第四次课矩阵位移法详解
矩阵位移法的计算步骤及示例
单元①②和③:
35
⎡ 500 0 0 − 500 0 0 ⎤
⎢ ⎢
0
12 24
0
− 12
24
⎥ ⎥
(1)
k
=
(2)
k
=
(3)
k
=
10
3
⎢ ⎢⎢−
0 500
24 0
64 0
0 − 24 32 ⎥
500 0
0
⎥ ⎥
⎢ 0 −12 − 24 0 12 − 24⎥
⎢ ⎢⎣ 0
24 32
0
− 24
⎥ 64 ⎥⎦
8-8 矩阵位移法的计算步骤及示例 1
矩阵位移法的计算步骤:(以后处理为例)
(1)对结点和单元进行编号,建立结构(整
体)坐标系和单元(局部)坐标系,并对结
点位移进行编号。
(2)计算各杆的单元刚度矩 k (e)、k (e) 。
(3)形成结构原始刚度矩阵K。
(4)计算固端力
F
(e) F
、等效结点荷载FE及综合
⎢⎣0.0 0.0 6.0 12.0⎥⎦
由于连续梁的单元刚度矩阵为非奇异矩阵, 由此组集而成的结构刚度矩阵K 也是非奇异 的,故无需再进行支座约束条件处理。
(4)计算固端力列阵及等效结点 15 荷载列阵。
②单元的固端力列阵
F (2) F
=
⎧ 300 ⎫ ⎩⎨− 300⎭⎬kN
⋅
m
等效结点荷载列阵:
k(3)
=
⎢ ⎢ ⎢
l(3) 2EI
⎢⎣ l ( 3 )
4
2EI l(3) 4EI l(3)
⎤ ⎥ ⎥ ⎥ ⎥⎦
3 4
(3)集成结构刚度矩阵K
矩阵位移法
第9章矩阵位移法9.1 概述前面介绍的力法、位移法和渐近法都是传统的解算超静定结构的方法,它们是建立在手算基础上的。
随着基本未知量数目的增加,其计算工作极为冗繁和困难。
而计算机的问世及其广泛应用,为结构计算提供了有效工具。
矩阵位移法就是以计算机为运算工具的一种新的结构分析方法,它完全可以代替人来完成大型复杂结构的计算问题。
矩阵位移法是以位移法为理论基础,结构分析的全部过程中运用了线性代数中的矩阵理论。
引入矩阵运算的目的就是使计算过程程序化,便于把结构分析的过程用算法语言编成计算程序,实现计算机自动化处理。
目前,应用矩阵位移法编制的结构分析软件,已在结构设计中得到了广泛的应用。
矩阵位移法又称为杆件有限元法。
它的主要解题思路是:首先将结构离散成为有限个独立的单元,进行单元分析,建立单元杆端力与单元杆端位移之间的关系式——单元刚度方程;然后利用结构的变形连续条件和平衡条件将各单元组合成整体,建立结点力与结点位移之间的关系式——结构刚度方程,这一过程称为整体分析;最后求得结构的位移和内力。
矩阵位移法就是在一分一合,先拆后搭的过程中,把复杂结构计算问题转化为简单的单元分析和集合问题。
本章主要讨论杆系结构的单元刚度矩阵及其在单元局部坐标系与结构整体坐标系间的变换、结构刚度矩阵的形成、荷载及边界条件处理等内容。
9.2 单元分析9.2.1 结构离散化结构离散化是指把结构分离成有限个独立杆件(单元),由单元的组合体代替原结构(图9.1)。
一般单元为等截面直杆,杆系结构中每根杆件可以作为一个或几个单元。
单元的联接点称为结点。
对于等截面直杆所组成的杆系结构,只要确定了一个结构的所有结点,则它的各个单元也就随之确定了。
根据杆件联接的方式,可以将构造结点,如转折点、汇交点、支承点和截面的突变点取为结点。
在有些情况下,非构造点,如集中力作用点,也可作为结点处理。
离散化的结构用数字进行描述,即对各结点和单元进行编号。
通常用①,②,…表示单元编号,用1,2,…表示结点编号。
结构力学应用-矩阵位移法
3、集成总刚
(6)定位向量法:对号入座,同号相加 定位向量法:对号入座,
4.综合结点荷载
综合结点荷载 {F}={FD}+{FE} }――直接结点荷载 ①{FD}――直接结点荷载 }――等效结点荷载 ②{FE}――等效结点荷载 (7-1)局部坐标系单元固端力 (7-2)整体坐标系单元固端力 (7-3)单元等效结点荷载。 单元等效结点荷载。
等效原则: 等效原则: ——两种荷载对基本体系产生相同的结点位移。 两种荷载对基本体系产生相同的结点位移 ——两种荷载对基本体系产生相同的结点位移。
矩阵位移法的计算步骤及示例
矩阵位移法计算平面刚架 计算机计算――程序化) 程序化) (计算机计算 程序化
1. 编码、整理原始数据 编码、
(1)整体与局部坐标系 ) (2)结点位移编码 ) 单元编码 (3)原始数据: )原始数据: E 、A i、I i、l i 定位向量{λ} 定位向量 e, αi([ T ]) ])
几点补充说明
1、结点位移分量编号,定位向量 、结点位移分量编号,
——引入支承条件:已知位移约束的方向,编码为零。 引入支承条件:已知位移约束的方向,编码为零。 引入支承条件
2、铰结点处理: 铰结点处理: 铰结点处理
铰结的各杆杆端的转角均为基本未知量 ——分别编码(统一单元,程序简单) 分别编码(统一单元,程序简单) 分别编码
矩阵位移法
矩阵位移法——基本原理与位移法相同 基本原理与位移法相同 矩阵位移法 *数学工具 —— 矩阵运算
1、矩阵知识 矩阵: (1)矩阵:A 方阵: 方阵: 阶方阵A相应的行列式 (2)行列式:n阶方阵 相应的行列式 )行列式: 阶方阵 相应的行列式D 若D=0,A为奇异矩阵 (3)矩阵运算 相等:加减:数乘: 相等:加减:数乘: l aik 乘法: 乘法:Cmn=Aml*Bln,则 cij =
矩阵位移法基本原理
1 ④
①
2 ⑤
②
⑥ 6
3 ⑧ 7 11 P2
P1
⑦
⑨ y
5
⑩
x
其形成已随结点号和单元号的形成而产生。但还要指定
始结点和终结点(随意指定),这很重要。
1 ③ 4 ⑨ ④
①
2 ⑤
②
⑥ 6
3 ⑧ 7 11 P2
P1
⑦
5
⑩
图示结构的关联节点表可如下:
单元 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 11
0 y 4
1
2
3
P1
6 7 5 P2 x
任意选定坐标系,依结点号顺序给出结点坐标。
目的是计算杆长,杆的方向,以计算坐标转换矩阵。
此信息可存放在二维数组中
3.单元编号
不受结点号的影响, 任意编号。目的是 给出计算机计算顺序。 4.单元关联节点表 它是计算的重要信息表, 0 是获得坐标转换矩阵、 组装总刚度矩阵的依据
e ij e jj
e
同样,把
F e ,D
Yi
vi
T
e
也相应分块,写为:
eT
F X i
e
Xj
uj
Y j Fi
eT
e
D
e
e
i u
v j Di
j
e
F D
j
e T j
e T
Fi X i
e e
Yi ,
e
F X
0 0 0 0
T
K
e
EA L 0 EA L 0
e i
EA L 0 EA L 0
《矩阵位移法》课件
实际工程案例分析
总结词
为了验证矩阵位移法的有效性,可以通过实际工程案例 进行分析。通过与实验结果的对比,可以评估方法的精 度和可靠性。
详细描述
选取具有代表性的实际工程案例,如高层建筑、大跨度 桥梁等,利用矩阵位移法进行计算,并将结果与实验数 据进行对比。通过对比分析,可以评估矩阵位移法的精 度和可靠性,为该方法在实际工程中的应用提供依据。 同时,也可以针对不同工程案例的特点,对矩阵位移法 进行优化和改进,提高其适用性和计算效率。
05
矩阵位移法的优缺点
优点
精确度高
矩阵位移法基于严格的数学推导,能 够精确地计算出结构的位移和内力, 尤其适用于复杂结构的分析。
适用性强
矩阵位移法可以处理多种类型的载荷 ,包括静载、动载以及温度载荷等, 适用范围广泛。
便于计算机化
矩阵位移法的计算过程可以通过计算 机程序实现,便于进行大规模的结构 分析。
多尺度方法
将矩阵位移法应用于多尺度问题 ,考虑不同尺度之间的相互作用 和影响,为复杂系统提供更准确 的模拟结果。
THANKS
感谢观看ts
目录
• 引言 • 矩阵位移法的基本概念 • 矩阵位移法的实施步骤 • 矩阵位移法的应用实例 • 矩阵位移法的优缺点 • 未来展望与研究方向
01
引言
什么是矩阵位移法
矩阵位移法是一种数值分析方法,用 于求解线性方程组和解决各种数值计 算问题。
它通过将原问题转化为矩阵形式,利 用矩阵运算来求解未知数,具有高效 、精确和灵活的特点。
并行计算
利用并行计算技术,将计算任务分解为多个子任务,同时运行在多 个处理器上,加快计算速度。
智能优化
结合人工智能和机器学习技术,自动调整算法参数,实现自适应优 化,提高算法的效率和稳定性。
矩阵位移法
k22坐k11标局k01成部1k029坐200标时kk20与32,3 整局k0体12部45 单k0k20514
0 k26 k26
To 47
k e ke
刚和有何整k关体3k3系单33 ?刚k0k间454535
k35 00
k3k6 36
0 k56
对称对称
kk5544
kk65k66 66
F e FEe k e e
单元杆端位移矩阵
e 1
2
3
4
T e
单元刚度矩阵(应熟记)
12 6l 12 6l
k
e
EI l3
6l
12
4l 2 6l
6l 12
2l
2
6l
6l 2l 2 6l 4l 2
是转角位移方程的矩阵表示
单元等效结点荷载矩阵
根据单跨梁的载常数,可得
向上满跨均布荷载 q 作用
(F FE )e k e e F e FEe k e e
连续梁单元需要 进行坐标转换吗?
连续梁的局部坐标与整 体坐标一致,所以不需 要转换。
第一种做法
桁架单元如何
进行坐标转换? T
力的转换
T
F1
F2
F3
F4
T
cos
0
位移的转换
sin
0
0
cos
0 T F1
sin F2
1 2
3. 坐标转换问题
在搞清单元特性后,像位移法一样,需将单 元拼装回去。在结点处位移自动满足协调条件 的基础上,令全部结点平衡,即可建立求解位 移的方程,这是下一节将讨论的内容。
除连续梁外,一般结构单元不全同方位, 为保证协调和平衡,应将杆端位移和杆端力 都转换成统一的,对整体坐标的量,因此要 先解决坐标转换问题。下面先讨论自由式梁 单元的转换问题。
矩阵位移法程序化解题方法
矩阵位移法解法步骤解:1)、单元及结点位移分量统一编码单元及结点位移分量编码、整体坐标系如图所示,局部坐标系横轴正向在各单元上标出。
注:编结点位移分量总码时,后处理法和先处理法有区别:采用后处理法编码时暂不考虑边界条件对支座处位移分量的限制,皆视为一般情形处理;采用先处理法时,对已知为零的位移分量总是以零编码。
对于连接于铰结点的杆端编码时,线位移采用同码,而角位移异码。
2)、形成局部坐标中单元刚度矩阵 k e:首先,计算各单元杆件的几何特征:⋯ ⋯各单元的单元刚度矩阵如下:单元①: ⋯ ⋯3)、形成整体坐标中单元刚度矩阵:(计算公式: k e = T T ke T ) 整体坐标系中的各单元刚度矩阵转换如下:单元①: ⋯ ⋯4)、集成整体刚度矩阵 K (单元集成法或直接刚度法):首先,由各单元的局部码与总码的对应关系写出各单元的定位向量如下:λ e = ⋯ ⋯ T其次,将各单元刚度矩阵 k e 按其定位向量 λ e 在整体刚度矩阵 K 中定位并累加 得整体刚度矩阵如下:K =(⋯ ⋯)5)、计算综合等效结点荷载向量 F P :①、计算局部坐标系中各杆件单元的固端力向量:F P e =(F N1F ,F Q1F ,M 1F ,F N2F ,F Q2F ,M 2F )T ②、转换整体坐标系中各杆件单元的固端力向量:{F P }e =(F x1F ,F y1F ,M 1F ,F x2F ,F y2F ,M 2F )T ③、将各杆件单元的固端力反其指向,并按其定位向量 λ e 在综合等效结点荷载向量 F P 定位并累加,得综合等效结点荷载向量如下:F P = ⋯ ⋯ T6)、计入边界条件条件,写出刚度方程并解之:刚度方程: K Δ = F P采用后处理法时,对已知为零的结点位移,在整体刚度矩阵 K 中将其所对应行列的主元素记为1,其余都变为零,然后写出刚度方程,解之。
采用先处理法时,由于在进行位移分量编码时已考虑边界条件,因而无须再计入,只写出刚度方程求解即可。
矩阵位移法
TT T T T T I
Fx1 F y1 M1 单元坐标 转换矩阵 F x2 Fy 2 M 2
e
Hale Waihona Puke eF e TF e
T 1 T T
单元坐标转换矩阵T是一正交矩阵。
EI 25 104 kN m l
0 300 0
5m
0 为了简洁,下面将矩阵 中各元素的单位略去。 12 30 0 12 30 30 100 0 30 50 4 EA 10 0 0 l 0 0 300 0 0 12 30 0 12 30 12 EI 6 EI [k11 ] 0 3 2 30 50 0 30 100 l l 6 EI 4 EI 第一列元素变符号即第四列,第二列元素变符号即第五列 0 ①: 2 ②求整体坐标系中的单刚, k l l 第一行元素变符号即第四行,第二行元素变符号即第五行
3、有限单元法的三个基本环节: ①单元划分:一根等截面直杆作为一个单元,单元间由结点相联。 ②单元分析:建立单元刚度方程,形成单元刚度矩阵(物理关系)。 ③整体分析:由单元刚度矩阵形成整体刚度矩阵,建立结构的 位移法基本方程(几何关系、平衡条件)。
§9-2 单元刚度矩阵(element stiffnessmatrix)(局部坐标系)
T11 T12 T T T 21 22
因此,(a)式的逆转换式为: 同理
F e T TF e
e T e
(b)
e T T e
整体坐标系中的单元刚度矩阵
F e TF e
(a)
e T e
(b)
单元刚度矩阵的性质 设局部坐标系中、整体坐标系中的单元刚度方程分别为: ①单元刚度矩阵是杆端力用杆端位移来表达的联系矩阵。 e e e F k Δ (c) ②其中每个元素称为单元刚度系数,表示由于单位杆端位移引起的杆端力。 ③单元刚度矩阵是对称矩阵。 F e k eΔe (d ) ④第k列元素分别表示当第k个杆端位移=1时引起的六个杆端力分量。 e e e e ⑤一般单元刚度矩阵是奇异矩阵。不存在逆矩阵。因此, 将式(a)、(b)代入式(c) k eT IF T T TTF ke T T 可由单元刚度方程,由杆端位移唯一确定杆端力;但由杆端力反推杆端位移时, 可能无解、可能解不唯一。 k e T T k eT
矩阵位移法
D1 = D2 = 0
; D5 = D6 = 0
则有修正后的总刚度矩阵:
-100 2 [K ] = 100 600
[k11 ] [k12 ] {F1} = {F2 } [k 21 ] [k 22 ]
{D1} {D 2 }
@
单元刚度矩阵的性质:①对称性;②奇异性; ③主对角元恒为正值
3、整体刚度矩阵
K ij :单元仅发生第j个杆端单位位移时,在第
Y2 = QBA
写成矩阵表达式为:
4 EI 2 EI 6 EI q + q + -v ) ( v l 1 l 2 l2 1 2 2 EI 4 EI 6 EI q + q + -v ) ( M2 = v l 1 l 2 l2 1 2 6 EI 12 EI (v1 - v2 ) Y1 = (q1 +q 2 ) + l2 l2 6 EI 12 EI = q + q (v1 - v2 ) Y2 ( 1 2) l2 l2 M1 =
2
3
1 2
Hale Waihona Puke 3-1 50 1 50 50 300 -50 150 -1 -50 2 -100 -1 -50 = 50 150 -100 600 50 150 -1 50 1 50 -50 150 50 300
计入边界条件:因边界结点1和3 为固定端,故有:
0 12EI l3 6 EI - 2 l 0 12EI l3 6 EI - 2 l
@
0 6 EI l2 2 EI l 0 6 EI - 2 l 4 EI l
EA l 0 0
矩阵位移法
矩阵位移法
矩阵位移法是一种用于解决多项式方程组的数学方法。
它利用行和列变化将原系数矩阵转换成一个三角矩阵。
然后,从底端开始一行行解对角线的方程,最终求出未知数的值,解决多项式方程组。
矩阵位移法的基本步骤如下:
1.将系数矩阵进行行变换和列变换,转换成三角矩阵。
2.从最下面的方程开始,先求解最后一个未知数。
3.从次下面的方程开始,根据前面的结果一行行解出剩余未知数。
矩阵位移法比较容易理解和应用,可以有效地解决多项式方程组,但也存在一些缺点,比如容易出现几何错误,计算精度较低。
矩阵位移法过程
矩阵位移法过程嘿,朋友们!今天咱就来好好唠唠矩阵位移法这个神奇的玩意儿。
你想想啊,矩阵位移法就像是搭积木,一块一块地把整个结构给拼凑起来。
只不过这积木有点特别,是用数字和公式搭成的。
咱先说说这第一步,得确定结构的节点和单元吧。
这就好比是给要盖的房子先确定好柱子和梁的位置。
每个节点就像是一个关键点,单元呢就是连接这些关键点的部件。
然后呢,咱要给这些节点和单元编上号,就跟给小朋友分学号似的,可不能乱了套。
接下来,就得建立这些节点和单元的关系啦。
这就像是给每个积木块找到它该放的位置,它们之间的连接呀、力的传递呀,都得搞清楚。
这可不是个简单事儿,但咱得耐着性子慢慢来。
然后呢,咱要根据这些关系列出矩阵。
哎呀呀,这矩阵可就像个大表格,里面装满了各种数字和符号。
别被它吓着,其实它就是把那些复杂的关系用一种整齐的方式表现出来。
再说说这计算过程,就跟解谜题似的。
你得一步步地去推导、去计算,找到那个正确的答案。
有时候可能会遇到一些难题,就像走在路上碰到了一块大石头,但咱可不能退缩,得想法子把它挪开或者绕过去。
还有啊,这矩阵位移法还得考虑各种边界条件呢。
就好像盖房子得考虑地基稳不稳呀,周围环境怎么样呀。
这些边界条件可不能马虎,要不然整个结构可就不牢固啦。
咱在实际运用的时候,可得细心再细心。
一个小数字算错了,可能整个结果就全错啦。
这就跟下棋一样,一步错步步错。
总之呢,矩阵位移法虽然有点复杂,但它可是结构分析的得力助手呢!只要咱认真学,多练习,就一定能掌握它。
别害怕困难,别嫌麻烦,等你真正搞懂了它,你就会发现它的神奇之处啦!就像打开了一扇通往新世界的大门,让你看到结构背后的奥秘。
所以呀,加油吧朋友们,和矩阵位移法这个小伙伴好好相处,让它为我们的工程建设出一份力!原创不易,请尊重原创,谢谢!。
矩阵位移法
单刚阵 [K e ] 中某一列的六个元素表示当某个秆端位移 分量等于1时所引起的六个杆端力分量。 生单位位移)时,单元的六个杆端力分量。
u ie 1 (即端点i沿 x 正方向发 第1列的六个元素就是当
§10-2 单元刚度矩阵
从单刚元素的物理意义出发得到单刚阵
单元杆端位移示意
6
2
3
4
5
§10-1 概述
矩阵位移法基本思想: •化整为零 ------ 结构离散化
将结构拆成杆件,杆件称作单元。 单元的连接点称作结点。
5
6
6
2
3
3
5
4
1
1
4
2
对单元和结点编码. 基本未知量:结点位移
•单元分析
单元杆端力
单元杆端位移
------ 整体分析
e
•集零为整
结点外力
单元杆端力 结点外力 单元杆端位移
整体
分析
由变形条件和平衡条件 建立结点力与结点位移 间的刚度方程,形成整
用矩阵形式表示位
移法基本方程
体刚度矩阵
§10-1 概述
四、基本概念
1. 结点和单元
单元——最基本的分析部件,最简单的单元是等截面 直杆。 梁单元——受轴力、还受剪力和弯矩作用则称为梁单 元(梁、刚架)。 轴力单元——只受轴力作用的单元(桁架)。 单元与单元之间通过结点联结,结点一经确定,则单 元也就全部确定了。 构造结点:杆件的转折点、汇交点、支承点和截面突 变点。 非构造结点:一根等截面直杆内的单元与单元之间的 结点。
(1) 公式推导书写简明,导出公式紧凑,形式规格化。 (2) 各种情况可统一处理,通用性强。 (3) 计算过程规范化,适合计算机进行自动化解算。 矩阵力法(或称柔度法)——以力作为基本未知量。 矩阵位移法(或称刚度法)——采用结点位移作为基 本未知量。借助矩阵进行分析,并用计算机解决各种 杆系结构受力、变形等计算的方法。
矩阵位移法的计算步骤及示例
1
2
3
4
K
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣
k (2) 11
=⎢⎢⎢⎢−10/2 ⎢⎣ 0
3/2 0
⎥⎢ 0 ⎥ EA⎢ 3
1 −3
0
3/2
1/2
⎥ ⎥
8l
⎢ ⎢
−3
−3
3
0 −1/2 3/2⎥⎦ ⎢⎣− 3 −1 3
−1 3 1
⎥ ⎥ ⎥ ⎥ ⎥⎦
FPl
⎪⎪ ⎨
0
⎪⎪ ⎬
EA⎪ 1.67381⎪
⎪⎩−.03849⎪⎭7
⎧− 0.6285⎫
=
⎪⎪ ⎨ ⎪
0 0.6285
(3) 计算结构坐标系中的单刚 36
单元②和③ θ(2) = θ(3) = 90D
cosθ = 0 sin θ = 1
坐标转换矩阵为:
⎡0 1 0
⎤
⎢⎢−1 0 0
0
⎥ ⎥
T (2)
= T (3)
=
⎢ ⎢
0
01
⎥ ⎥
⎢
0 1 0⎥
⎢0 ⎢
−1 0 0⎥ ⎥
⎢⎣
0 0 1⎥⎦
计算结构坐标系中的单刚
⎫ ⎬
⎩Δ1 ⎭
⎡ 0 1 0 0⎤ ⎡0 0 0 0 ⎤ ⎧ 0 ⎫
=
⎢⎢−1 ⎢0
⎢ ⎣
0
0 0 0
0 0 −1
0⎥⎥ EA⎢⎢0 1⎥ 8l ⎢0 0⎥⎦ ⎢⎣0
16 0 −16
0 0 0
−16⎥⎥
0⎥
16
⎥ ⎦
FPl EA
⎪⎪ 0 ⎪⎪
⎨ ⎪
1.67381
⎬ ⎪
⎪⎩− .038497⎪⎭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在算法语言中,可用一个2维数组记忆一个矩阵 3、行矩阵和列矩阵 A= a11 一个单独的行组成的矩阵称为行矩阵,如: a12 a13 · · · a1n
[
]
由单列组成的矩阵称为列矩阵,如: 在算法语言中,可用一个1维数组记忆
a1 a 2 T A an
4、纯量
般情况。
符号规则:图(a)表示单元编号、杆端编号和局部座标,局部座标的 x 座标与杆轴重合;图(b)表示的杆端位移均为正方向。 1 (a) EAI 2
e
y
1
v1
x
l
1 2
单元编号 杆端编号 局部座标 杆端位移编号
(b)
2
u2
u1
v2
2
(c) X 1
1 M1
Y1
M2 X2 Y2
杆端力编号
(1)单元杆端位移向量
(e) (e)
M2 X2 Y2
(1) u1 v ( 2) 1 1 (e) ( 3) ( 4) u2 ( 5) v2 2 ( 6)
1
(2)单元杆端力向量
1 M1
1
v1
u1
2
2
u2
2
X1
v2
(e) (e)
Y1
F(1) X1 F ( 2) Y1 M1 (e) F( 3) F F( 4 ) X2 F(5) Y2 F M 2 ( 6)
8、对角矩阵
对角矩阵是除主对角元素外,其余元素全为零的方阵,如:
a11 0 D= 0 0 0 a 22 0 0 0 0 O 0 0 0 0 a mm
9、单位矩阵
单位矩阵是一个对角矩阵,它的非零元素全为 1 用 I 表示 ,如
1 0 I = 0 0 0 1 0 0 0 0 O 0 0 0 0 1
第九章
矩阵代数复习
1、矩阵定义 一组元素按行、列次序排列成的矩形阵列称为矩阵。若矩阵 的元素排列为m 行和n列,称为mn 阶矩阵。
a11 a12 a21 a22 A= M am1 am2
2、方阵
L a1n a L 2n O M L amn
一个具有相同的行数和列数的矩阵,即m=n 时,称为 n 阶方阵。
共形
2× 2
2 ×1
非 共形
b11 a11 a12 B A= a a b 21 21 22
2 ×1 2 ×2
(2)不具有交换律,即
AB BA
6、转置矩阵
将一个阶矩阵的行和列依次互换,所得的阶矩阵称之为
原矩阵的转置矩阵,如:
a11 a12 A= a21 a22 a31 a32
任务
单元
意义 用矩阵形式表示杆
件的转角位移方程
建立杆端力与杆端位移
间的刚度方程,形成单 元刚度矩阵
分析
整体 分析
由变形条件和平衡条件 建立结点力与结点位移 间的刚度方程,形成整 体刚度矩阵
用矩阵形式表示位 移法基本方程
二、结构的离散化 1、定义:把结构离散为单元与结点的组合。。 2、单元的划分原则:单元是等截面直杆
3、单元的划分办法:
1)先确定单元的结点,划分单元的结点一般是 杆件的汇交点、支承点和截面突变点 2)结点确定后,结点之间的单元也就随之确定 了
3)对单元和节点进行编号
不考虑杆件 内部载荷
1
1
2 4
1 2 3 1
3 4
2
2
3
5
4 5 6
3
6
4
5
三、杆端位移、杆端力的正负号规定
一般单元: 指杆件除有弯曲变形外,还有轴向变形和剪切变形的单元, 杆件两端各有三个位移分量,这是平面结构杆件单元的一
凡是符号上面带了一横杠的就表示是基于局部座标系而言的。
§9-2
单元刚度矩阵(局部座标系)
进行单元分析,推导单元刚度方程和单元刚度矩阵。 现在讨论单元刚度方程。单元刚度方程是指由单元杆端位移求单元杆 端力时的一组方程,可以用“ F ”表示,由位移求力称为正问题。
(2)矩阵的行列式不为零,即矩阵是非奇异矩阵(行列式为零的矩
阵称为奇异矩阵)。
11、正交矩阵 交矩阵,如 若一方阵A 每一行(列)的各个元素平方之和等于1,而 所有的两个不同行(列)的对应元素乘积之和均为零,则称该矩阵为正
cos a A = - sin a
sin a cos a
-1
任意矩阵与单位矩阵相乘仍等于原矩阵,即 AI =A IA =A
10、逆矩阵 在矩阵运算中,没有矩阵的直接除法, 除法运算由矩阵求逆来完成。例如,若 此处 A-1 则 AB = C 称为矩阵 A 的逆矩阵。
B=A 1 C
A A 1 = A 1 A =I
在算法语言中,可用消元法 等实现方程求解
-
-
一个矩阵的逆矩阵由以下关系式定义: 矩阵求逆时必须满足两个条件: (1)矩阵是一个方阵。
其转置矩阵为
a11 a21 a31 A a a a 12 22 32
T
当连乘矩阵的乘积被转置时,等于倒转了顺序的各矩阵的转置 矩阵之乘积。若
A=B C D
则
7、零矩阵
AT =DT CT BT
元素全部为零的矩阵称为零矩阵,用0表示。 若 AB=0, 但不一定 A=0 或 B=0。
仅由一个单独的元素所组成的11阶矩阵称为纯量。 两个规则:
5、矩阵乘法
(1)两个矩阵仅当他们是共形时才能相乘,即
Am ´ p Bl ´n = Cm ´n
当p = l 时才能相乘
在算法语言中, 可用一组循环实 现计算
a11 a12 b11 A B= a a b 21 22 21
正交矩阵的逆矩阵等于其转置矩阵,即 A
= AT
§9-1 概
述
矩阵位移法的理论基础是传统的位移法,只是它的表达形式采用矩阵 代数,而这种数学算法便于编制计算机程序,实现计算过程的程序化。
பைடு நூலகம்
一、矩阵位移法的基本思路
矩阵位移法又可以称为杆件结构的有限元法; 矩阵位移法的基本步骤是 (1)结构的离散化(2)单元分析;(3)整体分析,