第二章曲面的第一基本形式
微分几何答案(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何公式
第一章 小结⒈ 重要结论:1))(t r 具有固定长0)()(='⋅⇔t r t r 2))(t r 具有固定方向0)()(='⨯⇔t r t r 3))(t r 平行于固定平面0),,(=''''''⇔r r r 4))(0t r 的旋转速度)(0t r '= ⒉ 基本公式:1) 切线 αλρ+=r2) 法面 0)(=⋅-αr R 或0),,(=-γβ r R3) 弧长 ⎰'=tadt t r t s )()(4) 密切平面 0)(=⋅-γr R5) 从切平面 0)(=⋅-βr R6) 主法线 βλρ+=r 7) 副法线 γλρ +=r ⒊ 基本向量1)r r r ''== α 2)r r r r r r r r r rr ''⨯'''''⋅'-'''⋅'==)()(β 3)r r r r ''⨯'''⨯'=⨯=βαγ ⒋ )()(s s K τ Frenet 公式1)α ==r s K )( 3)(r r r t K '''⨯'= 2)2)(),,(r r r r r ''⨯'''''''= τ 3)Frenet 公式 ⎪⎩⎪⎨⎧-=+-==βτγγταββα K K ⒌ 基本定理1) 自然方程:)()(s s K K ττ==2) 基本定理:第二章 曲面论小结(一)一、曲面的第一基本形式 1. 曲面:(1){})()()()(v u z v u y v u x v u r r ==)(:_)(:_00v u r r v v u r r u==曲线曲线 构成曲纹坐标网(2))(:v u r r S=上[])()()(:)(t r t v t u r rc ==切向量:dtdvr dt du r t r v u +=')( 切平面:0)(0=-v ur r r R法 线:)(0v u r r r R⨯+=λ(3)曲线族:0)()(=+dv v u B du v uA曲线网:0)()(2)(22=++dv v u C dudv v u B du v u A 2. 第一基本形式(1)Ⅰ222Gdv Fdudv Edu ++=Ⅰ22ds r d ==(2)弧长 222Gdv Fdudv Edu ds r d ++==(3)dv r du r r d v u +=v r u r r v u δδδ +=rr d δ⋅v Gdv u dv v du F u Edu δδδδ+++=)((4)曲纹坐标网为正交网0=⇔F(5)⎰⎰-=Ddudv F EG S 2σ (6)等距变换⇔适当选择参数后有21ⅠⅠ=(7)保角变换⇔221ⅠⅠλ=二、第二基本形式1. Ⅱr d n d r d n⋅-=⋅=2Ⅱ222Ndv Mdudv Ldu ++=()2FEG r r r r n r n L v u uu u u uu -=⋅-=⋅=()2F EG r r r n r M v u uv uv -=⋅=()2FEG r r r n r N v u vv vv -=⋅=2. 法曲率:==θcos k k n ⅠⅡ )(βθ n =3. Dupin 指标线1222±=++Ny Mxy Lx1)02>-M LN 椭圆点,椭圆. 2)02<-M LN 双曲点,一对共轭双曲线. 3) 02=-M LN 抛物点,一对平行直线.4)0===N M L 平点,Dupin 线不存在.4. 渐近方向与共轭方向1)使0=n k 的方向为渐近方向2)渐近曲线上每一点切方向都是渐近方向0222=++Ndv Mdudv Ldu3)曲面上曲线为渐近曲线⇔ 1)直线 2)v n ±=4)坐标网为渐近网⇔0==N L5)方向)(d 与)(δ共轭⇔0)(=+++v Ndv u dv v du M u Ldu δδδδ 或0=⋅r n dδ 或 0=⋅r d n δ6)坐标网为共轭网⇔0=M5. 主方向和曲率线1)主方向:)(d 与)(δ满足0=⋅r r d δ且 0=⋅n r dδ 或0=⋅r n d δ2)Rodrigues Th :dv du d :)(=为主方向⇔r d k n d n-=3)曲率线方程 022=-NMLG F E du dudv dv4)坐标网为曲率线网⇔0==M F6. n k (主曲率)、K 、H1)欧拉公式 GN k ELk k k k n ==+=212221sin cos θθ 2)0)()2()(222=-++---M LN k NE MF LG k F EG N N3)2221F EG M LN k k k --=⋅=)(22)(21221F EG NG MF LG k k H -+-=+=7. 第三基本形式1)22222gdv fdudv edu n d ds ++=== ※Ⅲ v v u un g n n f n e=⋅==2 2)02=+-ⅠⅡⅢK H3)σσσ※P P k →=lim第二章 曲面论小结(二)一、直纹面: 1. )()()(u b v u a v u r+=)(u a a= 导线。
曲面第一第二基本形式
曲面第一第二基本形式曲面的第一第二基本形式是曲面微分几何中的重要概念,用于描述曲面的局部性质。
曲面的第一基本形式是一个二次型,描述了曲面上的长度和角度的变化;而第二基本形式是一个线性映射,描述了曲面上的曲率信息。
对于一个曲面上的点,可以通过两个正交曲线来描述它的局部性质。
这两条曲线称为曲面上的曲线坐标线,在该点处与坐标轴相切。
通过这两条曲线,可以定义曲线的长度、角度和曲率等重要几何量。
曲面的第一基本形式是一个二次型,可以表示为:[ds^2 = E du^2 + 2F du dv + G dv^2]其中,(E)、(F) 和 (G) 是曲面上的度量系数。
它们描述了曲线坐标线上的长度和夹角变化。
具体而言,(E) 表示曲线坐标线在 (u) 方向上的长度的平方,(G) 表示曲线坐标线在 (v) 方向上的长度的平方,而 (F) 则表示曲线坐标线在 (u) 和 (v) 方向上的长度乘积。
曲面的第二基本形式是一个线性映射,可以表示为:[dN = L du^2 + 2M du dv + N dv^2]其中,(L)、(M) 和 (N) 是曲面上的切向量与法向量之间的内积。
它们描述了曲面上的曲率信息。
具体而言,(L) 表示曲面的法向量在 (u) 方向上的变化率,(N) 表示曲面的法向量在 (v) 方向上的变化率,而 (M) 则表示曲面的法向量在 (u) 和 (v) 方向上的变化率乘积。
通过第一第二基本形式,我们可以计算曲面上的各种几何量,如曲率、高斯曲率和平均曲率等。
这些几何量对于曲面的形状和性质具有重要的意义,并在计算机图形学、物理学和工程学等领域中得到广泛应用。
总之,曲面的第一第二基本形式是描述曲面局部性质的重要工具,它们提供了曲面上的长度、角度和曲率等几何信息。
通过研究这些信息,我们可以深入理解曲面的形状和性质,并应用于各种实际问题的解决中。
曲面的第一基本形式
F EG
u-曲 线 : dv 0, v-曲 线 : u 0 .
推论3 曲纹坐标网是正交网的充分必要条件是F=0.
co s E d u u F ( d u v d v u ) G d v v Edu 2 Fdudv G dv
1 a 1 a
2
2
.
微分几何 第15讲 15
作业: P
81
3,5,6
谢
谢!
微分几何 第15讲 16
2 2 2 2
sinh udv
2
2
的曲面上,
ds
dv sinh vdv cosh vdv ,
2 2
1 (sin h t ) (co sh t )
在曲线u = v上,由 v1到 v 2 的弧长为
v2 v1
co sh vd v = | sin h v 2 sin h v1 | .
2
dr r (r udu r vdv )( u r v ) r u v
= Edu u F ( du v dv u ) Gdv v
cos
E du u F ( du v dv u ) G dv v
§2.2 曲面的第一基本形式
1
主要内容
1. 曲面的第一基本形式
t1 t0
曲面上曲线的弧长
2 2 2 2 Ⅰ=d r d s E du 2 F dudv G dv
s (t )
r ( t ) d t =
t
t0
t1t1
0
EE d u ) 2 F d u d v G d v ) d t ( G( dt dt dt dt
微分几何 §2 曲面的第一基本形式
E ru ru , F ru rv ,G rv rv ,
则有 ds2 Edu2 2Fdudv Gdv2.
设曲线(C) 上两点 A(t0 ),B(t1) ,则弧长为
s t1 ds dt t1 E( du )2 2F du dv G( dv )2 dt.
t0 dt
t0Байду номын сангаас
dt
dt dt dt
(*)是关于微分 du,dv 的一个二次形式,称
为曲面 S 的第一基本形式,用 表示:
I Edu2 2Fdudv Gdv2.
它的系数
E ru ru , F ru rv ,G rv rv ,
称为曲面 S 的第一类基本量。
对于曲面的特殊参数表示 z z(x, y) ,有
有表达式
cos ru rv E
ru rv
EG
注:曲面的坐标网正交的充要条件是F=0 。
例3 证明旋转面
r {(t) cos,(t)sin, (t)}
的坐标网是正交的。
解:
r t
{(t),cos,(t),sin,(t),}
r {(t)sin,(t)cos,0}
r {x, y, z(x, y)},
则
z
rx {1, 0, p}, p x ,
由(2.19)有
ry
{0,1, q}, q
z . y
E rx rx 1 p2, F rx ry pq,G ry ry 1 q2,
曲面的第一基本形式为
(1+p2)dx2 2 pqdxdy (1 q2 )dy2.
.
Edu2 2Fdudv Gdv2 Eu2 2Fu v G v2
微分几何曲面的第一基本形式概述
du dv r (t ) ru rv 或 dt dt 若 s 表示弧长有 2 2
所以
dr ru du rv dv
4、第一基本形式是正定的。
2 2 2 2 2 2 E r r r 0 , G r 0 , EG F r r ( r r ) 0. 事实上, u u u v u v u v
2 也可从 ds 直接得到。
1、把两个向 量 dr ru du rv dv和 r ruu rvv 间的交角 称为方向( du : dv )和( u : v )间的角。 2、设两方向的夹角为 ,则
D D D
其中 D 为相对应的 u,v 平面上的区域,
2 2 2 2 (ru rv ) ru rv (ru rv ) EG F 2 0
从前面的讲解中知道弧长、夹角、曲面域的面积都 与第一类基本量有关,都可以用第一类基本向量E、 F、G 来表示,这类量非常重要,要知道曲面的第一 基本形式,可以不管曲面的形状就可以计算
(2)对于坐标曲线的交角,有
dr r ru rv F cos dr r ru rv EG
故坐标曲线正交的充要条件为 F = 0 。
2、3
பைடு நூலகம்
正交曲线簇和正交轨线
设有两曲线 Adu Bdv 0 , C(u, v)u D(u, v)v 0
如果它们正交,则 Eduu F (duv udv) Gdvv 0
2、4
微分几何--第二章1曲面的概念1.3曲面上的曲线族和曲线网
A(u, v)du B(u, v)dv 0
表示曲面上的一簇曲线——曲线族. 设 A 0 ,则有 du B(u, v) 解之得
(2.14)
dv A(u, v) u (v, c)
F (u, v)
其中,c为待定常数; 每一个c对应曲面上一条曲线,所以(2.14)表示一族曲线。 特别地, 当B = 0或 A = 0 时,有 d u = 0或 d v = 0 , 此时为坐标曲线(P60) u = c 或 v = c。 此时(2.14)表示坐标曲线的方程。
2、二阶微分方程
A(u, v)du2 2B(u, v)dudv C(u, v)dv2 0
若 [ B(u, v)]2 A(u, v)C (u, v) 0
方程表示曲面上的两簇曲线 —— 曲线网。 设
du 2 du A 0 , 则 A( ) 2 B( ) C 0 dv dv 得 du B B 2 AC F1 (u, v)或F2 (u, v) dv A
消去 t ,可得曲面上曲线的方程为
u (v) ,或 v (u) ,或 f (u, v) 0
1、一阶线性微分方程
A(u, v)du B(u, v)dv 0
表示曲面上的一簇曲线——曲线族.
消去 t ,可得曲面上曲线的方程为
u (v) ,或 v (u) ,或 f (u, v) 0
分别解这两个一阶微分方程,可得两簇曲线,它们构成曲 面上的曲线网。
特别有 A C 0 时, dudv 0 , 它们表示坐标曲线,从而构成曲纹坐标网(P60)。
微分几何
主讲人:郭路军
第二章 曲面论
1、曲面的概念(简单曲面、光滑曲面、切平面和法线)
微分几何第二章曲面论2.1曲面的概念
2、二阶微分方程
2 2 A ( u , v ) du 2 B ( u , v ) dudv C ( u , v ) dv 0
2 若 [ B ( u , v )] A ( u , v ) C ( u , v ) 0
则表示曲面上的两簇曲线 —— 曲线网。
du du 2 设 A 0, 则 A ( ) 2 B ( ) dudv C 0 dv dv
y z u u y z v v z x u u z x v v
设曲面上任一点 r (u,v) 的径矢为 R (u,v)
x ( u ,v ) Y y ( u ,v ) Z z ( u ,v ) 用坐标表示为 X x y u u x y v v
若用 z = z (x,y) 表示曲面,则有
{ x , y , z ( x , y )} 如果用显函数 z = z ( x , y ) 表示曲面时,有 r
z z r { 1 , 0 , } { 1 , 0 , p } , r { 0 , 1 , } { 0 , 1 , q } x y x y
X x0 Y y0 Z z0 1 0 0 1 p0 q0 0
以下切方向几种表示通用:du : dv , (d) 和 r (t ) 。
( 由r t)r u
du dv r v dt dt
可以看出,切向量 r (t ) 与 ru , rv 共面,但过( u0 ,v0 )点 有无数条曲面曲线,因此在正常点处有无数方向,且有 命题2:曲面上正常点处的所有切方向都在过该点的坐标 曲线的切向量 ru , rv 所确定的平面上。 这个平面我们称作曲面在该点的切平面。
6、曲面上的测地线(测地曲率、测地线、高斯—波涅
微分几何答案(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何第二章曲面论第二节曲面的第一基本形式复习课
等距
A(t0 )
u, v ) (C ) r P(
B ( t1 ) ( S ) : r r (u, v )
r [u(t ), v(t )]
s AB
t0 t1
du dv du dv E 2F G dt dt dt dt dt
2.曲面上曲线的弧长
du dv du dv s E 2F G dt t0 dt dt dt dt 3.曲面上两方向的夹角
t1
2
2
cos
Eduu F (duv dvu) Gdvv Edu2 2Fdudv Gdv 2 Eu 2 2Fuv Gv 2
作业
P81:
1, 3, 4, 5, 9, 10
2.6 保角变换
定义 曲面( S )与( S )之间的一个变换, 则称这个变换 如果使曲面上对应曲线 的交角相等, 为保角变换 (或保形变换或共形变换 ). 定理 两个曲面之间的变换是 保角变换 它们第一基本形式成比 例. 2 “ ” 若第一基本形式成比例 , 证: 则 (u, v ) 0, I I .
又 x OP cosv 2 R tanu cosv y OP sinv 2 R tanu sinv
z
u
平面的参数表示为: . P ( x, y, z ) x 2 R tanu cosv y O y 2 R tan u sin v , 易计算出: . P ( x, y,0) v . P ( x , y,0) z0 x 球面的第一基本形式为 : I ds2 4R2 (du2 sin2 u cos2 udv2 ), 平面的第一基本形式为 : 2 4R 2 2 2 2 2 I ds ( du sin u cos udv ), 4 cos u 1 的一个保角变换. I I . 球极投影是球面到平面 4 cos u
微分几何答案解析(第二章)
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
微分几何曲面局部理论
那么对于 P 点附近的任意一个正则参数表示 x (u , v )
有
nu nv 0.
由连通性可以得出 n 是常向量,即曲面是平面。
■
第二章 曲面:局部理论
例1 M是半径为 ,a 中心在原点的的球面,则
在局部参数表示下Gauss映射为
n 1 x(u, v). a
它的形状算子满足
S P (x u ) n u 1 a x u, S P (x v ) n v 1 a x v .
也都是渐近线。
第二章 曲面:局部理论
事实上,如右图所示,在点 P
处的沿圆柱螺线单位切向量的
法截线在点 P 为拐点。因此,
圆柱螺线是圆柱螺面上的渐近 线。
具体计算为作业。
第二章 曲面:局部理论
假设 ( s为) 曲面 上M 一条弧长参数曲线,满足
(0)P , (0)V.
那么由之前的计算得到 P(V,V)Nn.
第二章 曲面:局部理论
定义 曲面 M在点 处P 的主曲率满足 则称为点 P 为曲面 的M 脐点。 特别的,k1 k2 称 0为平P 点。
k1 k2
如果 K ,0 且 不P是平点,则称 为抛P 物点; 如果 K ,0 则称 为P椭圆点; 如果 K ,0 则称 为P双曲点。
第二章 曲面:局部理论
曲面在任意点 P 的两个主方向是正交的,于是
我们可以选择了切平面 T p M的一个正交基底恰
好由主方向向量构成。
第二章 曲面:局部理论
定理(Euler公式)令 e 1 , e为2 曲面 在M 点 的单P 位
主方向,分别对应主曲率 和 k 。1 假设k 2 切向
量
Vco,s其e1中sine2。 [0,2)
微分几何第二章曲面论曲面的概念
VS
高斯曲率
设曲面$S$在点$P$处的两个主曲率分别为 $k_1, k_2$,则称$K = k_1k_2$为曲面在 点$P$处的高斯曲率。高斯曲率是曲面内蕴 几何量的重要代表,反映了曲面在一点处 的弯曲程度。
法截线和法截线族
法截线
设曲面$S$在点$P$处的法向量为 $mathbf{n}$,过点$P$且与法向量 $mathbf{n}$垂直的平面称为法截面。 法截面与曲面交于一条曲线,该曲线 称为法截线。
曲面性质
曲面具有连续性、光滑性、可定向性等性质。其中连续性指 曲面上任意两点都可以用一条连续曲线连接;光滑性指曲面 上任意一点都存在切线平面;可定向性指曲面存在连续的单 位法向量场。
曲面分类与举例
曲面分类
根据曲面的形状和性质,可以将曲面分为闭曲面、开曲面、紧致曲面、非紧致曲面等类 型。
举例
球面、环面、柱面、锥面等都是常见的曲面类型。例如,球面可以表示为 $mathbf{r}(theta, varphi) = (Rcosthetasinvarphi, Rsinthetasinvarphi,
法截线族
过曲面上一点的所有法截线构成的集 合称为该点的法截线族。法截线族在 微分几何中具有重要的研究价值,与 曲面的形状和性质密切相关。
04
曲面局部理论:可 展曲面与极小曲面
可展曲面定义及性质
定义
可展曲面是一类特殊的曲面,它可以在不改 变距离的情况下完全展开到一个平面上。也 就是说,它的高斯曲率为零。
02
第一基本形式与度 量性质
第一基本形式定义及性质
第一基本形式定义
第一基本形式是微分几何中曲面论的基本概念,用于描述曲面上的度量性质。它是一个二次微分形式,记作$I = Edu^2 + 2Fdudv + Gdv^2$,其中$E, F, G$是曲面上的系数函数。
微分几何第二章曲面论第二节曲面的第一基本形式
2.4 曲面域的面积
D
v v ) P3 (u u, v v ) ru u
P1 (u u, v ) P ( u, v ) PP 1 r ( u u, v ) r ( u, v ) ( ru 1 )u ru u. ( u 0时) PP2 r (u, v v ) r (u, v ) (rv 2 )v rv v. (v 0时) PP 1 PP 2 d ru u rv v ru rv dudv
曲纹坐标方程有关,不 需要知道曲线的形状 .
2.2 曲面上两方向的交角
( S )在点P (u, v )处的两个切方向 定义 已给曲面 称相应的切向量 (d ) du : dv和( ) u : v, dr rudu rv dv和r ruu rvv 之间的夹角 为这两个切方向 (d )和( )之间的夹角 .(0 ) 计算公式 dr r dr r cos , dr r ( ru du rv dv) ( ruu rvv ) cos 2 dr r ( ru du rv dv) ( ruu rvv ) 2
则ds Edu 2Fdudv Gdv .
2 2 2
称为曲面的第一基本形 式. 记作I .
即
其中
I Edu 2Fdudv Gdv 2 2 E ru , F ru rv , G rv
2
2
称为曲面的第一类基本 量. 对于曲面S : z z( x, y ), 有r { x, y, z( x, y)} , z z 于是rx {1,0, p}, ry {0,1, q}, 其中p ,q , x y 2 2 2 2 E rx 1 p , F rx ry pq, G ry 1 q .
微分几何曲面的第一基本形式课件
整合第一基本形式,得到 $ds^2 = (u^2 + v^2)du^2 +
2uvdudv + (u^2 + v^2)dv^2$。
04
结果分析和讨论
01
通过计算结果,可以得出该曲面的第一基本形式,进
一步分析曲面的性质和特点。
02
可以使用该方法计算其他类型的曲面,并比较不同曲
面之间的差异和相似之处。
第一基本形式与度量张量的关系
第一基本形式与度量张量之间有 着紧密的联系,它们共同构成了
曲面的几何结构。
度量张量是曲面上各点处长度、 面积和体积等的度量标准,而第 一基本形式则提供了曲面上各点
处的曲率信息。
通过第一基本形式和度量张量的 结合,我们可以更好地理解和研
究曲面的形状和性质。
2023
PART 04
张量在物理学中的应用 张量在物理学中可以用来描述物体的运动状态和 相互作用,如力学、电磁学、相对论等领域。
2023
PART 03
第一基本形式的定义和性 质
REPORTING
第一基本形式的定 义
第一基本形式是曲面上的测地 曲率的一种表达形式,它与曲 面的第一基本张量有着密切的
关系。
在曲面上的任意一点,第一 基本形式可以定义为曲面的 第一基本张量与该点处切线
空间同胚的空间。
第一基本形式是微分几何中用于 描述曲面上的点与点之间的距离、
方向和曲率的一种方式。
研究目的和意 义
理解第一基本形式可以帮助我 们更好地理解曲面的几何性质 和特征。
通过研究第一基本形式,我们 可以研究曲面的形状、大小和 曲率等重要指标。
第一基本形式在微分几何中具 有重要的理论和应用价值。
微分几何 曲面第一基本形式
微分几何曲面第一基本形式
微分几何是研究流形及其上的几何结构的数学学科。
在微分几何中,曲面是最简单的一类流形。
曲面具有平坦的形状,可以用一维曲线组成的二维平面来描述。
曲面的第一基本形式是描述曲面上的内部几何特征的工具。
它是由曲面上的切向量和曲面上的度量张量所确定的。
切向量是与曲面上的点相切的向量,可以用来描述曲面上的切平面的方向。
而度量张量则是用来测量曲面上的长度、角度和曲率等几何量的。
具体来说,设曲面S为一个二维流形,曲面上的点p可以由两个参数u和v来确定,即p = (u, v)。
在这个参数化下,曲面上的切向量可以通过对u和v求偏导数来求得。
切向量的长度可以通过计算内积来得到。
曲面上的度量张量是一个二阶张量,用来描述曲面的内在几何特征。
它可以通过计算切向量之间的内积来得到。
度量张量的坐标表示为:
g = E du^2 + 2F du dv + G dv^2
其中E、F和G是曲面上的度量系数,分别表示在u和v方向上的度量。
它们可以通过计算曲面上的基向量的内积来得到。
曲面的第一基本形式有许多重要的应用。
例如,它可以用来计算曲面上的曲率,描述曲面上的最短路径以及计算曲面上的面积等。
通过研究曲面的第一基本形式,我们可以深入理解曲面的几何性质,并进一步推导出更多的几何定理和结论。
总之,曲面的第一基本形式是微分几何中描述曲面上的内部几何特征的重要工具。
通过分析曲面的切向量和度量张量,我们可以了解曲面的形状、曲率和其他几何特征。
对于研究曲面的性质和应用具有重要意义。
§22 曲面的第一基本形式
u2 + a2 − 1 . u2 + a2 + 1 70
把曲线 u + v = 0 与 u − v = 0 交点的曲线坐标 u = 0, v = 0 代入上式得二曲线的交角余弦 为 cos θ = u2 + a2 − 1 u2 + a2 + 1 = a2 − 1 . a2 + 1
u=0 v =0
3. 求曲面(域)的面积 现在我们来推导曲面 S : r = r (u, v ), (u, v ) ∈ D(平面区域) 上给定区域 D 的面积. (以下 我们只是给出直观推导, 详细的证明参见 C. Goffman 著《多元微积分》) 完整 ① 用 u -线和 v -线划分曲面域 D 成 曲边四边形. 不完整 完整四边形的面积越接近于平行四边形的面积 ② 划分加细, 不完整四边形面积越来越小, 在D 中所占比重愈小 ③ 任取一个完整的曲边四边形 P P1 P2 P3 (如图), 设四个顶点 P 、P1 、P2 、P3 对应的 径矢分别为 r (u, v ), 由 Taylor 公式, 得 − − → P P1 = r (u + ∆u, v ) − r (u, v ) = [r u (u, v ) + − − → P P2 = r (u, v + ∆v ) − r (u, v ) = [r v (u, v ) + 其中 lim
首先我们得到第一基本形式系数之间的如下关系: ¯ = ru E ¯ · ru ¯ = ru ∂u ∂v + rv ∂u ¯ ∂u ¯ · ru ∂u ∂v + rv ∂u ¯ ∂u ¯
=E ¯ = ru F ¯ · rv ¯ =E ¯ = rv G ¯ · rv ¯ =E