第二十届“华杯赛”决赛小高组试题C

合集下载

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛模拟题(小高组)1.计算:22222221234201520162017-+-++-+ 【解析】 原式22222222017201654321=-++-+-+ (20172016)(20172016)(32)(32)1=-⨯+++-⨯++2017201620152014321=+++++++()120171201720351532=⨯+⨯= 2.幼儿园的老师把一些画片分别给A 、B 、C 三个班,每人都分到6张,如果只分给B 班,每人能得15张,如果只分给C 班,每人能得14张,如果只分给A 班,每人能得 张.【解析】 设三个班的总人数为x 人,A 班、B 班、C 班的人数分别为a ,b ,c , 则61514x b c ==,从而62155b x x ==,63147c x x ==,所以2365735a x x x x =--=,因此将这些画片分给A 班,每人能得663535x x ÷=(张). 3.A 、B 两杯食盐水各有40克,浓度比是3:2.在B 中加入60克水,然后倒入A 中________克,再在A 、B 中加入水,使它们均为100克,这时浓度比为7:3.【解析】 在B 中加入60克水后,B 盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水中的盐的质量比仍然为3:2,B 中的盐占所有盐的质量的22325=+,但最终状态下B 中的盐占所有盐的质量的337310=+,也就是说B 中的盐减少了32111054-÷=,所以从B 中倒出了14的盐水到A ,即25克. 4.如图,点E 是长方形ABCD 的对角线AC 上任一点,过E 作AB 与BC 的垂线分别交AB 、BC 于F 、G ,连接DF 、FG 和GD 。

已知8AB =、10AD =、三角形DFG 的面积为30,则长方形BGEF 的面积为 。

G F EC DB A解析:205.四边形ABCD 中,,,E F I 是AB 上的四等分点,,,H G J 是DC 上的三等分的点,如果30,25,AEHD EFGH S S ==,求IBCJ S 。

华杯赛小高近 真题 附详解 C

华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】

2015年第二十届华杯赛决赛C卷详解(高年级组)

2015年第二十届华杯赛决赛C卷详解(高年级组)

1 =336(千米)。 4
3
成都市青羊区金河路 59 号尊城国际 13 楼 1305 10.
68890961
【答案】33 【解析】最简分数的分母只含有 2 或 5,化为小数才为有限小数 分母形式只能是: 2 5 ,且 2 5 2016 ,则 5 2016, b 4
a b a b
【答案】101 【解析】由于∠ADH+∠IDE=90°,则△AHD 与△DIE 完全相同, 则 S△AHD=S△DIE=11×9÷2,可得 AH=DI=9,HB=11-9=2, 得 S 阴影=SABEI-S△DIE-S△ADH-S△HBE= (11+9)×11-11×9÷2-11×9÷2-2×20÷2=101.
5
成都市青羊区金河路 59 号尊城国际 13 楼 1305 14.
68890961
【答案】3 【解析】① 若 48 名学生分到的数量互不相同,则 至少要: 0 1 2 3 47 1128 530 ,不满足条件 ② 若只有 2 名学生分到的书数量相同,则 至少要: (0 1 2 3 23) 2 552 530 ,不满足条件 ③ 若有 3 名学生分到的书的数量相同,则 至少要: (0 1 2 3 15) 3 360 530 ,满足条件 综上所述:至少有 3 名学生分到的书的数量相同。
成都市青羊区金河路 59 号尊城国际 13 楼 1305
68890961
第二十届华罗庚金杯少年数学邀请赛
决赛 C 试卷(小学高年级组) 一、选择题(每小题 10 分,共 80 分.)
1. 科雅数学 电话:68890961,86111521; 科雅小升初 QQ 交流群: 194587786; 科雅 5 年级 QQ 交流群:252737962; 科雅 3,4 年级交流群: 217107180;

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛决赛试题C 参考答案 (小学高年级组)一、填空题(每题10分, 共80分)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9.答案: 336千米解答.设A 和B 两地距离是336千米(1)乙车上午7点从B 出发,10点30分到A 地,说明乙车走完全程需要3小时30分;丙车上午7点从中点C 出发,10点丙车到达A 地,说明丙车走半程需要3小时,走完全程需要6小时,所以, 3.573.5=6 612⨯⨯==丙速乙速丙速,乙速;(2)当甲车和丙车相遇时,乙车恰好走完全程的38,所以,142338+==甲速丙速乙速,结合(1),可知:493=34=-=甲速7乙速1212; (3)当乙车走到A 地时,甲车距离B 地还有84千米,84484336AB AB AB -==⨯=甲的速度,乙的速度(千米).10.答案: 33解答. 注意,可化为有限小数的分数的分母的质因数只能是2和5.2015个分数12,13,14,…,12014,12015,12016中, (1)分母只有质因数2的分数:23101111121024222,,,=,10个;(2)分母只有质因数5的分数:234111115625555,,,=,4个; (3)分母只有质因数2和5的分数:23811111251280252525⨯⨯⨯⨯,,,,=,222326211111160025252525⨯⨯⨯⨯,,,,=,323334311111200025252525⨯⨯⨯⨯,,,=,411125025⨯=,19个. 所以,共有10+4+8+6+4+1=33个有限小数. 11.答案: 9解答. a + b =9.通分,a b a b ++=755735. 由小数点第3位经四舍五入,故有:52.675=..a b ⨯≤+<⨯15053575151535=53.025,既然a ,b 为正整数,a b ≤+≤537553,即:a b +=7553.解出a b ==4,5,故a + b =9. 12.答案: 3015.解答. 四位数abcd 最大值是3015.显然,e d ≠=0,5.并设e f =-10,这里f ≥1,故有:abc aa e =⨯55,abc aa aa f =-⨯5505,所以,bc a aa f =-⨯5505. 上式右端a 50大于aa f ⨯5,所以f =1,50bc a =-55,得到:b =0和a c +=4.所以abcd 最大值是3015.三、解答下列各题(每题15分, 共30分, 要求写出详细过程)13.答案: 35 cm 2.解答.△CDE 的面积是35 cm 2.连接BD ,见图3a ,由共边定理,ABF DBF S S ∆∆==82123. (1)由已知条件ABCD 是平行四边形和三角形面积公式,可知:()ABF DBF ABF S S S ∆∆∆+=+1722,(2) 由(1)和(2),得到,ABF S ∆=18cm 2.所以ABE S 18810∆=-=cm 2.平行四边形ABCD 的面积=(72+18)=90(cm 2),BCE AED ABCD S S S 平行四边形11904522∆∆+=⨯=⨯=,=BCE AED AEF DEF S S S S 45454581225∆∆∆∆=-=--=--.所以,△CDE 的面积=72-25-12=35cm 2.14.答案: 3名解答. 至少有3名学生分到的书的数量相同.如果48名学生分到的书籍的数量不同,则书籍总数是:474801234711282⨯+++++==(本), 1128大于530,显然会有2名以上学生分到的书籍的数量相同.将48名学生分成24组,每组有2名学生,如果允许每组内的两名学生分到相同数量的书籍,但是不同组的学生分到的书籍数量不相同,则书籍的总数是:()20123232324552⨯+++++=⨯=,552仍然大于530,希望最多仅有两名学生分到的书籍的数量相同是做不到的.图3a所以,至少有三名学生分到的书籍的数量相同.现在将530本书分给48名学生,相当于拆分一个自然数530,()530201232224=⨯++++++.上式的含义是有23组共46名学生,同一组内的学生分到相同数量的书籍,但是不同组的的学生分到的书籍数量不同,则一共有()⨯+++++=(本),2012322506余下的24本书分给第24组的2名学生,则至少有一个学生分到的书籍的数量不大于22.所以,一定有3名学生分到相同数量的书籍.。

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x =.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+= 1 .【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8 种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479 .【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101 平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析故答案是:S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8 种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是224 平方厘米.【分析】长宽高的和是:88÷4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2 .【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569 .【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B 地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.2×S▱ABCD、而S△BDF=0.6×S△ABD=0.3×S▱ABCD;S△BCDF=S△BFD+S△BCD,求出S▱ABCD;由S△ABF=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;S△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;故S△ECD=45.答:S△ECD的面积为45cm2.14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:59:44;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第二十届“华杯赛”决赛小高组试题A答案解析

第二十届“华杯赛”决赛小高组试题A答案解析

此时对应的数是115、552 或 232、435 .
10.酒店有 100 个标准间,房价为 400 元/天,但入住率只有 50%,若每降低 20 元的房价, 则能增加 5 间入住,求合适的房价,使酒店收到的房费最高.
【考点】组合、最值 【难度】☆☆☆ 【答案】22500 【分析】初始状况是:400 元、50 间, 设降价了 x 个 20 元, 房费是: (400 20x)(50 5x) 100(20 x)(10 x)
7.一次数学竞赛有 A、B、C 三题,参赛的 39 个人中,每个至少答对了一道题.在答对 A 的
人中,只答对 A 的比还答对其它题目的多 5 人;在没答对 A 的人中,答对 B 的是答对 C 的
2 倍;又知道只答对 A 的等于只答对 B 的与只答对 C 的人数之和,那么答对 A 的最多有
______________人. 【考点】组合、容斥原理、最值问题 【难度】☆☆☆☆ 【答案】23 【分析】根据题意得,如下图所示:只答对 A 的人数是 3b a ,答对 A 还答对其他题目的人
S D G I F A 84 若从 2 以上开始, S 77 ,不可能,所以这十一个数是 1~11 则 S=66,则 D G I F A 18 8 4 3 2 1 7 5 3 2 1 6 5 4 2 1 分(1)(2)(3)情况讨论: (1) H 12 矛盾 (2) E 7 矛盾 (3)
个数和为 6 a b c d 1111 73326 ,得 a b c d 11 ,此时只有数字 1、2、
3、5. 这些四位数中最大的是 5321.
6.如右图所示,从长、宽、高分别为15cm , 5cm , 4cm 的 长方体中切割走一块长、宽、高分别为 ycm , 5cm , xcm 的

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。

第20届华赛杯小学高年级组数学邀请赛试题(含答案)

第20届华赛杯小学高年级组数学邀请赛试题(含答案)

个同学成绩最小,则第 2 个同学成绩取最大值
为:98,进而求出另三位同学的总成绩,进而
根据“总成绩÷总人数=平均分”能求出另三名同
学的平均分,继而分析、推导得出所求问题的
答案.
解答:
解:92.5×6﹣99﹣76=380(分),
由于最高分是 99 分,所以第二个的最好成绩
第 5页(共 21页)
点评:
故选:B.
点评:
本题主要考查了学生根据排列的知识和抽届
原理来解决问题的能力.
二、填空题:(每小题 10 分,满分 40 分) 7.(10 分)在每个格子中填入 1﹣6 中的一个,使得每行、每列及每个 2×3 长方形内(粗线 框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和 是质数,那么四位数“相约华杯”是 4123 .
考点: 专题:
幻方. 菁优网版 权所有
传统应用题专题.
第 7页(共 21页)
分析: 解答: 点评:
通过分析: 如图:
因为第三行存在 1.、3、4,所以 A 为 2,5, 6 之一,而 3 与 A 的和是质数,所以 A 为 2.在 A 所在的长方形中,还剩下 1、4、5、6 没有 使用.而 3 与“相”的和是质数,所以“相”是 4.“相”与”“约”的和为质数,“约”为 1,“约” 与”“月”的和为质数,“月”为 6,剩下的 C 为 5. 第三行只剩下数字 5,所以 B 为 5;在 B 所在 的长方形中,还剩下 2、3、6 没有使用.而 4 与“杯”的和是质数,所以“杯”为 3,“杯” 与”“华”的和为质数,所以“华”为 2,剩下的 D 就是 6,;所以四位数“相约华杯”是 4123,据 此解答即可. 解:如图:
6.(10 分)一个由边长为 1 的小正方形组成的 n×n 的方格网,用白色或黑色对每个小正方

第二十届华杯初赛小学高级组C卷(含解析)

第二十届华杯初赛小学高级组C卷(含解析)

第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)(时间:2014 年 3 月 14 日 10:00〜11:00)一、选择题(每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内 )『9 11 13 1517 )1 11120 一30 42 5672 丿 3 43.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、 下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁: “你们3人中至多有2人捐了款” 己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这 4位同学是()A .甲、乙 B.丙、丁 C.甲、丙D.乙、丁4.六位同学数学考试的平均成绩是 92.5分,他们的成绩是互不相同的整数,最高的那么按分数从高到低居第三位的同学的分数至少是().A. 94 B . 95 C. 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线 AC 上一点;如果 DEH 、•汨EH 、厶BCH 的面积 依次为56、50、40,那么 CEH 的面积是(). A. 32B . 34C. 35D. 366.—个由边长为1的小正方形n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4个用上的小正方形不全同色,那么正整数的最大值是(). A . 3 B. 4 C. 5D. 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯 是 __________ .&整数n —共有10个约数,这些约数从小到大排列.笫 8个是-.那么整数的最大值是=(20 A. 42B. 43C.2.如图, 有一排间距相同但高度不等的小树,1 2 15— D. 1633这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6 B. 2.4 C. 2.2 D. 2.0丙、丁 4位同学有如99分,最低的76分,39.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是 _____________ 厘米.(二取3.14)10. A 地、B 地、C 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向D 地行进.当甲在 C 地追上乙时,甲的速度减少 40% ;当甲追上丙时,甲的速度再次减少 40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少 25% ;如乙追上丙后再行 50米,三人同时到 D地•已知乙出发时的速度是每分钟 60米,那么甲出发时的速度是每分钟 _______ 米,A 、D 两地间的路程是 ___________ 米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)参考答案参考解析【考点】速算巧算【考点】等差数列 【难度】☆☆ 【答案】C【解析】如右图,AB =2.8-1.4 =1.4 (米),AC =1.4'7 3=0.6 (米)因此,第四高的小树为 2.8-0.6=2.2 (米).3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、下的对话:甲:“丙、丁之中至少有1人捐了款”一、选择题 (每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案 的英文字母写在每题的圆括号内『9 Il L 131 ———-—20 30 42d 卫56 72120一3 =(A. 42B. 43C.115 3D. 163【答案】Af 1【解析】原式=寸2.如图,有一排间距相同但高度不等的小树,IL 8 9树根成一条直线, 120 3 4 1竺=42 .3树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6B. 2.4C. 2.2D. 2.0丙、丁 4位同学有如乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是()•A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是().A. 94B. 95C. 96D. 97【考点】最值问题【难度】☆☆☆【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.5 6 -99 -76 -98)十3 = 282 “ 3 = 94 (分),故第三位同学的得分至少是94 •仁95 .5.如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点;如果DEH、•汨EH、厶BCH的面积依次为56、50、40,那么CEH的面积是().A. 32B. 34C. 35D. 36【考点】几何【难度】☆☆☆【答案】B【解析】因为S DEH ' S.AEH =S ABCD ' 2 = S ABC ~ S.BCE ' S AEB 所以S~ S DEH =56 ;所以,S .CEH = S BEH S BCH _ S BCE = 50 40- 56 = 34 .6.—个由边长为1的小正方形n n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是().A. 3B. 4C. 5D. 6【考点】最值问题【难度】☆☆☆☆【答案】B【解析】假设n =5 ,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的3 1的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的3 1的长方形中,每个至多1个黑格.假设这4个横着的3 1的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而3 1的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格•矛盾!所以n <5.而图6给出了n =4的一种构造•所以,正整数n的最大值是4 .二、填空题(每小题10分,满分40分.)7•在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是___________ .【考点】数阵图【难度】☆☆☆☆【答案】4123【解析】如下左图,因为A 3为质数且A =4 ,所以A =2 ;因为“月”1为质数且“月”-2、4 ,所以“月” =6 ;从而C=5 ;因为“杯”4为质数且“杯”-1 ,所以“杯” =3 ;从而C =5 ;因为D 3为合数且D =2或6 ,所以D =6 ;从而“华” =2 ;因为“相”3为质数且“相”-2 ,所以“相” -4 ;因为B 4为合数且D =1或5 ,所以B =5 ;从而“约”=1 ;所以,相约华杯=4123(如下中图)•实际上其它格子中的数也能唯一确定(如下右图)&整数n—共有10个约数,这些约数从小到大排列•笫8个是-•那么整数的最大值是3 ----------【考点】数论【难度】☆☆☆【答案】162【解析】n有10个约数,由于第8个是-,而第10个必然是n ,所以第9个只能是-•所以n有质因子2和3 23 •所以n可能是24 3或者34 2 •而最大是34 2 =162 .9•在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是_ 平方厘米,两块阴影部分的周长差是_____________ 厘米.(二取3.14)【考点】几何基本概念【难度】☆☆☆【答案】①15975 :②485 .【解析】①QS阴影ABE -S l影CDE =S扇形ABD S扇形ABC —SE方形ABCD —S半圆AB②因为ABE为等边三角形,所以∙EAB =. E B A=60 ,从而∙DAE =. CBE=30 ;阴影CDE的周长=弧CE 弧DE CD =2二300^12 2 300 =100二300 ;阴影ABE的周长二弧AE •弧BE •弧AB =2二300-:-6 2 • 300-:-2 = 350二;所以,的周长差=350二_(100二300)=250二_300 : 485 .10. A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40% ;当甲追上丙时,甲的速度再次减少40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25% ;如乙追上丙后再行50米,三人同时到D地•已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟________ 米,A、D两地间的路程是 __________ 米.【考点】行程问题【难度】☆☆☆☆【答案】①125 :②1880 .【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;所以丙速为60 (1 -25%)=45(米/分);甲减速一次后的速度为45 “(1 - 40%)=75 (米/分),甲出发时的速度为75 “(1 -40%)=125(米/分).②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:60 =25:12 , 所以AB:BC =25:12 ;设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60: 45=4:3 ,所以BF :CF =4:3 ,从而CF 为12“(4-3) 3=36 份,AF 为25 *36=61 份.因为甲减速一次后与丙的速度比为75: 45 = 5:3 ,而甲原速行AC这25份时,相当于以75米/分行25 60% =15份;所以CE=15"(5-3) 3=22.5 份,从而EF =36-22.5 =13.5 份;而EF是丙9分钟所行的路程,为45 9 =405(米),所以每份405 "13.5 =30(米),从而AF =30 61 H 1830 (米),所以AD =1830 50 -1880 (米).。

第二十届“华杯赛”决赛小高组试题A答案解析

第二十届“华杯赛”决赛小高组试题A答案解析
80 11 5 4 ) (105 ) 19 8 19 5
110 200
110 4 84 19 19
2.右图是用六个正方形、六个三角形、一个正六边形组成的图案, 正方形边长都是 2cm ,这个图案的周长是 cm . 【考点】几何、多边形周长 【难度】☆☆ 【答案】24 【分析】正十二边形边长与正方形边长相等,每条边都是 2,周长是: 12 2 24 .
第二十届华罗庚金杯少年数学邀请赛 决赛试题 A(小学高年级组)
(时间:2015 年 4 月 11 日 10:00~11:30)
一、填空题(每小题 10 分,共 80 分)
4 5 1.375 105 0.8= 19 19 【考点】计算、分数计算
1.计算: 84
【难度】☆☆ 【答案】200 【分析】原式 (80
14.“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表 11 个非零 连续 自然数 中的一 个, 相同的 汉字代 表相同 的数, 不同 的汉字 代表不 同的数 ,且 “表” > “一” > “故” > “如” > “虚”,且各个成语中四个汉字所代表的数的和都是 21,则“弄” 可以代表的数最大是多少? 【考点】最值问题 【难度】☆☆☆☆ 【答案】9 【分析】为表述方便,按汉字出现顺序设这十一个数分别为 A/B/C/D/E/F/G/H/I/J/K,总和设 为 S,则,弄是“J” ,有
S BFG 4 2 8 1 1 1 S BCN S BCN , S BEH S BCN S BCN 5 3 15 4 3 12
27 1 1 9 80 8 1 所以 S EFGH S BCN S ABCD S ABCD , S ABCD 9 15 12 60 2 2 80

2020年第二十届“无悔金杯”少年数学邀请赛初赛试卷(小高组c卷)

2020年第二十届“无悔金杯”少年数学邀请赛初赛试卷(小高组c卷)
【分析】如图:
因为第三行存在 1、3、4,所以 A 为 2,5,6 之一,而 3 与 A 的和是质数,所以 A 为 2.在 A 所在的长方形中,还剩下 1、4、5、6 没有使用.而 3 与“相”的和是质数,所以“相” 是 4.“相”与“约”的和为质数,“约”为 1,“约”与“月”的和为质数,“月”为 6, 剩下的 C 为 5.第三行只剩下数字 5,所以 B 为 5;在 B 所在的长方形中,还剩下 2、3、 6 没有使用.而 4 与“杯”的和是质数,所以“杯”为 3,“杯”与”“华”的和为质数,
数的和是质数,那么四位数“相约华杯”是

8.(10 分)整数 n 一共有 10 个因数,这些因数从小到大排列,第 8 个是 .那么整数 n 的
最大值是

9.(10 分)在边长为 300 厘米的正方形 中,如图放置了两个直角扇形和一个半圆,那么两
块阴影部分的面积差是
平方厘米,两块阴影部分的周长差是
厘米.(π取
A.42
B.43
C.15
D.16
【分析】首先对( ﹣ + ﹣ + )进行拆分,然后用所得的结果减去 除以 所得的商,求出算式的值是多少即可. 【解答】解:( ﹣ + ﹣ + )×120﹣ ÷
=( + ﹣ ﹣ + + ﹣ ﹣ + + )×120﹣
=( + )×120﹣
=30+ ×120﹣
=42 故选:A. 2.(10 分)如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直 线,这两条直线成 45 度角,最高的小树高 2.8 米,最低的小树高峰 1.4 米,那么从左向 右数第 4 棵树的高度是( )米.

第二十届华杯初赛小学高年级组C卷含解析

第二十届华杯初赛小学高年级组C卷含解析

第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C卷)(时间:2014年3月14日10:00~11:00)一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷=⎪⎝⎭( ).A.42B.43C.1153D.21632.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6 B.2.4 C.2.2D.2.03.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ). A .甲、乙B .丙、丁C .甲、丙D .乙、丁4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94B . 95C . 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线AC 上一点;如果DEH ∆、BEH ∆、BCH ∆的面积依次为56、50、40,那么CEH ∆的面积是( ).A .32B . 34C . 35D . 366.—个由边长为1的小正方形n n ⨯的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ). A .3B . 4C . 5D . 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23⨯长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是 .8.整数n 一共有10个约数,这些约数从小到大排列.笫8个是3n .那么整数的最大值是 .9.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 平方厘米,两块阴影部分的周长差是 厘米.( 取3.14)A10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C卷)参考答案参考解析一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷=⎪⎝⎭( ).A.42B.43C.1153D.2163【考点】速算巧算【难度】☆☆【答案】A【解析】原式1111111111412612042 455667788933⎛⎫=+--++--++⨯-==⎪⎝⎭.2.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6 B.2.4 C.2.2D.2.0【考点】等差数列【难度】☆☆【答案】C【解析】如右图, 2.8 1.4 1.4AB=-= (米), 1.4730.6AC=÷⨯= (米)因此,第四高的小树为2.80.6 2.2-=(米).3.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款”乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ).A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94B . 95C . 96D . 97【考点】最值问题 【难度】☆☆☆ 【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.56997698)3282394⨯---÷=÷= (分),故第三位同学的得分至少是941=95+.5.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线AC 上一点;如果DEH ∆、BEH ∆、BCH ∆的面积依次为56、50、40,那么CEH ∆的面积是( ).A .32B . 34C . 35D . 36【考点】几何【难度】☆☆☆ 【答案】B 【解析】因为2DEHAEH ABCD ABC BCE AEB S S S S S S ∆∆∆∆∆+=÷==+W 所以56BCE DEH S S ∆∆==;所以,50405634CEH BEH BCH BCE S S S S ∆∆∆∆=+-=+-=.6.—个由边长为1的小正方形n n ⨯的方格网,用白色或黑色对每个小正方形涂色,要求满 足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ). A .3B .4C .5D .6【考点】最值问题 【难度】☆☆☆☆ 【答案】B【解析】假设5n=,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的31⨯的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的31⨯的长方形中,每个至多1个黑格.假设这4个横着的31⨯的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而31⨯的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格.矛盾!所以5n<.而图6给出了4n=的一种构造.所以,正整数n的最大值是4.二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23⨯长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是.【考点】数阵图 【难度】☆☆☆☆ 【答案】4123【解析】如下左图,因为3A +为质数且4A ≠,所以2A =;因为“月”1+为质数且“月” 2≠、4,所以“月”6=;从而5C =; 因为“杯”4+为质数且“杯” 1≠,所以“杯”3=;从而5C =; 因为3D +为合数且2D =或6,所以6D =;从而“华”2=; 因为“相”3+为质数且“相” 2≠,所以“相”4=; 因为4B +为合数且1D =或5,所以5B =;从而“约”1=;所以,相约华杯4123=(如下中图).实际上其它格子中的数也能唯一确定(如下右图).8.整数n 一共有10个约数,这些约数从小到大排列.笫8个是3n .那么整数的最大值是 . 【考点】数论 【难度】☆☆☆ 【答案】162【解析】n 有10个约数,由于第8个是3n ,而第10个必然是n ,所以第9个只能是2n .所以n 有质因子2和3.所以n 可能是423⨯或者432⨯.而最大是432162⨯=.9.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 平方厘米,两块阴影部分的周长差是 厘米.(π取3.14)【考点】几何基本概念 【难度】☆☆☆【答案】①15975;②485. 【解析】①ABECDE ABCD ABD ABC AB SS S S S S -=--阴影阴影正方形扇形扇形半圆22230042300150233750-9000015975πππ=⨯÷⨯--⨯÷=≈②因为ABE ∆为等边三角形,所以60EAB EBA ∠=∠=︒,从而30DAE CBE ∠=∠=︒; 阴影=2300122300100300CDE CE DE CD ππ++=⨯÷⨯+=+的周长弧弧; 阴影2300623002350ABE AE BE AB ππ=++=⨯÷⨯+÷=的周长弧弧弧; 所以,350(100300)250300485πππ=-+=-≈的周长差.A10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.【考点】行程问题【难度】☆☆☆☆【答案】①125;②1880.【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;⨯-=(米/分);所以丙速为60(125%)45÷-=(米/分),甲减速一次后的速度为45(140%)75÷-=(米/分).甲出发时的速度为75(140%)125②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:6025:12AB BC=;=,所以:25:12设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60:454:3BF CF=,=,所以:4:3从而CF 为12(43)336÷-⨯=份,AF 为25 3661+=份. 因为甲减速一次后与丙的速度比为75:45 5:3=,而甲原速行AC 这25份时,相当于以75米/分行2560%15⨯=份; 所以15(53)322.5CE =÷-⨯=份,从而36-22.513.5EF ==份; 而EF 是丙9分钟所行的路程,为459405⨯=(米), 所以每份40513.530÷=(米),从而3061 1830 AF =⨯=(米),所以1830501880 AD =+-(米).D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十届华罗庚金杯少年数学邀请赛
决赛试题C (小学高年级组)
(时间: 2015年4月11日10:00~11:30)
一、 填空题(每小题 10分, 共80分)
1. 计算:10.7540.3+0.1121.252 1.845
-⨯++-= ( ). 2.将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有( )种不同的分法.
3.将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写
在20153个位数字之后,得到201536;再次操作2次,得到201536914,如
此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有
数字的和等于( ).
4.图1中,四边形ABCD 是边长为11厘米的正方形,G
在CD 上,四边形CEFG 是边长为9厘米的正方形,H
在AB 上,∠EDH 是直角,三角形EDH 的面积是( )
平方厘米.
5.图2是网格为 的长方形纸片,长方形纸片正面是灰
色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪
为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出( )种不同类型的卡片. 6.一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这
个长方体总的侧面积最大是( )平方厘米. 图1
图2
7. 1352x x ⎡⎤-=-⎢⎥⎣
⎦,这里[]x 表示不超过x 的最大整数,则x =( ). 8.右边是一个算式,9个汉字代表数字1至9,
不同的汉字代表不同的数字,则该算式可能的
最大值是( ).
二、 解答下列各题(每小题10分, 共40分, 要求写出简要过程) 9.已知C 地为A, B 两地的中点. 上午7点整,甲车从A 出发向B 行进,乙车
和丙车分别从B 和C 出发向A 行进. 甲车和丙车相遇时,乙车恰好走完全程的38
,上午10点丙车到达A 地,10点30分当乙车走到A 地时,甲车距离B 地还有84千米,那么A 和 B 两地距离是多少千米?
10. 将2015个分数 111111,,,,,234201420152016
⋅⋅⋅
化成小数,共有多少个有限小数? 11. a , b 为正整数, 小数点后第3位经四舍五入后,式子 .a b +≈15157
,求a + b =? 12. 已知算式abcd aad e =⨯, 式中不同字母代表不同的数码,问四位数abcd 最大
值是多少?
三解答下列各题(每题 15 分, 共30分, 要求写出详细过程)
13.在图3中,ABCD 是平行四边形,F 在AD 上,△AEF
的面积=8cm 2,△DEF 的面积=12cm 2,四边形BCDF
的面积=72cm 2,求出△CDE 的面积?
14.将530本书分给48名学生,至少有几名学生分到的
书的数量相同?

3。

相关文档
最新文档