|的最大值为|a-b|=|a+c-b-c|≤|a+c|+|b+c|≤2;综上所述,|a sin x+b|的最大值为2.答案:2绝对值不等式的综合应用与证明(2020·杭州学军中学高三模拟)已知函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1.(1)求证:|b|≤1;(2)若f(0)=-1,f(1)=1,求实数a的值.【解】(1)证明:由题意知f(1)=a+b+c,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1, 所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1. (2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1.当a =0时,不满足题意,当a ≠0时, 函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2. 所以-12≤12-1a ≤0,故|f ⎝⎛⎭⎫12-1a |= |a ⎝⎛⎭⎫12-1a 2+(2-a )⎝⎛⎭⎫12-1a -1|≤1. 整理得|(a -2)24a+1|≤1,所以-1≤(a -2)24a +1≤1,所以-2≤(a -2)24a ≤0,又a >0,所以(a -2)24a ≥0,所以(a -2)24a=0,所以a =2.(1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.(2)对于求y =|x -a |+|x -b |或y =|x -a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.(3)证明含有绝对值的不等式的思路:①充分利用含绝对值的不等式的性质;②证题过程还应考虑添、拆项的技巧,以上两步骤用活,此类问题可快速破解.1.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解:(1)因为32∈A ,且12∉A .所以⎪⎪⎪⎪32-2<a , 且⎪⎪⎪⎪12-2≥a , 解得12<a ≤32,又因为a ∈N *,所以a =1.(2)因为f (x )=|x +1|+|x -2|≥|(x +1)-(x -2)|=3. 当且仅当(x +1)(x -2)≤0即-1≤x ≤2时取到等号, 所以f (x )的最小值为3.2.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1). 证明:f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1),所以|f (x )-f (a )|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|≤|x -a |+2|a |+1<2|a |+2=2(|a |+1).所以|f (x )-f (a )|<2(|a |+1).[基础题组练]1.(2020·嘉兴期中)不等式1≤|2x -1|<2的解集为( ) A.⎝⎛⎭⎫-12,0∪⎣⎡⎭⎫1,32 B.⎝⎛⎭⎫-12,32 C.⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32 D .(-∞,0]∪[1,+∞)解析:选C.由题意得,⎩⎪⎨⎪⎧-2<2x -1<22x -1≥1或2x -1≤-1,解得:-12<x ≤0或1≤x <32,故不等式的解集是⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32,故选C. 2.(2020·温州高三第二次适应性考试)不等式|x -1|+|x +1|<4的解集是( ) A .{x |x >-2} B .{x |x <2} C .{x |x >0或x <-2}D .{x |-2<x <2}解析:选D.根据题意,原不等式等价于⎩⎪⎨⎪⎧x ≤-1,1-x -x -1<4或⎩⎪⎨⎪⎧-1<x ≤1,1-x +x +1<4或⎩⎪⎨⎪⎧x >1,x -1+x +1<4,解之取并集即得原不等式的解集为{x |-2<x <2}.3.(2020·绍兴高三质量检测)对任意实数x ,若不等式|x +2|+|x +1|>k 恒成立,则实数k 的取值范围是( )A .(-∞,0)∪[2,+∞)B .[-2,-1]∪(0,+∞)C .(-∞,1)D .(-∞,1]解析:选C.因为|x +2|+|x +1|≥|x +2-x -1|=1,所以当且仅当k <1时,不等式|x +2|+|x +1|>k 恒成立.4.(2020·绍兴市诸暨市高考模拟)已知f (x )=x 2+3x ,若|x -a |≤1,则下列不等式一定成立的是( )A .|f (x )-f (a )|≤3|a |+3B .|f (x )-f (a )|≤2|a |+4C .|f (x )-f (a )|≤|a |+5D .|f (x )-f (a )|≤2(|a |+1)2解析:选B.因为f (x )=x 2+3x ,所以f (x )-f (a )=x 2+3x -(a 2+3a )=(x -a )(x +a +3),所以|f (x )-f (a )|=|(x -a )(x +a +3)|=|x -a ||x +a +3|,因为|x -a |≤1,所以a -1≤x ≤a +1,所以2a +2≤x +a +3≤2a +4,所以|f (x )-f (a )|=|x -a ||x +a +3|≤|2a +4|≤2|a |+4,故选B.5.(2020·绍兴市柯桥区高三期中)已知x ,y ∈R ,( ) A .若|x -y 2|+|x 2+y |≤1,则(x +12)2+(y -12)2≤32B .若|x -y 2|+|x 2-y |≤1,则(x -12)2+(y -12)2≤32C .若|x +y 2|+|x 2-y |≤1,则(x +12)2+(y +12)2≤32D .若|x +y 2|+|x 2+y |≤1,则(x -12)2+(y +12)2≤32解析:选B.对于A ,|x -y 2|+|x 2+y |≤1,由(x +12)2+(y -12)2≤32化简得x 2+x +y 2-y ≤1,二者没有对应关系;对于B ,由(x 2-y )+(y 2-x )≤|x 2-y |+|y 2-x |=|x -y 2|+|x 2-y |≤1,所以x 2-x +y 2-y ≤1,即(x -12)2+(y -12)2≤32,命题成立;对于C ,|x +y 2|+|x 2-y |≤1,由(x +12)2+(y +12)2≤32化简得x 2+x +y 2+y ≤1,二者没有对应关系;对于D ,|x +y 2|+|x 2+y |≤1,化简(x -12)2+(y +12)2≤32得x 2-x +y 2+y ≤1,二者没有对应关系.故选B.6.不等式|x -1|+|x +2|≥5的解集为________.解析:由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3;由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2. 即所求的解集为{x |x ≤-3或x ≥2}. 答案:{x |x ≤-3或x ≥2}7.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.答案:58.(2020·温州市高三高考模拟)若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数对(a ,b )=________.解析:因为不等式|x |+|x +a |<b 的解集为(-2,1),所以⎩⎪⎨⎪⎧2+|-2+a |=b 1+|1+a |=b,解得a =1,b =3.答案:(1,3)9.(2020·绍兴市柯桥区高三模拟)对任意x ∈R 不等式x 2+2|x -a |≥a 2恒成立,则实数a 的取值范围是________.解析:因为不等式x 2+2|x -a |≥a 2对任意的x ∈R 恒成立, ①x ≥a 时,(x +a )(x -a )+2(x -a )≥0, (x -a )(x +a +2)≥0,因为x -a ≥0,因此只需x +a +2≥0,x ≥-(a +2), -(a +2)≤a ,解得a ≥-1. ②x <a 时,(x +a )(x -a )-2(x -a )≥0, (x -a )(x -2+a )≥0,因为x -a <0,只需x ≤2-a ,2-a ≥a ,解得a ≤1. 综上所述:-1≤a ≤1. 答案:[-1,1]10.(2020·宁波市六校联盟模拟)已知函数f (x )=|x +a |+|x -2|.当a =-4时,不等式f (x )≥6的解集为________;若f (x )≤|x -3|的解集包含[0,1],则实数a 的取值范围是________.解析:当a =-4时,f (x )≥6,即|x -4|+|x -2|≥6,即⎩⎨⎧x ≤24-x +2-x ≥6或⎩⎨⎧2<x <44-x +x -2≥6或⎩⎨⎧x ≥4x -4+x -2≥6,解得x ≤0或x ≥6.所以原不等式的解集为(-∞,0]∪[6,+∞). 由题可得f (x )≤|x -3|在[0,1]上恒成立. 即|x +a |+2-x ≤3-x 在[0,1]上恒成立,即-1-x ≤a ≤1-x 在[0,1]上恒成立.即-1≤a ≤0. 答案:(-∞,0]∪[6,+∞) [-1,0]11.若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值.解:由于f (x )=|x +1|+2|x -a |,当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a .作出f (x )的大致图象如图所示,由函数f (x )的图象可知f (a )=5,即a +1=5,所以a =4.同理,当a ≤-1时,-a -1=5,所以a =-6.所以实数a 的值为4或-6.12.已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12; (2)若存在实数x ,使得不等式f (x )≥a 成立,求实数a 的取值范围.解:(1)因为a =2,所以f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,所以f (x )≤-12等价于 ⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥114. (2)由不等式的性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|,所以若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,所以实数a 的取值范围是⎝⎛⎦⎤-∞,32. [综合题组练]1.已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.解析:因为x ∈[1,4],所以x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 2.(2020·浙江省五校协作体联考)已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f ⎝⎛⎭⎫t 2≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3,所以a -3=-2,所以a =1.(2)因为f ⎝⎛⎭⎫t 2≤m -f (-t ),所以|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎨⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.所以y min =72,所以m ≥72. 3.(2020·杭州高考科目教学质检)已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y=mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪⎣⎡⎭⎫14,+∞.4.(2020·温州校级月考)已知函数f (x )=x 2+|x -t |.(1)当t =1时,求不等式f (x )≥1的解集;(2)设函数f (x )在[0,2]上的最小值为h (t ),求h (t )的表达式.解:(1)当t =1时,f (x )=x 2+|x -1|.因为f (x )≥1,所以当x ≥1时,x 2+x -1≥1,所以x ≥1或x ≤-2.所以x ≥1.当x <1时,x 2-x +1≥1,所以x ≥1或x ≤0.所以x ≤0.综上,不等式的解集为{x |x ≥1或x ≤0}.(2)因为f (x )=x 2+|x -t |,x ∈[0,2],所以当t ≥2时,f (x )=x 2-x +t ,h (t )=f ⎝⎛⎭⎫12=t -14, 当t ≤0时,f (x )=x 2+x -t ,h (t )=f (0)=-t ,当0<t <2时,f (x )=⎩⎪⎨⎪⎧x 2-x +t ,x ∈[0,t ]x 2+x -t ,x ∈(t ,2]. 所以h (t )=⎩⎨⎧t -14,12≤t <2t 2,0<t <12. 所以h (t )=。

绝对值不等式公式大全

绝对值不等式公式大全

绝对值不等式公式大全以下是常见的绝对值不等式公式大全:
1. 绝对值的基本性质:
|a| ≥ 0,对于任意实数a。

|a| = 0 当且仅当 a = 0。

2. 绝对值的不等式性质:
(1) 对任意实数a,有|a| ≥ a。

(2) 对任意实数a,有|a| ≥ -a。

3. 两个实数的绝对值之差的性质:
|a| - |b| ≤ |a - b|。

4. 绝对值不等式的加法性质:
对任意实数a,b,有|a + b| ≤ |a| + |b|。

5. 绝对值不等式的减法性质:
对任意实数a,b,有 |a - b| ≥ |a| - |b|。

6. 绝对值不等式的乘法性质:
对任意实数a,b,有 |ab| = |a| |b|。

7. 绝对值不等式的除法性质:
对任意非零实数a,b,有 |a/b| = |a| / |b|。

8. 绝对值不等式的逆命题:
对任意实数a,b,如果 |a| < |b|,则 a^2 < b^2。

9. 绝对值不等式的乘方性质:
对任意实数a,b,如果 a > b,则 a^2 > b^2。

10. 绝对值不等式的平方根性质:
对任意非负实数a,有√a ≥ 0。

这些是绝对值不等式的一些基本性质和常见公式,可以根据具体问题使用。

绝对值不等式6个基本公式

绝对值不等式6个基本公式

绝对值不等式6个基本公式绝对值是数学中的一个基本概念。

它表示一个数与零点之间的距离,即一个量的大小,而不考虑其符号。

绝对值可以用符号“| |”表示,它将括号内的内容取绝对值。

例如,|5| = 5,|-3| = 3。

绝对值不等式是一个常见的数学问题。

它的解决方法可以用几个基本公式来进行简化和优化。

在下面的中,我们将介绍六个基本公式,这些公式可以帮助您解决绝对值不等式。

1. 绝对值的基本性质绝对值的基本性质是:(1) 非负性:任意实数的绝对值都是一个非负的实数,即 |x| ≥ 0。

(2) 正的意义:如果一个数a大于或等于零,那么|a|等于a,即|a| = a。

(3) 负的意义:如果一个数a小于零,那么|a|等于-a,即|a| = -a。

基于这些性质,我们可以将一个绝对值不等式转化为两个简单的不等式。

例如:|x| < 5可以转化为-5 < x < 5。

2. 绝对值不等式的求解方法对于绝对值不等式来说,其求解方法主要有以下两个步骤:(1) 将绝对值不等式转化为两个简单的不等式。

(2) 解决两个不等式,求出其交集。

例如,要解决|2x - 3| ≤ 5这个不等式,我们可以将它转化为以下两个不等式:(2x - 3) ≤ 5 和 -(2x - 3) ≤ 5。

解出这两个不等式,我们得到-4 ≤ x ≤ 4。

这就是绝对值不等式|2x - 3| ≤5的解。

3. 绝对值不等式的基本形式在解决绝对值不等式时,有以下三种基本形式:(1) |f(x)| < a(2) |f(x)| > a(3) |f(x)| ≤ a 或 |f(x)| ≥ a其中,a表示实数,f(x)表示一个实数函数。

例如,|x + 2| < 5就是第一个基本形式的绝对值不等式。

4. 绝对值不等式的基本技巧解决绝对值不等式,需要掌握一些基本技巧。

其中,最重要的技巧是分段求解。

分段求解的基本思路是:(1) 将绝对值函数分段,在每个区间内分别求解。

绝对值的不等式

绝对值的不等式

绝对值的不等式什么是绝对值绝对值是一个数的非负值,也可以理解为该数到0的距离。

表示一个数a的绝对值记作|a|,定义如下:1.如果a ≥ 0,则|a| = a。

2.如果a < 0,则|a| = -a。

一元一次绝对值不等式一元一次绝对值不等式是指只含有一个未知数x的不等式,且该未知数的绝对值与常数的线性关系。

例子假设有如下不等式:|x + 2| ≤ 3。

要求解这个不等式,我们可以分成以下两种情况进行讨论:1.x + 2 ≥ 0当x + 2 ≥ 0时,|x + 2| = x + 2。

此时原不等式可以转化为x + 2 ≤3,解得x ≤ 1。

2.x + 2 < 0当x + 2 < 0时,|x + 2| = -(x + 2)。

此时原不等式可以转化为-(x + 2) ≤ 3,解得x ≥ -5。

综合以上两种情况的解集,得到最终解为-5 ≤ x ≤ 1。

绝对值不等式的解集可以表示为一个区间。

一元二次绝对值不等式一元二次绝对值不等式是指只含有一个未知数x的二次函数与常数的不等式。

假设有如下不等式:|x² - 4| > 3。

要求解这个不等式,我们可以分成以下两种情况进行讨论:1.x² - 4 ≥ 0当x² - 4 ≥ 0时,|x² - 4| = x² - 4。

此时原不等式可以转化为x² -4 > 3,解得x < -1 或 x > 3。

2.x² - 4 < 0当x² - 4 < 0时,|x² - 4| = -(x² - 4)。

此时原不等式可以转化为-(x² - 4) > 3,解得-1 < x < 3。

综合以上两种情况的解集,得到最终解为x < -1 或 -1 < x < 3 或 x > 3。

二元一次绝对值不等式二元一次绝对值不等式是指含有两个未知数x和y的一次函数与常数的不等式。

绝对值不等式总结

绝对值不等式总结

1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。

绝对值不等式推导

绝对值不等式推导

绝对值不等式推导
绝对值不等式是数学中常见的一种不等式,它的形式为|a|≤b,其中a和b为实数,|a|表示a的绝对值。

在解决数学问题时,经常需要使用绝对值不等式,因此掌握绝对值不等式的推导方法很重要。

首先,需要了解绝对值的定义。

对于任意实数a,它的绝对值表示为|a|,定义如下:
如果a≥0,则|a|=a;
如果a<0,则|a|=-a。

根据这个定义,可以推导出绝对值不等式的一般形式:
对于任意实数a和b,有|a|≤b的充分必要条件是-a≤b且a≤b。

证明过程如下:
如果|a|≤b,则有两种情况:
1、如果a≥0,则|a|=a,因此-a≤a≤b,即-a≤b且a≤b;
2、如果a<0,则|a|=-a,因此-a=-(-a)≤b,即-a≤b且a≤0≤b。

综上所述,对于任意实数a和b,有|a|≤b的充分必要条件是-a ≤b且a≤b。

绝对值不等式可以用来解决很多数学问题,例如求解一元二次不等式、证明不等式等等。

在使用绝对值不等式时,需要注意以下几点: 1、在不等式两边同时加上或减去同一个数时,需要保证该数的正负性与绝对值不等式所在的方程式一致。

2、在不等式两边同时乘以或除以同一个正数时,不等号方向不
变;如果同乘或同除一个负数,不等号方向需要反转。

3、在使用绝对值不等式时,需要注意绝对值的取值范围,避免出现错误结果。

绝对值不等式是数学中常用的一种工具,掌握它的推导方法对于解决数学问题非常有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两 个 施 工 队 每 天 往 返 的路 程 之 和 为S x k m, 那 么Sx 2| x 10 | | x 20 |.于是,上面的问题 就化归为数学问题:当x取何值时,函数 Sx 2| x 10 | | x 20 | 取得最小值.这个问题可以
应用绝对值不等式的性质来解.
解 设生活区应建于公路路碑的第xkm处,两个
| a b | a b2 a2 2ab b2
| a |2 2 | ab | | b |2
| a | | b |2
| a b |
当ab 0时, ab | ab |,
| a b | a b2 a2 2ab b2
| a |2 2 | ab | | b |2 a2 2 | ab | b2 | a |2 2 | ab | | b |2
(开方性)
定理2:(基本不等式)
如果a,b
0,那么a
+ 2
b

ab,
当且仅当a = b时等号成立。
算术平均数
C 几何平均数
几何解释
ab
A
a O DbB
两个正数的算术平均不小于它们的几何平均。
二 绝对值不等式
对于 3 个正数 a, b, c,可能有 : 如果 a, b,
c R
, 那么 a b c 3
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
定理3 如果a、b是实数,
-
-------那么||a|-|b||≤|a+b|≤|a|+|b|
当且仅当ab ≤0时, 当且仅当ab ≥0时,
等号成立.
等号成立.
将定理中的实数a、b换成向
量(或复数)仍成立
例1 已知 0,| x a | ,| y b | , 求证 | 2x 3 y 2a 3b | 5.
施工队每天往返的路程之和为Sx km,则 Sx 2| x 10 | | x 20 |.
因为| x 10 | | x 20 || x 10 | | 20 x |
| x 10 20 x| 10, 当且仅当x 1020 x 0时取等号.
解不等式 x 1020 x 0,得 10 x 20.
| a | | b |2 | a b |
所以| a b || a | | b | . 当且仅当ab 0 时,等号成立.
定理2 如果 a,b, c 是实数, 那么 | a c || a b| |b c |,
当且仅当a bb c 0 时,等号成立.
分析 由于a c, a b与b c都是实数,且
60
40
20
O 10 20 30
x
图1.2 7
一、复习
①、对称性:a b b a 传递性:a___b_,b___c__ a c ②、a b,c R ,a+c>b+c (可加性)
③、a>b,c 0 , 那么ac>bc;(可乘性) a>b,c 0 ,那么ac<bc (乘法法则)
④、a>b>0,c d 0 那么,ac>bd ⑤、a>b>0,那么an>bn.(条件n N, n (2乘方)性) ⑥、 a>b>0 那么 n a n b (条件n N, n 2)
3
abc
,当且仅当
a b c时, 等号成立.
二、学习目标
1.对深化绝对值的定义及其几何意义的理 解和掌握; 2. 理解关于绝对值三角不等式并会简单应 用. 三、学习过程
一般地,我们有 | a b || a | | b | .
为了更好地理解定理1, 我们再从代数推 理的角度给出它的证明.
证明 当ab 0时, ab | ab |,
rr 如果把 a, b 换为向量 a, b ,根据向量加法的三
rr r r 角形法则,易知 a b ≤ a b .(同向时取等号)
rr
ab
r
rb
a
rr ab
rr ab
推论 1(运用数学归纳法可得):
a1 a2 L an ≤ a1 a2 L an .
定理2 如果a、b、c是实数,
-
-------那么|a-c|≤|a-b|+|b-c|
证明 | 2x 3 y 2a 3b |
| 2x 2a 3 y 3b | | 2x a| | 3y b| 2 | x a| 3 | y b|
2 3 5 ,
所以 | 2x 3y 2a 3b | 5 .
例2 两个施工队分别被安排在公路沿线的两
个 地 点 施 工, 这 两 个 地 点 分 别 位 于 公路 碑 的 第 10km和第20km处.现要在公路沿线建两个施工 队的共同临时生活区, 每个施工队每日在生活 区和施工地点之间往返一次.要使两个施工队 每 天 往 返 的 路 程 之 和 最小, 生 活 区 应 建 在 何 处? 分析 如果生活区建成于公路路碑的第xkm处,
a c a b b c,因而定理2中,不等
式的形式与定理1 的形式一致,所以考虑 利 用 定 理1 来 证 明 定 理2 .
证明 根据定理1,有
| a c || a b b c|| a b | | b c |, 当且仅当a bb c 0时,等号成立.
定理 1(绝对值三角形不等式)如果a, b 是实数, 则 a b ≤ a b (当且仅当 ab≥0 时,等号成立.)
所以,当10 x 20时,函数
Sx 2 | x 10 | | x 20 | 取得最小值20.于是,生
活区建于两个施工地点之间的任何一个位置时, 都 能使两个施工队每天往返的路程之和最小.
画出函数 Sx 图象图1.2 7,
从 图象 上可以 直 观 地看出结 论.
s
sx 2| x 10 | | x 20 |
相关文档
最新文档