63知识讲解_函数的极值与最值_提高

合集下载

函数的极值与最值

函数的极值与最值

函数的极值与最值函数是数学中常见的概念,它描述了一种输入与输出之间的关系。

在数学的研究中,我们经常需要探讨函数的极值与最值,这些信息对于理解函数性质以及解决实际问题非常重要。

一、极值的概念及求解方法极值是函数在定义域内取得的最大值或最小值。

函数的极大值对应于其图像的局部最高点,而极小值对应于其图像的局部最低点。

要找到一个函数在定义域内的极值,我们可以通过以下步骤进行求解:1. 找到函数的导数,导数可以帮助我们找到函数的增减性以及临界点。

2. 求解导数为零的点,这些点即为函数的可能的极值点。

3. 利用导数的符号确定这些临界点是极大值还是极小值。

4. 在临界点以及函数定义域的端点处进行比较,找到函数的极值。

举个例子来说明。

考虑函数f(x) = 2x^3 - 9x^2 + 12x + 1在定义域[-3, 4]上的极值问题:1. 首先求解导数f'(x) = 6x^2 - 18x + 12。

2. 将导数置为零并解方程,得到6x^2 - 18x + 12 = 0,化简后得到x = 1。

3. 利用导数的符号,可以得出当x < 1时,导数为负,即函数单调递减;当x > 1时,导数为正,即函数单调递增。

所以x = 1是函数的极小值点。

4. 比较临界点x = 1以及函数定义域的端点x = -3和x = 4处的函数值,找到函数的极小值为f(1) = 6。

二、最值的概念及求解方法最值是函数在整个定义域内取得的最大值或最小值。

与极值不同的是,最值不要求在一定的区间内取得,而是考虑了整个定义域。

要找到一个函数在定义域内的最值,我们可以通过以下步骤进行求解:1. 首先找到函数的定义域,即函数取值的范围。

2. 在定义域内比较函数取值,找到最大值与最小值。

继续以函数f(x) = 2x^3 - 9x^2 + 12x + 1为例:1. 函数f(x)的定义域为整个实数集,因此我们需要在全局范围内找到最值。

2. 比较函数在定义域内的取值,可以通过求导并求解导函数为零的点,或者观察函数的图像来找到最大值与最小值。

函数的极值与最值问题

函数的极值与最值问题

函数的极值与最值问题函数的极值与最值问题是数学分析中的重要内容。

在实际问题中,我们常常需要求解函数的极值或最值,来确定某一变量的最佳取值或最大最小值。

本文将介绍函数的极值与最值问题的定义、求解方法以及实际应用。

一、函数的极值与最值的定义在数学中,给定一个函数f(x),若存在一个区间I,使得对于该区间内的任意x值,f(x)的值都比f(x)在I的其它点处的值小(大),则称f(x)在I内存在极大(小)值,同时称该点为函数的极值点。

而函数在区间I内最大(小)的极值点则称为函数的最大(小)值。

二、求解函数的极值与最值的方法1. 寻找驻点首先,我们需要寻找函数的驻点。

驻点即为函数在该点的导数为零的点,也就是函数的极值点可能位于驻点处。

2. 列出极值点及临界点的值将驻点的值以及函数的定义域内的临界点的值列出,并计算出相应的函数值。

3. 比较并确定极值点及最值比较驻点和临界点的函数值,找出函数的极大值和极小值,即为函数的极值点。

同样地,比较所有极值点的函数值,找出函数的最大值和最小值。

4. 确定函数的定义域在比较极值点和临界点的函数值时,需要注意函数定义域的边界条件。

确保所比较的点处于函数的定义域内。

三、函数极值与最值问题的应用函数的极值与最值问题在实践中具有广泛的应用。

以经济学为例,函数的极值与最值问题常用于优化问题的求解。

例如,确定成本最低的生产方案或利润最大化的销售策略等。

在工程学中,函数的极值与最值问题可应用于优化设计。

比如求解最节能的物流路径、最优化的结构参数以及最大功率输出的电子电路布局等。

此外,函数的极值与最值问题还可用于求解几何问题中的最优解。

在数学建模、各类优化理论以及应用数学的研究中都有广泛的应用。

结论函数的极值与最值问题是数学分析中一个重要且常见的问题。

通过寻找函数的极值点和最值点,可以确定变量的最佳取值或者确定函数在某个区间内的最大最小值。

本文介绍了函数极值与最值问题的定义、求解方法以及应用,并指出了其在实际问题中的重要性。

高中数知识讲解_函数的极值与最值提高

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值【学习目标】 1. 理解极值的概念和极值点的意义。

2. 会用导数求函数的极大值、极小值。

3. 会求闭区间上函数的最大值、最小值。

4. 掌握函数极值与最值的简单应用。

【要点梳理】 要点一、函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点诠释:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数)(x f 在点0x 取得极值的必要非充分条件.例如函数y=x 3,在x=0处,'(0)0f =,但x=0不是函数的极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。

函数的极值和最值

函数的极值和最值

函数的极值和最值函数的极值和最值是数学中重要的概念,可以帮助我们研究函数的特性和解决实际问题。

本文将介绍函数的极值和最值的定义、求解方法以及应用。

一、函数的极值函数的极值即函数在某个区间内的最大值或最小值。

极值分为两种情况:局部极值和全局极值。

1. 局部极值局部极值是指函数在某个开区间内的最值。

设函数f(x)在点x=a处连续,如果在a的某个邻域内,对于任意的x,有f(x)≤f(a)(或f(x)≥f(a)),则称f(a)是f(x)在该邻域内的局部最小值(或局部最大值)。

其中,f(a)是该局部极值的函数值,a是极值点。

2. 全局极值全局极值是指函数在整个定义域上的最值。

设函数f(x)在[a, b]上连续,如果对于任意的x∈[a, b],有f(x)≤f(a)(或f(x)≥f(a)),则称f(a)是f(x)在[a, b]上的全局最小值(或全局最大值)。

其中,f(a)是该全局极值的函数值,a是极值点。

二、函数极值的求解方法根据函数的极值定义,我们可以通过以下方法求解函数的极值:1. 导数法导数法是一种常用的求解函数极值的方法。

首先,我们计算函数f(x)的导数f'(x),然后找出导数为零或不存在的点。

这些点就是可能的极值点。

接下来,对每个可能的极值点进行二阶导数检查,确认是否为极值。

当二阶导数大于0时,该点为局部最小值;当二阶导数小于0时,该点为局部最大值。

2. 区间法区间法适用于离散函数或无法通过导数法求解的情况。

首先,我们将定义域分为若干个区间,并计算每个区间的函数值。

然后,通过比较函数值得出极值。

例如,当函数值最大时,该点为局部最大值;当函数值最小时,该点为局部最小值。

三、函数极值的应用函数的极值在数学和实际问题中具有广泛的应用。

以下是几个典型的应用场景:1. 优化问题函数的极值在优化问题中起到重要作用。

例如,在生产过程中,我们希望找到产量最大或成本最低的方式,这就需要求解函数的最值。

2. 经济学经济学中的需求、供给、收益等问题通常涉及函数的极值。

函数的极值与最值

函数的极值与最值

函数的极值与最值函数的极值与最值是数学中一个重要的概念,它帮助我们了解函数在特定区间内的最大值和最小值,对于解决实际问题和优化函数的性能具有重要意义。

在本文中,我们将探讨函数的极值和最值的概念、求解方法以及其在实际问题中的应用。

1. 函数的极值与最值概述函数的极值指的是函数在某个区间内取到的最大值或最小值。

极大值是指函数在该点的函数值大于或等于该点邻近的其他点的函数值,而极小值则是指函数在该点的函数值小于或等于该点邻近的其他点的函数值。

函数的最大值和最小值则是函数在整个定义域内取到的最大和最小的函数值。

2. 求解函数的极值与最值为了求解函数的极值与最值,我们可以采用以下方法:2.1 导数法对于可导的函数,我们可以通过求导来找到函数的极值。

首先,我们计算函数的导数,然后求解导数为零的点,即可得到函数的极值点。

通过求二阶导数,我们可以进一步判断该点是极大值还是极小值。

2.2 边界法如果函数在一个闭区间上连续,我们可以通过计算该区间的边界点和函数在这些点上的函数值,来找到函数的最值。

比较边界点上的函数值,即可得出函数的最大值和最小值。

3. 函数极值与最值的应用函数的极值与最值在实际问题中有广泛的应用。

以下是几个例子:3.1 经济学在经济学中,函数的极值与最值可以用来优化生产效益、成本最小化和利润最大化的问题。

例如,一个公司可以通过求解该公司的生产函数的最大值,来确定最优的生产量和工人数量。

3.2 物理学在物理学中,函数的极值与最值可以用于研究运动的轨迹、优化物体的能量和速度等问题。

通过求解物体的加速度函数或能量函数的极值,可以找到物体在特定条件下的最优运动轨迹。

3.3 工程学在工程学中,函数的极值与最值可以用于设计和优化工程系统。

例如,通过求解某个系统的效率函数的最大值,可以找到系统的最佳工作点,从而提高工程系统的性能和效益。

总结:函数的极值与最值是数学中的重要概念,它们帮助我们优化函数和解决实际问题。

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。

函数的极值与最值——知识梳理

函数的极值与最值——知识梳理

\g
( - x ) +g
(x)
=
2x+1 +
2x +1
sin
x
2 -1+
1+ 2x
- sin
x
-1 =
0
思思老师
\g(-x) = -g(x)
\ g ( x) 为奇函数,函数图像关于原点对称.
\函数 g ( x) 在区间 [-k, k ](k > 0) 上的最大值记为 a,(a>0),则函数 g ( x) 在区间 [-k, k ](k > 0) 上的最小
f (2) 4
4 16
类型五:函数、导数、不等式知识在最值方面的综合应用
例 5. ( 2016 全 国 新 课 标 Ⅱ ) ( Ⅰ ) 讨 论 函 数 f (x) = x - 2 ex 的 单 调 性 , 并 证 明 当 x > 0 时 , x+2
(x - 2)ex + x + 2 > 0 ;
(Ⅱ)证明:当
f
(x)
=1+
2x+1 2x +1
+ sin
x
在区间 [-k, k ]( k
>
0)
上的值域为 [m, n]
,则
m+n=
.
【答案】4
【解析】记 g ( x)
=
f
(x)-2 =
2x+1 + sin x -1
2x +1
\
g
(-x)
=
2- x+1 2-x +1
+
sin
(-x)
-1
2 = 1+ 2x - sin x -1

函数的极值和最值

函数的极值和最值

函数的极值和最值函数是数学中的一种重要概念,它描述了不同变量之间的关系。

在函数中,极值和最值是十分重要的概念,它们能够帮助我们找到函数的最高点和最低点,从而更好地理解函数的性质和特点。

本文将介绍函数的极值和最值的概念及其求解方法。

一、函数的极值在数学中,函数的极值是指函数在某个点上取得的最大值或最小值。

根据极值的概念,我们可以将其分为两种类型:极大值和极小值。

当函数在某点的函数值比其邻近的其他点都大时,该点上的极值称为极大值;当函数在某点的函数值比其邻近的其他点都小时,该点上的极值称为极小值。

为了找到函数的极值,我们可以通过求函数的导数来实现。

首先,我们需要求函数的导数,然后将导数为零的点找出来。

这些点就是函数可能存在极值的点。

接下来,我们可以通过求二阶导数来判断这些点是否是极值点,也就是通过判断导数的变化来确定函数的极值。

二、函数的最值函数的最值是指函数在某个区间或整个定义域上取得的最大值或最小值。

与极值相似,最值也可以分为最大值和最小值两种类型。

当函数在某个区间或整个定义域上的函数值比其他区间或整个定义域上的其他函数值都大时,该函数值称为最大值;当函数在某个区间或整个定义域上的函数值比其他区间或整个定义域上的其他函数值都小时,该函数值称为最小值。

要求解函数的最值,我们需要先找到函数的临界点和边界点。

临界点是指导数为零或导数不存在的点,而边界点是指函数定义域的端点。

然后,我们将这些点代入函数式中计算函数值,最后找到其中的最大值和最小值。

综上所述,函数的极值和最值是函数分析中的重要内容。

通过求导数和二阶导数,我们可以找到函数可能存在极值的点,并通过判断导数的变化来确定函数的极值。

而求解函数的最值则需要找到临界点和边界点,通过计算函数值来确定最大值和最小值。

这些方法可以帮助我们更好地理解函数的性质和特点。

最后,需要提醒的是,在实际问题中,函数的极值和最值往往对应着一些有意义的物理量或经济量,通过求解函数的极值和最值,我们能够找到最优解或者最优方案,为实际问题的解决提供有力的理论基础。

函数的极值与最值知识点

函数的极值与最值知识点

函数的极值与最值知识点函数是数学中非常重要的概念,它描述了变量之间的关系。

在函数中,经常会遇到极值与最值的问题。

本文将介绍与函数的极值与最值相关的知识点。

一、函数的极值函数的极值指的是在函数曲线上存在的最高点或最低点。

根据函数的定义域和值域,可以分为两种极值:最大值和最小值。

1. 定义域与值域在讨论函数的极值之前,首先需要明确函数的定义域和值域。

定义域是指函数的自变量的取值范围,而值域则是函数的因变量的取值范围。

2. 局部极值对于实数域上的函数,如果在某个区间内存在一个点,使得这个点左右两侧的函数值都比它小(或都比它大),那么这个点就是函数在该区间内的局部最小值(或最大值)。

3. 单调性与极值单调性是指函数在定义域内的变化趋势。

如果函数在某个区间内单调递增,那么在这个区间内,函数的最小值一定在区间的起点上;如果函数在某个区间内单调递减,那么在这个区间内,函数的最大值一定在区间的终点上。

二、函数的最值函数的最值指的是函数在定义域内可能取得的最大值或最小值。

1. 最大值与最小值对于连续函数,在有限闭区间上一定存在最大值和最小值。

根据最值的性质,最大值是函数图像上的“最高点”,最小值是函数图像上的“最低点”。

2. 最值的求解方法为了找到函数的最值,可以使用以下方法:(1)导数法:通过求函数的导数,找到导数为零的点,并且通过二阶导数的符号判断这些点是极值点还是驻点。

(2)边界法:当函数定义域为闭区间时,极值可能出现在端点上。

三、综合例题为了更好的理解函数的极值与最值,下面给出一个综合例题:例题:已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求其在定义域[-2,2]上的最大值和最小值。

解答:首先,将函数f(x)对x求导,得到f'(x) = 6x^2 - 6x + 4。

令f'(x) = 0,解得x = 1/3。

然后,计算f''(1/3) = 4,由于f''(1/3)大于0,所以x = 1/3是函数f(x)的一个局部最小值点。

函数的极值与最值知识点总结

函数的极值与最值知识点总结

函数的极值与最值知识点总结函数的极值和最值是数学中重要的概念,它们对于函数的图像和性质有着重要的影响。

本文将对函数的极值和最值进行详细总结。

1. 函数的极值函数的极值是指函数在某一区间内取得的最大值或最小值。

在函数图像上就是曲线的顶点或谷底。

1.1 极大值和极小值函数在区间内取得最大值的点称为极大值点,函数在区间内取得最小值的点称为极小值点。

极大值点和极小值点合称为极值点。

1.2 极值的必要条件函数的极值一定是函数的驻点(即函数的导数为0)或者是函数定义域的端点,这是极值的必要条件。

1.3 极值判定的充分条件若函数在某点的导数由正变负,则该点是函数的极大值点;若函数在某点的导数由负变正,则该点是函数的极小值点。

这是极值判定的充分条件。

2. 函数的最值函数的最值是指函数在定义域内取得的最大值或最小值。

2.1 最大值和最小值函数在定义域内取得的最大值称为最大值,函数在定义域内取得的最小值称为最小值。

2.2 最值的存在性当函数在闭区间上连续时,函数一定存在最大值和最小值。

但是当函数在开区间上连续时,函数不一定存在最大值和最小值。

2.3 最值的求解方法求函数的最值主要通过导数的方法进行。

首先求出函数的导数,然后求出导数的零点,即函数的极值点。

从这些极值点中选取函数值最大的点,即为函数的最大值;选取函数值最小的点,即为函数的最小值。

3. 案例分析接下来通过一个具体的案例来说明函数的极值和最值的求解过程。

3.1 求函数 f(x) = x^3 - 3x^2 的极值和最值。

首先求导得到 f'(x) = 3x^2 - 6x,令 f'(x) = 0,解得 x = 0 或 x = 2。

当 x = 0 时,f''(0) = 0,无法判断极值情况;当 x = 2 时,f''(2) = 6 > 0,说明 x = 2 是极小值点。

计算 f(2) = 2^3 - 3(2)^2 = -4,可知函数的极小值为 -4。

高中函数的极值与最值问题

高中函数的极值与最值问题

高中函数的极值与最值问题函数是数学中的重要概念之一,它描述了两个变量之间的关系。

在高中数学学习中,我们经常遇到关于函数的极值与最值问题,这是一类常见且重要的问题。

本文将详细介绍高中函数的极值与最值问题,以帮助读者更好地理解和解决这类题目。

一、函数的极值与最值概念函数的极值包括极大值和极小值,统称为极值。

极大值对应函数的最大值,极小值对应函数的最小值。

最值问题是要求在一定条件下找到函数的最大值或最小值。

1. 极值的定义设函数y=f(x)在点x0处取得极大值,如果对于x0的某个邻域上的任意一点x,都有f(x)≤f(x0),则称f(x0)为函数的极大值。

类似地,如果对于x0的某个邻域上的任意一点x,都有f(x)≥f(x0),则称f(x0)为函数的极小值。

2. 最值的定义给定一个函数,如果在其定义域上存在一个点x1,使得对于定义域上的任意一点x,都有f(x)≤f(x1),则称f(x1)为函数的最大值。

类似地,如果对于定义域上的任意一点x,都有f(x)≥f(x1),则称f(x1)为函数的最小值。

二、求解函数的极值与最值的方法在高中数学中,求解函数的极值与最值可以采用以下方法:1. 导数法当函数的导数存在时,可以通过求导数的方法来找到函数的极值。

具体步骤如下:(1)求出函数的导数f'(x);(2)令f'(x)=0,求出导数为零的临界点;(3)将临界点和函数的端点代入原函数,并比较函数值,找到最大值与最小值。

2. 函数图像法通过绘制函数的图像,可以直观地找到函数的极值与最值。

具体步骤如下:(1)绘制函数的图像;(2)观察图像的极值点和最值点,标出对应的坐标。

3. 区间端点法当函数在特定区间上连续且可导时,可以通过将函数在区间两个端点处的值进行比较来找到函数的最值。

具体步骤如下:(1)计算函数在区间的两个端点处的函数值;(2)比较函数值,找出最大值与最小值。

三、应用举例下面通过两个例子来说明如何求解函数的极值与最值问题。

函数的极值与最值

函数的极值与最值

函数的极值与最值函数是数学中非常重要的概念,它描述了输入和输出之间的关系。

在数学中,我们经常会遇到寻找函数的极值和最值的问题。

本文将介绍函数的极值和最值的概念、求取方法以及相关的应用。

一、函数的极值和最值概念函数的极值指的是函数在特定区间内取得的最大值和最小值。

极大值是函数在该区间内取得的最大值,而极小值则是函数在该区间内取得的最小值。

极大值和极小值统称为极值。

而最大值和最小值则是函数在整个定义域内的最大值和最小值。

二、求取函数极值的方法有多种方法可以求取函数的极值,下面介绍常用的两种方法:导数法和二阶导数法。

1. 导数法导数法是一种基于函数导数的方法,它通过求取函数的导数来判断函数在某一点的递增或递减性,从而确定极值的存在和位置。

具体步骤如下:(1)求取函数的导数;(2)求取导数为零的点,即导数为零的点可能是函数的极值点;(3)求取导数为零点的二阶导数,并判断二阶导数的正负性;(4)根据二阶导数的正负性来确定函数在该点处的极值。

2. 二阶导数法二阶导数法是基于函数的二阶导数来判断函数极值的存在和位置。

通过求取函数的二阶导数,我们可以确定函数的凹凸性,并进而确定极值的存在和位置。

具体步骤如下:(1)求取函数的二阶导数;(2)求取二阶导数为零的点,即二阶导数为零的点可能是函数的极值点;(3)根据二阶导数的正负性来确定函数在该点处的极值。

三、函数极值与最值的应用函数的极值和最值在数学中有广泛的应用,下面介绍几个常见的应用场景:1. 最优化问题最优化问题是函数极值与最值的常见应用之一。

在实际问题中,我们常需要寻找一个函数的最大值或最小值,以满足特定的条件。

例如,生产厂家为了最大化利润,需要确定产量的最优值,这就是一个最优化问题。

2. 经济学应用函数的极值和最值在经济学中也有广泛的应用。

例如,生产函数和效用函数都需要求取最大值或最小值来确定最佳生产方案或消费方案。

3. 物理学应用在物理学中,函数的极值和最值也有很多应用。

函数极值与最值分析

函数极值与最值分析

函数极值与最值分析在数学中,函数的极值和最值分析是一个重要且常见的问题。

通过分析函数的极值和最值,我们可以更好地理解函数的特性和行为,以便在不同的应用场景中做出合理的决策。

本文将介绍函数的极值和最值概念,以及分析函数极值和最值的方法。

一、极值和最值的定义函数的极值指的是函数在某个特定区间内取得的最大值或最小值。

极大值是函数在某一点处的取值大于其邻近点的取值,极小值则是函数在某一点处的取值小于其邻近点的取值。

最值则是函数在整个定义域内取得的最大值和最小值。

二、函数的极值和最值分析方法1. 寻找导数为零的点对于可导函数而言,导数为零的点可能是函数的极值点。

因为在极值点,函数的导数会从正数变为负数(极大值)或从负数变为正数(极小值)。

因此,我们可以通过求导并令导数等于零来寻找潜在的极值点。

2. 检查导数的符号变化如果导数在某个点的左侧为负,而在该点的右侧为正,则该点为函数的极小值点;反之,如果导数在某个点的左侧为正,而在该点的右侧为负,则该点为函数的极大值点。

因此,我们可以通过检查导数的符号变化来确定极值点的存在和类型。

3. 分析函数的端点对于定义在闭区间上的函数,函数的极值点可能出现在区间的端点。

因此,在进行极值分析时,我们需要考虑函数在区间端点的取值情况。

4. 二阶导数法在寻找函数的极值点时,我们还可以通过二阶导数来确定极值点的类型。

如果函数在某点的二阶导数为正,那么该点为函数的极小值点;如果函数的二阶导数为负,那么该点为函数的极大值点。

三、最值的分析方法1. 利用最大最小值定理最大最小值定理指出,如果一个函数在一个闭区间上是连续的,那么它在该区间内一定存在最大值和最小值。

因此,在分析函数的最值时,我们可以先找出函数的临界点和端点,然后比较它们的取值来确定最值。

2. 利用函数的性质和图像在某些情况下,我们可以通过观察函数的性质和图像来确定最值。

例如,对于关于时间的函数,我们可以根据物理规律或实际问题的背景来判断最值的出现时刻。

函数的极值与最值

函数的极值与最值

函数的极值与最值在数学中,函数的极值与最值是我们经常会遇到的概念。

它们在解决实际问题,优化算法等方面发挥着重要的作用。

本文将介绍函数的极值与最值的定义、求解方法以及其在实际问题中的应用。

一、极值的定义与求解方法极值是函数在特定区间内取得的最大值或最小值。

根据定义,当函数在某个点的左右两侧函数值发生变化时,这个点就被称为极值点。

函数的最大值与最小值就是所有极值点中的最大值与最小值。

求解函数的极值可以通过以下几种方法:1. 导数法导数法是求解函数极值最常用的方法之一。

首先,我们需要计算函数的导数,然后找出导数为零的点,即驻点。

接下来,通过二阶导数的符号判断驻点是极大值还是极小值。

2. 边界法当函数在一个闭区间内连续且可导时,我们只需要计算函数在区间的端点以及在内部导数为零的点,然后比较这些函数值,即可找到函数的最大值与最小值。

3. Lagrange乘数法Lagrange乘数法主要用于求解带有约束条件的极值问题。

通过构造Lagrange函数并求解其偏导数为零的方程,我们可以获得函数在约束条件下的极值点。

二、最值的定义与求解方法最值是函数在定义域内的最大值或最小值。

与极值不同的是,最值并不要求函数在某个点处取得。

求解函数的最值可以通过以下几种方法:1. 根据函数性质有些函数具有明显的性质,比如函数的图像是凸函数或凹函数,这时我们可以直接判断函数的最值在哪个区间内取得。

2. 数值法数值法是一种较为直接的方法。

我们可以通过在定义域内取一系列点的函数值,然后比较这些函数值找出最大值与最小值。

3. 优化算法优化算法可以用来求解函数的最值问题。

例如,梯度下降法、遗传算法、模拟退火算法等可以被应用于求解实际问题中的最优解。

三、函数极值与最值的应用函数的极值与最值在实际问题中具有广泛的应用。

以下是一些具体例子:1. 生产优化问题在生产过程中,我们希望能够最大化产量或最小化成本。

通过建立相应的数学模型,并利用函数的极值与最值概念,可以确定生产因素的最佳配置,从而实现生产效益的最大化。

函数的极值与最值问题

函数的极值与最值问题

函数的极值与最值问题在数学中,函数的极值与最值问题是一类常见且重要的问题。

通过研究函数的极值和最值,我们能够深入理解函数的特点,并且在实际问题中能够得到有效的应用。

一、函数极值的定义在初等数学中,我们将极值分为两种,即极大值和极小值。

对于一个函数f(x),如果在某一点x0处,其函数值f(x0)大于其邻近点的函数值,那么f(x0)即为函数的极大值;相反,如果在某一点x0处,其函数值f(x0)小于其邻近点的函数值,那么f(x0)即为函数的极小值。

数学上,我们通过求函数的导数来判断函数的极值。

若函数在某一点的导数等于零,且导数在该点的某个邻域内变号,那么这个点就是函数的极值点。

二、函数最值的定义与函数的极值不同,函数的最值是指函数在其定义域内取得的最大值和最小值。

函数的最大值是指函数在定义域内的某个点或某些点上取得的最大函数值;函数的最小值则是指函数在定义域内的某个点或某些点上取得的最小函数值。

为了求得函数的最值,我们需要通过一定的方法进行计算。

常见的方法有试探法、数列极限法、导数法等。

通过这些方法,我们能够准确地找到函数的最值点和最值。

三、函数极值与最值问题的应用函数的极值与最值问题广泛应用于各个领域,包括自然科学、工程技术以及社会经济等。

下面以数学建模为例,简要说明函数极值与最值问题的应用。

在数学建模中,我们常常需要寻找能够最大化或最小化某种指标的函数值。

通过求解函数的极值和最值问题,我们可以确定最优解。

例如,在运输路线优化问题中,我们可以将运输距离或成本等指标建立函数,然后通过求函数的最小值来确定最佳的运输路线。

在生产优化中,我们可以将成本和产量建立函数,进而求函数的最大值或最小值来获得最优的生产方案。

函数的极值与最值问题还应用于金融领域。

在投资决策中,我们需要评价不同投资方案的风险收益特征。

通过构建风险与收益函数,我们可以求函数的最值,从而找到最佳的投资方案。

此外,在金融衍生品定价中,通过求解衍生品定价模型中的极值问题,我们可以确定合理的衍生品价格,为交易提供参考。

函数最值和极值的知识点

函数最值和极值的知识点

函数最值和极值的知识点函数是数学中非常重要的概念,它可以描述数值之间的关系。

在实际应用中,我们经常会遇到需要找到函数的最值和极值的问题。

本文将以“step by step thinking”的方式,逐步介绍函数最值和极值的知识点。

1.函数和定义域首先,我们需要明确函数的概念。

函数是一个从一个集合(称为定义域)到另一个集合(称为值域)的映射关系。

通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是对应的值域中的元素。

2.极值的概念在函数中,极值是指函数在某个特定点上取得的最大值或最小值。

极大值是函数在该点附近的值都小于等于该点的值,而极小值是函数在该点附近的值都大于等于该点的值。

3.局部极值和全局极值函数的局部极值是指在某个特定的定义域范围内,函数取得的最大值或最小值。

而全局极值是指在整个定义域上,函数取得的最大值或最小值。

4.寻找极值的方法为了找到函数的极值,我们可以使用以下方法:a.导数法:通过求函数的导数,找到导数为0的点,即函数的极值点。

具体步骤如下:–求函数f(x)的导数f’(x);–解方程f’(x) = 0,求出导数为0的点;–对导数f’(x)的符号进行判断,确定各个导数为0的点是极大值还是极小值;–比较函数在导数为0的点以及边界点上的值,找到函数的最大值和最小值。

b.集合法:将函数的定义域分成若干个小区间,在每个区间中比较函数的值,找到最大值和最小值。

5.函数最值和极值的应用函数最值和极值的概念在数学和实际应用中都有广泛的应用。

在数学中,它可以用于证明数学定理和解决数学问题。

在实际应用中,函数的最值和极值可以用于优化问题的求解,例如寻找最佳投资组合、最大利润等。

总结起来,函数最值和极值是数学中重要的知识点。

通过求函数的导数或将定义域分成若干个区间,我们可以找到函数的最大值和最小值。

这个概念在数学和实际应用中都具有重要的意义,它可以帮助我们解决各种问题。

希望本文能够帮助读者更好地理解函数最值和极值的知识点。

函数的极值与最值

函数的极值与最值

函数的极值与最值函数是数学中的重要概念,它描述了两个变量之间的关系,并在数学建模和问题求解中扮演重要角色。

函数的极值和最值是在特定区间内,函数取得的最大值和最小值。

本文将介绍函数的极值与最值的概念,并探讨如何求解函数的极值和最值。

一、函数的极值与最值概念在某个区间内,如果函数的值在该区间的其它点上都小于(或大于)该点的函数值,那么该点被称为函数的极值点。

函数的最大值和最小值就是函数在整个定义域内的极值。

对于实数域上的函数f(x),如果存在一个实数c,使得在区间[a,b]内的任意一点x,都有f(x)≥f(c),则称f(c)为函数f(x)在区间[a,b]上的最大值;如果对于区间[a,b]内的任意一点x,都有f(x)≤f(c),则称f(c)为函数f(x)在区间[a,b]上的最小值。

二、求解函数的极值与最值为了求解函数的极值和最值,我们可以采用以下方法:1. 导数法函数极值点必须满足导数为0或者不存在导数的条件。

通过求函数的导数,我们可以找到导数为零的点,然后判断这些点是否为函数的极值点。

当导数从正数变为负数时,函数的最大值出现;当导数从负数变为正数时,函数的最小值出现。

2. 端点法对于定义在有界闭区间上的函数,其最大值和最小值可能出现在区间的两个端点上。

因此,在求解函数的最大值和最小值时,我们需要检查区间的两个端点是否为候选点,并与导数法的结果进行比较。

3. 二次函数法对于二次函数f(x) = ax^2 + bx + c(其中a ≠ 0),其极值点为顶点,可以通过求解一元二次方程来确定顶点的横坐标,再将横坐标代入函数中求得纵坐标。

4. 函数图像法通过函数的图像,我们可以直观地看出函数的极值和最值。

在计算机图像绘制软件中,可以绘制函数的图像,然后从图像中读取函数的极值和最值。

三、应用举例下面通过几个具体的例子来说明如何求解函数的极值与最值。

例1:求解函数f(x) = x^2在区间[-2, 2]上的极值和最值。

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值高中数学知识点总结:导数的应用之函数的极值与最值在高中数学中,导数是一个重要的概念和工具,它被广泛应用于各个数学领域。

其中的一个应用就是求解函数的极值与最值。

本文将针对这一知识点进行总结和讨论。

I. 导数和极值函数的极值指的是函数在某个区间上的最大值或最小值。

在求解极值问题时,我们可以利用导数的性质来进行分析和计算。

下面是一些常见的求解函数极值的方法:1. 极值的必要条件若函数f(x)在x=a处取得极值,那么导数f'(a)存在,且f'(a)=0,或者导数不存在(函数在该点有间断点或者不可导)。

2. 极值的充分条件若函数f(x)在x=a点的左右两侧导数符号相反,即f'(a-)和f'(a+)异号,那么f(x)在x=a处取得极值。

- 若f'(a-)>0且f'(a+)<0,那么极值为极大值;- 若f'(a-)<0且f'(a+)>0,那么极值为极小值。

3. 临界点和拐点临界点是指导数为零或不存在的点,对于一元函数来说,临界点多对应于函数的极值点。

拐点是指在函数图像上出现凹凸性突变的点,即曲线的凸度方向改变的点。

II. 求解函数的极值步骤在应用导数求解函数极值时,一般需要按照以下步骤进行:1. 求取函数f(x)的导数f'(x)。

2. 解方程f'(x)=0,求得导数为零的临界点。

3. 利用极值的充分条件,对临界点进行分析判断。

4. 若需要,进一步计算临界点处的函数值和边界点处的函数值进行比较。

5. 得到函数的极值。

III. 求解函数的最值函数的最大值和最小值称为最值,求解最值问题需要考虑函数的定义域和导数的变化情况。

下面是一些常见的求解函数最值的方法:1. 函数在开区间内求最值若函数f(x)在开区间(a, b)内进行求最大值,我们需要进行以下步骤:- 求取函数f(x)的导数f'(x)。

函数的极值与最值

函数的极值与最值

函数的极值与最值函数是数学中重要的概念之一,它描述了自变量和因变量之间的关系。

在数学中,我们经常研究函数的极值与最值,以帮助我们了解函数的特性和性质。

本文将从定义、求解方法以及实际应用等方面探讨函数的极值与最值。

一、函数的极值与最值定义在数学中,给定一个函数f(x),其定义域为D,如果存在一个实数a使得在a的某个邻域内,对于所有x∈D,都有f(x)≤f(a)(或者f(x)≥f(a)),则称f(a)是函数f(x)在D上的一个极大值(或者极小值)。

相应地,称a是函数f(x)的极值点。

特别地,如果函数f(x)在D上的所有极值中存在一个最大值或最小值,则称此极值为函数f(x)在D上的最大值或最小值。

二、求解函数的极值与最值的方法要求解函数的极值与最值,我们需要运用微积分知识中的导数和极值点的概念。

1. 导数和极值点函数在某点的导数表示了函数在该点的变化率。

在函数的导数存在的点上,函数可能存在极值点。

当导数为零或不存在时,可能是函数的极值点。

2. 求解方法为了找到函数的极值点,我们可以执行以下步骤:- 求解函数的导数;- 找出导数为零或不存在的点,即可能的极值点;- 通过二阶导数或其他方法验证这些点确实是极值点;- 比较这些点的函数值,找出最大值或最小值。

三、实际应用函数的极值与最值在数学和实际问题中具有广泛的应用。

以下是一些示例:1. 经济学中的利润最大化在经济学中,一个公司的利润函数通常依赖于售价和销量等因素。

通过求解该函数的最大值,可以确定最大利润对应的售价和销量。

2. 物理学中的最速下降问题在物理学中,有些问题需要找到某个量的最小值以满足特定约束条件。

例如,光在介质中传播时,路径的折射率变化最小,我们可以利用函数的最小值来确定光的路径。

3. 优化问题函数的极值与最值在优化问题中有着广泛应用。

例如,在工程设计中,我们希望找到设计问题的最优解,如最小耗能、最小成本、最大效益等。

四、总结函数的极值与最值是数学中一个重要且实用的概念。

函数的极值和最值提高。知识梳理

函数的极值和最值提高。知识梳理

函数的极值和最值【考纲要求】1.掌握函数极值的定义。

2.了解函数的极值点的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大值和极小值4.会求给定闭区间上函数的最值。

【知识网络】【考点梳理】要点一、函数的极值 函数的极值的定义一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点二、函数的最值1.函数的最大值与最小值定理若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连续的函数)(x f 不一定有最大值与最小值.如1()(0)f x x x=>. 要点诠释:①函数的最值点必在函数的极值点或者区间的端点处取得。

②函数的极值可以有多个,但最值只有一个。

2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.【典型例题】类型一:利用导数解决函数的极值等问题【高清课堂:函数的极值和最值394579 典型例题一】函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求)(x f 在点))1(,1(f M 处的切线方程;【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用二------函数的极值与最值【学习目标】 1. 理解极值的概念和极值点的意义。

2. 会用导数求函数的极大值、极小值。

3. 会求闭区间上函数的最大值、最小值。

4. 掌握函数极值与最值的简单应用。

【要点梳理】 要点一、函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点诠释:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数)(x f 在点0x 取得极值的必要非充分条件.例如函数y=x 3,在x=0处,'(0)0f =,但x=0不是函数的极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。

要点二、函数的最值(一) 函数的最大值与最小值定理若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连续的函数)(x f 不一定有最大值与最小值.如1()(0)f x x x=>. 要点诠释:①函数的最值点必在函数的极值点或者区间的端点处取得。

②函数的极值可以有多个,但最值只有一个。

(二)求函数最值的的基本步骤:若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可。

②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. (三)最值与极值的区别与联系①函数的最大值和最小值是比较整个定义域上的函数值得出的(具有绝对性),是整个定义域上的整体性概念。

最大值是函数在整个定义域上所有函数值中的最大值;最小值是函数在整个定义域上所有函数值中的最小值.函数的极大值与极小值是比较极值点附近两侧的函数值而得出的(具有相对性),是局部的概念;②极值可以有多个,最大(小)值若存在只有一个;极值只能在区间内取得,不能在区间端点取得;最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值;③有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值. 要点三、函数极值与最值的简单应用1. 不等式恒成立,求参数范围问题。

一些含参不等式,一般形如(,)0f x m >,若能隔离参数,即可化为:()()m g x m g x ><(或)的形式。

若其恒成立,则可转化成max max ()()m g x m g x ≥≤(或),从而转化为求函数()g x 的最值问题。

若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥。

所以仍为求函数()g x 的最值问题,只是再求最值时可能需要对参数进行分类讨论。

2. 证不等式问题。

当所要证的不等式中只含一个未知数时,一般形式为()()f x g x >,则可化为()()0f x g x ->,一般设()()()F x f x g x =-,然后求()F x 的最小值min ()F x ,证min ()0F x >即可。

所以证不等式问题也可转化为求函数最小值问题。

3. 两曲线的交点个数问题(方程解的个数问题)一般可转化为方程()()f x g x =的问题,即()()0f x g x -=的解的个数问题,我们可以设()()()F x f x g x =-,然后求出()F x 的极大值、极小值,根据解的个数讨论极大值、极小值与0的大小关系即可。

所以此类问题可转化为求函数的极值问题。

【典型例题】类型一: 求函数的极值 例1. 下列函数的极值。

(1).)(23a x x x x f +--= (2)22()21xf x x =-+。

【解析】(I)'()f x =32x -2x -1若'()f x =0,则x ==-13,x =1 当x 变化时,'()f x ,()f x 变化情况如下表:∴()f x 的极大值是()327f a -=+,极小值是(1)1f a =-(2)函数的定义域为R 。

2222222(1)42(1)(1)'()(1)(1)x x x x f x x x +--+==-++。

令'()0f x =,得x=―1或x=1。

当x 变化时,'()f x ,()f x 变化状态如下表:由上表可以看出,当x=―1时,函数有极小值,且(1)232f -=-=-, 当x=时,函数有极大值,且2(1)212f =-=-。

【总结升华】 解答本题时应注意0'()0f x =只是函数()f x 在x 0处有极值的必要条件,如果再加上x 0左右导数的符号相反,方能断定函数在x 0处取得极值,反映在解题上,错误判断极值点或漏掉极值点是经常出现的失误。

举一反三:【变式1】 求下列函数的极值:(1)3()126f x x x =-++;(2)322()2(1)x f x x -=-。

【答案】(1)2'()3123(2)(2)f x x x x =-+=-+-。

令'()0f x =,解得x 1=―2,x 2=2。

当x 变化时,'()f x ,()f x 的变化情况如下表:当x=―2时,()f x 有极小值,并且,()(2)10f x f =-=-极小值, 而当x=2时,()f x 有极大值,并且,()(2)22f x f ==极大值。

(2)函数定义域为(-∞,1)∪(1,+∞)。

∵23(2)(1)'()2(1)x x f x x -+=-,令'()0f x =得x 1=―1,x 2=2。

当x 变化时,'()f x ,()f x 的变化情况如下表:故当x=―1时,8y =-最大值。

【高清课堂:函数的极值与最值 370875 例题1】 【变式2】 讨论函数43210()213f x x x x =-++(x ∈R )的单调性并求极值. 【答案】32'()41042(21)(2)f x x x x x x x =-+=--令'()0f x =,解得x 1=0, x 2=12, x 3=2 。

当x 变化时,'()f x ,()f x 变化状态如下表:由上表可以看出,()f x 在(-∞,0)和(2,2)上为减函数,在(0,2)和(2,+∞)上 为增函数。

当x=0时,函数有极小值(0)1f =; 当x=2时,函数有极小值5(2)3f =-。

当x=12时,函数有极大值155()248f =。

【高清课堂:函数的极值与最值 370875 例题3】【变式3】函数()f x 的定义域为区间(a ,b ),导函数'()f x 在(a ,b )内的图如图所示,则函数()f x 在(a ,b )内的极小值有( )A .1个B .2个C .3个D .4个 【答案】由极小值的定义,只有点B 是函数()f x 的极小值点,故选A 。

类型二:函数极值的逆向应用例 2. 已知函数32()f x ax bx cx =++在点x 0处取得极大值5,其导函数'()y f x =的 图象经过点(1,0),(2,0),如图所示。

求: (1)x 0的值;(2)a ,b ,c 的值。

【思路点拨】观察图像的正负和零点。

【解析】 (1)由图象可知,在(―∞,1)上'()0f x >,在(1,2)上'()0f x <,在(2,+∞)上'()0f x >,故()f x 在(-∞,1)和(2,+∞)上递增,在(1,2)上递减。

因此()f x 在x=1处取得极大值,所以x 0=1。

(2)方法一:2'()32f x ax bx c =++, 由'(1)0f =,'(2)0f =,(1)5f =,得32012405a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得2912a b c =⎧⎪=-⎨⎪=⎩。

方法二:设2'()(1)(2)32f x m x x mx mx m =--=-+。

又2'()32f x ax bx c =++, 所以3m a =,32b m =-,c=2m ,323()232m f x x mx mx =-+, 由(1)5f =,即22533m m m -+=,得m=6,所以a=2,b=―9,c=12。

相关文档
最新文档