微分方程数值解精彩试题库2011
微分方程数值解(学生复习题)
微分方程数值解(学生复习题)
一.填空
1.Euler法的一般递推公式为,整体误差为,局部截断误差为:.,改进Euler的一般递推公式
整体误差为,局部截断误差为:。
2.线性多步法绝对稳定的充要条件是。
3.当,则单步法
1(,,)0,1,2,,
n n n n T
u u h t u h n
h
,稳定。
4. 一个相容,稳定的多步法若绝对稳定,则绝对稳定域在。
5. 若,则多步法是相容的。
6.所有内点,界点的差分方程组成一个封闭的线性代数方程组,其系数矩阵
是。
7.刚性方程是:
8.Runge-Kutta法的特征值为,
相容的充要条件为:
8.二阶常微分方程边值问题:
2
2
,
(), ()
d u
Lu qu f a x b dx
u a u b
的中心差分格式为:
9.若内点的四个相邻点均属于,则称为。
10.逼近泊松方程的五点差分格式的截断误差的阶为。
逼近泊松方程的九点差分格式的截断误差的阶为。
11.线性多步法A稳定的充要条件是。
12.SOR收敛当且仅当松弛因子0,2
(),且Jacobi迭代收敛。
最佳松弛因子是。
二.判断
1.当时间步长和空间步长无限缩小时,差分格式的解是否逼近到微分方程问题的解,这就是差分格式的收敛性问题。
2.单参数的PR迭代格式的收敛速度与SOR最佳超松弛法的收敛速度同阶。
3、对称矩阵的普条件数与条件数相同。
4、一级Runge-Kutta法的绝对稳定域(-2,0)。
2011级数值分析试卷
菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。
则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。
2.设向量T n x )2,1,0( =,则=∞x 。
3.用牛顿法求方程0)(=x f 的根的公式为 。
4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。
三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。
微分方程数值解(A)
0 t T ,a 0 0 x 1 0t T 0t T
u 2 u 2 u ( x, y ) [0,1] [0,1], t 0 2 2 t x y ( x, y ) [0,1] [0,1] u ( x, y,0) ( x, y ) u (0, y, t ) ( y, t ), u (1, y, t ) ( y, t ), t 0 1 2 u ( x , 0 , t ) ( x , t ), u ( x , 1 , t ) t0 1 2 ( x, t )
的 Peaceman-Rachford 格式为
1 r 2 n 2 r 2 n ( 1 ) u y )u l ,m x l , m (1 2 2 , l , m 1,2,, N 1 , n 0,1,, M 1 1 (1 r 2 )u n 1 (1 r 2 )u n 2 y l ,m x l ,m 2 2
试讨论 Peaceman-Rachford 格式的截断误差, 并推导出计算中间层 ul ,m2 时依赖于时刻 n 和 n+1 的边界条件 十、浅谈双曲型微分方程数值解的应用领域及其研究重点。
n
1
第 2 页 共 2 页
第 1 页 共 2 页
2u 2u 0 的(Dirichlet)第一边值问题 x 2 y 2 其中: 是 的边界。当 {( x, y) | 0 x, y 1} 时,取 x y h 1 / 3 时,试写出超松弛迭代法
六、对于二维区域 的 Laplace 方程 (ROS)的计算公式的 U ( n1) AU ( n) en 的方程形式。 七、一阶双曲型方程:
试卷类别
2011年回忆版数分 高代 常微分
2011年(数学分析真题)一共九道
1,用W ALIS公式证明一个积分不等式
2,计算一个2型曲面积分
3,证明取得极值的必要条件是所有偏导为0
4,证明开集上的凸函数连续
5.证明斐波那契数列倒数和收敛(厦大那本上的)
6.证明很长的一个积分不等式
7证明点到点集的那个下确界函数一致连续
8证明质数的倒数和发散
9证明一个函数的极限在无穷远点的值为0
(线代与微分方程真题)一共十道前四道为微分方程后六道为高代
1.计算一个伯努力微分方程(简单)
2.计算一个非齐次的待定系数的方程(简单)
3.计算一个微分方程组(简单)
4.忘了,反正四个微分方程都很简单
5.计算一个矩阵的N次方
6一个矩阵的证明(简单)
7计算一个行列式
8计算一个分块矩阵的逆矩阵(这个题目我觉得是最难的)
9.计算矩阵的特征根
10,计算一个矩阵的若儿当标准型。
2011数值分析试题及答案
解:由 x( k 1) Mx( k ) g 和 x* Mx* g 可得:
x( k 1) x* M ( x( k ) x* ) , k 0,1,2,...
递推的: x( k ) x* M k ( x(0) x* ) 设 y 是矩阵 M 属于特征值 的特征向量,取 x(0) y x* ,则有:
1 1
1 0 0 0 0.3 0.2 0 0.3 0.2 0 0. 4 G ( D L) U 0 1 0 0 0 0.4 0 1 0 1 0 0 0 0 0. 3 0. 2
3 5x f ( xk ) xk a a , xk 1 k 2 , k 0,1,2,... xk xk 2 6 f ( xk ) 6 xk 6 xk
一、解答下列各题: (每题 5 分,共 30 分) 1.设近似值 x 具有 5 位有效数字,则 x 的相对误差限为多少? 解:记 x 0.a1a2 ...10 ,则 x 的相对误差为:
五、 (4 分)设矩阵 M 是 n 阶方阵, M 有一个绝对值小于 1 的特征值 ,且方程 组 x Mx g 有 唯 一 解 x * , 证 明 : 存 在 初 始 向 量 x ( 0 ) 使 迭 代 格 式 :
x ( k 1) Mx ( k ) g , k 0,1,2,...产生的序列 {x ( k ) } 收敛到 x * .
常微分方程试题答卷及参考答案
2010-2011学年第二学期常微分方程考试AB 卷答案理学院年级信息与计算科学专业 填空题(每题4分,共20分)1.形如)()('x Q y x P y +=()(),(x Q x P 连续)的方程是一阶线性微分 方程,它的通解为⎪⎭⎫ ⎝⎛⎰+⎰-⎰=c dx dxx P e x Q dx x P e y )()()(. 2.形如0y y '''-=的方程是3阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=.3.形如1111110n n nn n n n n d y d y dyx a x a x a y dx dxdx----++++=的方程为欧拉方程,可通过变换t x e =把它转化成常系数方程. 4.2(1)0,ydx x dy ++=满足初始条件:x =0,y =1的特解11ln 1y x=++5.5.微分方程0000(,),(),:,dyf x y y x y R x x a y y b dx==-≤-≤满足的解存在且唯一的条件是: (,)f x y 在R 上连续且满足利普希茨条件一、下列微分方程的解(每题5分,共30分) 1.dx dy =2)(1y x + 解:令x+y=u ,则dx dy =dxdu -1……………………….3 dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c (5)2.()()053243=+++xdy ydx y xdy ydx x解:两边同乘以y x 2得:()()0532*******=+++ydy x dx y x ydy x dx y x (3)故方程的通解为:c y x y x=+5324 (5)3.2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy=,则2p x y +=,两边对x 求导,得dxdp pp 21+= pp dx dp 21-=,……………………….3 解之得()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2, (4)且y=x+1也是方程的解,但不是奇解 (5)4.04)5(='''-x x解:特征方程0435=-λλ有三重根0=λ,42λ=,52λ=-............................3 故通解为54232221c t c t c e c e c x t t ++++=-. (5)5.4523x x x t ''''''--=+解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3)又因为=λ0是特征根,故可以取特解行如2x At Bt =+代入原方程解得A=1425,B=25- (4)故通解为x=5212325t t c e c e c t t -++- (5)6.2ln 0,xy y y '-=初值条件:y(1)=e解:原方程可化为ln dy y ydx x=………………………1 分离变量可得ln dy dxy y x=…………………………………………………..3两边积分可得ln y cx =…………………………………………………..4将初值代入上式求得方程的解:ln 2y x = (5)二、求下列方程(组)的通解(每题10分,共30分)1.求一曲线,使其任一点的切线在OY 轴上的截距等于该切线的斜率. 解:设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:dyy xdx-……………………….3 由题意得dyy x x dx-=即11dy y dx x =- 也即ydx xdy dx -+=- 两边同除以2x ,得2ydx xdy dxx x-+=-………………….5 即()ln yd d x x=- (7)即ln y cx x x =+……………………….10 为方程的解。
西安石油大学研究生数值分析10 11年试题
一、填空题(每题2分,共20分) 1.近似数 x =0.231关于真值x=0.229有
位有效数字。 。
n
2.求方程 f ( x) 0 的根时,对应的牛顿切线法迭代公式为 3.设 l i ( x) (i=0,1,2,…,n)是n次拉格朗日插值基函数,则
4 0 x1 5 2 3 1 1 x 2 9 2 2 0 x 3 3
四、(12分)写出解线性方程组
4 x1 2 x3 4 x1 4 x 2 2 x3 1 的高斯—赛德尔迭代法的迭代格式,并判断其收敛性。 3 x 5 x x 2 2 3 1
l ( x) =
i 1 i
。
4.求解微分方程初值问题
y ' f ( x, y ) 时,设x节点步长为h,则欧拉预估— y ( x0 ) y 0
迭代法和
校正方法的局部截断误差为 。 5.若线性方程组AX=b的系数矩阵A为严格对角占优矩阵,则 迭代法收敛。 6.差商与向前差分满足关系: 差商与向后差分满足关系: 7.用数值方法求积分 。 。
五、(12分)已知一组观察数据为 i 0 1 2 2 3 3 4
xi
1
yi
0
-5
-6
3
试用此组数据构造3次牛顿插值多项式 N 3 ( x) ,并计算 N 3 (1.5) 的值。 六、(12分)试确定经验公式 y ae 中的参数a和b(a为正数),使该函数曲线与下列数
bx
据按最小二乘原则相拟合(至少保留ห้องสมุดไป่ตู้位小数)。 1 2
xi
3 20
青岛大学考研真题常微分方程2011
青岛大学2011年硕士研究生入学考试试题科目代码:877科目名称:常微分方程(共3页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效一、填空题(20分,每小题4分)1.所谓微分方程就是一个或几个联系着之间关系的等式。
2.在微分方程中,必定含有未知函数的导数项,其中出现的就称为该微分方程的阶数。
3.对于n 阶方程0),...,,,,()(=′′′n y y y y x F ,如果它的解),...,,,(21n c c c x y ϕ=含有n c c c ,...,,21,则称这个解为其。
4.对于线性微分方程来说,其通解包含了它的;对于非线性方程来说其通解并不一定包含其。
5.形如n y x Q y x P dxdy)()(+=的方程,称为方程。
二、根据下图建立相应的微分方程(15分)如图所示,在一根长度为l 的可略去重量不计且不伸长的线上拴着一个质量为m 的小球,让它在过摆动线固定点的铅锤平面上的垂线附近摆动。
ϕ表示摆动线与垂线的夹角,并定义逆时针方向为正向,反之为负向。
试写出小球的摆动方程。
三、回答下列各题(25分)1.指出下列微分方程的阶数并判断是否为线性方程(1)yx dx dy 4sin −=,(2)0633=++xy dx dy y dxyd 2.什么是常微分方程的特解?何为初值问题?3.写出齐次和非齐次线性微分方程组的一般形式;叙述叠加原理;若)(1x ϕ和)(2x ϕ是非齐次线性微分方程组的解,问2211ϕϕϕc c +=是否仍为该非齐次线性微分方程组的解?四、叙述初值问题解的存在唯一性定理(Picard 定理)(10)五、利用变量分离法求解下列方程(25分)1.x y dx dycos 2=2.31−++−=y x y x dx dy 六、判定下列方程是否是全微分方程,并求解。
(20分)1.0)128()83(22322=++++dy y y x x dx xy y x 2.利用积分因子法求解方程0)(344=−+dy xy dx y x 七、求下述线性方程组的基本解矩阵(14分)x x ⎥⎦⎤⎢⎣⎡=′2012八、求下述初值问题的解(11分)⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=′11)0(,03201x e x x t九、(10分)给定非线性微分方程组)(x f x =′。
2011年秋研究生数值分析试题A卷答案
2011年秋研究生数值分析期末考试试题答案一、单选题(4*5=20分)1、B;2、D ;3、D ;4、B ;5、C 。
二、填空题(4*5=20)1、2;2、()()1k k k k f x x x f x +=-',平方收敛;3、8,8;4、9; 5、a <。
三、(10分)解:构造3次Lagrange 插值多项式3001001201()()(,)()(,,)()()L x f x f x x x x f x x x x x x x =+-+--0123012(,,,)()()()f x x x x x x x x x x +--- 3’利用待定系数法,令430123()()()()()()H x L x A x x x x x x x x =+----, 5’同时, '''14131101213()()()()()()f x H x L x A x x x x x x ==+--- 7’解出A 即可。
8’ 考虑余项4()()()E x f x H x =-,如果5()[,],,0,1,2,3i f x C a b a x b i ∈≤≤=,那么,当a x b ≤≤时()()5240123()()()()()()()5!f E x f x H x x x x x x x x x ξ=-=----. 0 10’ 四、(10分)解:设所求多项式为23202)(x C x C C x P ++=,10=ϕ,x =1ϕ,22x =ϕ,11),(10++==⎰+k j dx e k j k j ϕϕ,1),(100-==⎰e dx e f x ϕ, 1),(101==⎰dx xe f xϕ,2),(1022-==⎰e dx e x f x ϕ 5’ 所以有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡21151413141312131211210e e C C C ,求解得到 8’ ⎪⎩⎪⎨⎧===83917.085114.001299.1321C C C ,所求最佳平方逼近多项式为:2283917.085114.001299.1)(x x x P ++=。
微分方程数值解问题复习题
dy = λ y 运用这些格式。作为课程设计问题之一,具体的步 dx
骤已经在上课的时候讲过,请自己写上。例如,对于经典四级四阶 Runge-Kutta 格式,我们如此求其绝对稳定区域。 经典四级四阶 Runge-Kutta 格式为
1 ⎧ ⎪ yn +1 = yn + 6 h( K1 + 2 K 2 + 2 K 3 + K 4 ) ⎪ ⎪ K1 = f ( xn , yn ) ⎪ 1 1 ⎪ ⎨ K 2 = f ( xn + h, yn + hK1 ) 2 2 ⎪ 1 1 ⎪ ⎪ K 3 = f ( xn + 2 h, yn + 2 hK 2 ) ⎪ ⎪ ⎩ K 4 = f ( xn + h, yn + hK 3 )
3
⎧ ⎧ ⎪1 − c1 − c2 = 0 ⎪c1 + c2 = 1 ⎪ ⎪ 1 ⎪1 ⎪ 3 根据 en +1 = O(h ) ,必须 ⎨ − a2 c2 = 0 ,也就是 ⎨a2 c2 = 。 2 ⎪2 ⎪ 1 ⎪1 ⎪ − c2b21 = 0 b21c2 = ⎪ ⎪ ⎩2 2 ⎩
1 令 c1 = c2 = , a2 = b21 = 1 ,就得到了预报-校正格式: 2 1 ⎧ ⎪ yn +1 = yn + 2 h( K1 + K 2 ) ⎪ ⎨ K1 = f ( xn , yn ) ⎪ K = f ( x + h, y + hK ) n n 1 ⎪ 2 ⎩ 6.求二级二阶,三级三阶,四级四阶 Runge-Kutta 格式的绝对稳定区域。(分别选
⎛t ⎞ ⎛ t ⎞ t (t − 1) ⋅⋅⋅ (t − j + 1) ⎛t ⎞ ,特别地, ⎜ ⎟ = 1 , ⎜ ⎟ = t 。 ⎜ ⎟= j! ⎝0⎠ ⎝ 1⎠ ⎝ j⎠ a j = (−1) j ∫ −t (−t − 1) ⋅⋅⋅ (−t − j + 1) 1 1 dt = ∫ t (t + 1) ⋅⋅⋅ (t + j − 1)dt 0 j! j! 0
2011级硕士研究生《数值分析》试卷(A)
合肥工业大学2011级硕士研究生《数值分析》试卷(A)班级 姓名 学号 成绩一、判断题 (下列各题,你认为正确的,请在题后的括号内打“√ ”,错误的打“×”,每题2分,共10分) 1. 设函数f 具有5阶导数,则(5)[0,1,2,3,4,5]()f f ξ=,其中ξ介于0,1,2,3,4,5之间,[0,1,2,3,4,5]f 是()f x 关于节点0,1,2,3,4,5的5阶差商。
( )2. 若方阵A 是严格对角占优的,则可用Gauss 消去法直接求解方程组=Ax b ,无须选主元素。
( )3. 若()()0f a f b <,则方程()0f x =在区间(,)a b 内至少有一个根。
( )4. 若函数()f x 是多项式,则它的Lagrange 插值多项式()()p x f x ≡. ( )5. 解常微分方程初值问题的四阶Runge-Kutta 方法的局部截断误差是5()O h ,其中h 是步长。
( )二、填空题 (每空2分,共10分)1. 近似数*3.200x =关于准确值 3.200678x =有 位有效数字。
2. 设2435A =⎡⎤⎢⎥⎣⎦,则1Cond()A = . 3. 设函数(2.6)13.4673,(2.7)14.8797,(2.8)16.4446f f f ===, 用三点数值微分公式计算(2.7)f '= 14.8865 .4. 设函数sin 2()x f x =, 2()p x 是()f x 的以1,2,3为节点的二次Lagrange 插值多项式,则余项2()()f x p x -= .5. 二元函数(,)f x y 在区域D 上关于y 满足Lipschitz 条件是:.三 (本题满分12分) 对下列方程组1231231235212,4220,23103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩ 建立Jacobi 迭代格式(4分)和Gauss –Seidel 迭代格式(4分),写出Jacobi 迭代格式的迭代矩阵,并用迭代矩阵的范数判断所建立的Jacobi 迭代格式是否收敛(4分)。
数值分析(2011)试题A卷 参考答案
装订线年 级 学 号 姓 名 专 业一、填空题(本题40分, 每空4分)1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 1,0,1,,0i j i j n i j=⎧=⎨≠⎩ 。
2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 0 。
3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 1/8 。
4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 ()1B ρ< 。
5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 3 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过 0.005 cm才能使其面积误差不超过12cm 。
(结果保留小数)7.要使求积公式)()0(41)(111x f A f dx x f +≈⎰具有2次代数精确度,则 =1x23 , =1A 34。
8. 用杜利特尔(Doolittle )分解法分解LUA =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1359 45- 279 126 0 945- 0 45 1827- 9 189A 其中,则=L 10002100121023113⎛⎫⎪ ⎪ ⎪-⎪ ⎪- ⎪⎝⎭=U 918927091890281540009-⎛⎫⎪-⎪ ⎪-⎪⎝⎭。
二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。
2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期一 二 三 四 五 六 七 八 九 十 总分年 级2011级研究生 份 数 拟题人 王吉波 审核人装 订线年级 学 号 姓 名 专 业三、计算题(15分)试导出计算)0(1>a a的Newton迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。
数值分析(2011)试题A卷
装 订 线 年 级学 号姓 名专 业一、填空题(本题40分, 每空4分) 1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 。
2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 。
3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 。
5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过 cm 才能使其面积误差不超过12cm 。
(结果保留小数) 7.要使求积公式)()0(41)(1110x f A f dx x f +≈⎰具有2次代数精确度,则 =1x , =1A 。
8. 用杜利特尔(Doolittle )分解法分解LU A =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=135 9 45- 279 126 0 945- 0 45 1827- 9 18 9A 其中,则=L =U 。
二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。
2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期 一 二 三 四 五 六 七 八 九 十 总分 年 级2011级研究生份 数拟题人 王吉波审核人装 订 线 年 级学 号姓 名专 业三、计算题(15分)试导出计算)0(1>a a 的Newton 迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。
四、计算题(15分)已知43,21,41210===x x x 。
(1)推导出以这3个点作为求积节点在[0,1]上的插值型求积公式; (2)指明求积公式所具有的代数精确度;(3)用所求公式计算⎰102dx x 。
2011年下学期数值分析考试试卷答案(A)
2011年下学期数值分析考试试卷答案(A)D222223221()()(1)(2)(1)21(45)2P x H x Ax x x x x x x x x =+-=-+-=-+余项为 R(x)=(5)22()(1)(2)5!f x x x ξ-- ……………………………12分解法2:构造带重节点的Newton 差商表 0 0 0 0 0 1 1 1 1 1 1 1 0 -1 2211/2 ………………………8分2222221()00(0)1(0)1(0)(1)(0)(1)21(45)2N x x x x x x x x x x =+-+----+--=-+…………………12分三、 (12分) 求()xf x e -= 在区间[-1,1]上的最佳平方逼近2次多项式. (用勒让德正交多项式2121{(),(),()}{1,,(31)}2P x P x P x x x =-) 解:用勒让德多项式20121{(),(),()}{1,,(31)}2P x P x P x x x =-,2(,)21iiP P i =+ …………………………………………………………………………………..3分计算:11101(,)( 2.3504)x f P e dx e e ---==-≈⎰,1111(,)20.7358x f P xe dx e---==-≈-⎰121211(,)(31)70.143132x f P x e dx e e ---=-=-≈⎰…………………………………………………………………………………..8分111101010011(,)(,)2* 1.1752,*3 1.1036(,)2(,)2/3 f P f P e e e a a e P P P P ----==≈==-=-≈-12222(,)7*0.3578(,)2/5f P e e a P P --==≈故最优平方逼近函数为:11112225351()3(31)22211.1752 1.10360.3758(31)20.5367 1.10360.9963e e e e p x e x x x x x x -----=-+⋅-≈-+⋅-=-+。
2011-2012学年常微分方程(A)考试标准答案
安徽大学20 11 —20 12 学年第 一 学期《 常微分方程 》(A 卷)考试试题参考答案及评分标准一、 选择题(每小题5分,共20分)(1) (a);(2) (d);(3) (d);(4)(b);二、请判断下面各题是否正确,并简述理由(每小题5分,共15分)(1)正确 …………………………2分事实上,(),f x y 在H 上满足局部L -条件,因此方程满足初始条件的解存在且唯一 . ……5分(2)正确 …………………………2分事实上,作变换1x x ydt =⎰,则原方程可化为()111120x a t x dy y dt x '+⎡⎤⎣⎦+= …………………………4分 然后用常数变易法知可解 ……………5分(3)错误 …………………………2分事实上,二阶线性方程()()()12x a t x a t x f t '''++=与一类特殊的线性微分方程组()()()()()21010,,x Ax f t A f t a t a t f t ⎛⎫⎛⎫'=+== ⎪ ⎪--⎝⎭⎝⎭矛盾. …………………5分三、计算题(每小题10分,共50分)(1)解:方程变形为()2222sin 1x y x x y x '+=++,令2u x y =+, 则2u y x ''=+, ………………5分可得22sin 1x u u x '=+,求解得()2csc cot 1u u C x -=+,………………7分由初始条件22y π⎛= ⎝⎭知,22C π=+。
……………………10分 (2)解:方程320dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭可写为32,dy y p xp p dx =+= 两边关于x 求导数,得到()2320p x dp pdx ++=当0p ≠时,计算11,2,,M N p x M N p x M p∂∂∂∂-∂∂===∂∂-因此()p p μμ== ……5分 上式两边乘以p 并积分之,得到4234p xp c += …………………………7分得到方程的通解为22334, 0212c x p p p c y p p ⎧=-⎪⎪≠⎨⎪=-⎪⎩ ……………9分 当0p =时,由方程可以直接得到0y =也是方程的解. ……………10分(3)解:作极坐标cos ,sin x r y r θθ== ……………2分2222220004222t t x y t r r f dxdy d rf dr rf dr πθπ+≤⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰ ……………5分 将原式两边关于t 求导数,得()()2488t f t tf t te πππ'-= ……………7分其通解为()()2244t f t t c e ππ=+ ……………9分 由初始条件()01f =求得特解为()()22441t f t t e ππ=+ ……………10分 (4)解:对应的齐次线性微分方程为90y y ''+=其通解为12sin 3cos3y c x c x =+ 当02x π≤≤时,求得9sin y y x ''+=有一特解为11sin 8y x =,于是其有121sin 3cos3sin 8y c x c x x =++ 由初始条件()()00,00y y '==代入,有特解为11sin 3sin 248y x x -=+。
微分方程数值解试题库2011
———--——--—--——-———--——-—----——-—------———--——---—-————-——-—------————--——--——-———-———-———-—-----————--——--—--——-----——《常分方程数值解法》试题一及答案———-—————-—---------———--————-————--———-——-----—-———---—--——-—-——--——---———-—----———-———--——-—-—-—-———-—----——-—--—--—1.用欧拉法解初值问题⎩⎨⎧1=060≤≤0--='2)().(y x xy y y ,取步长h =0。
2.计算过程保留4位小数。
解:h =0.2, f (x )=-y -xy 2。
首先建立欧拉迭代公式 ),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0。
2时,已知x 0=0,y 0=1,有 y (0.2)y 1=0.2×1(4-0×1)=0.800 0当k =1,x 2=0.4时,已知x 1=0.2, y 1=0。
8,有y (0.4)y 2=0。
2×0.8×(4-0.2×0。
8)=0。
614 4当k =2,x 3=0。
6时,已知x 2=0。
4,y 2=0.614 4,有y (0。
6)y 3=0.2×0.614 4×(4-0。
4×0。
4613)=0.800 02.对于初值问题⎩⎨⎧1=0='2)(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值.3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([211+++k k k k y x f y x f h , h =x k +1-x k (k =0,1,2,…,n -1),4.将下列方程化为一阶方程组(1)430(0)1,(0)0y y y y y '''-+=⎧⎨'==⎩(2)2322ln (1)1,(1)0x y xy y x x y y '''⎧-+=⎨'==⎩(3)26(0)1,(0)1,(0)2y y y y y y ''''⎧=⎨'''==-=⎩5.取步长h = 0。
《微分方程数值解法》复习、练习题
《微分方程数值解法》复习、练习题第一章复习题1、建立差分格式的三个主要步骤(三个离散化)。
2、差分格式的相容性、收敛性概念。
3、Poisson 方程的5点菱形差分格式,矩形、非矩形区域情形边界条件的处理(离散化)。
4、对长方形区域作正方形网格剖分,求解Poisson 方程边值问题的五点菱形差分格式,按什么顺序对节点编号,可使差分方程带宽更窄?(按短方向排)5、差分方程有哪些共同特性,求解选用哪类方法?(大型稀疏,带状,主对角占优等,一般采用迭代法)多重网格等略。
6、极值原理。
7、5点菱形差分格式求解Poisson 方程第一边值问题的收敛性。
第一章练习题1、设有边值问题=?+??-=-==<<<<=?====x u n u u y u u y x x u y y x x 2,1122.00,3.00,2.003.00取h =0.1的正方形网格。
(1)用5点菱形格式在内点建立差分格式;(2)用截断误差为)(2h O 的方法离散化第三边界条件(有两种方式);(3)写出整理后的差分方程的矩阵形式=??????? ????????? ?D C B A u u u u2、定义方形算子如下:(),1,11,11,11,1,2142i j i j i j i j i j i j u u u u u u h---++-++=+++- 试讨论5点方形差分方程,,i j i j u f =逼近微分方程(,)u f x y ?=的截断误差是几阶?3、设有{}220,(,)0,1ln (1)u x y x y u x y ?Ω?=∈Ω=<,取h =1/3,列出5点方形差分格式所得的差分方程。
第二章复习题1、差分格式稳定性与收敛性的定义。
2、有关求特征值的几个结论。
3、判断稳定性的矩阵法和Fourier 分析法(Von-Neumann 条件)的应用。
4、显隐格式在一般情况下的优缺点。
5、熟悉古典显、隐格式,六点对称隐格式(C-N 格式)。
微分方程数值法复习题
微分方程数值法复习题一、证明:同一个函数的广义导数并不唯一,但不同的广义导数几乎处处相等。
二、设A 为对称正定矩阵,证明下列两个问题等价:(1)求0n x R ∈,使0()min ()nx RJ x J x ∈= ,其中1()(,)()2J x A x x b x =--(2)求下列方程组的解:A x b =证明:由于00002000002000()()1(,)(,)21[(,)(,)(,)(,)](,)(,)2()[(,)(,)2(,)](,)22J x x Ax Ax x x b x x Ax x Ax x Ax x Ax x b x b x J x Ax x Ax x b x Ax x ϕλλλλλλλλλλλ=+=++-+=+++--=++-+又A 是对称矩阵,从而00(,)(,)Ax x Ax x =,故 200()()(,)(,)2J x Ax b x Ax x λϕλλ=+-+如果()J x 于0x 取极小值,即()ϕλ于0λ=取极小值,则有0(0)(,)0,nAx b x x R ϕ'=-=∀∈从而00Ax b -=,即0x 是A x b =的解,又(0)(,)0,Ax x x ϕθ''=>∀≠故A 必为正定矩阵。
反之,设A 是对称正定矩阵,0x 是方程组的解,即 00Ax b -= 则得202()()(,)2(0)(,)(0),0,2J x Ax x Ax x x λϕλλϕϕλθ=+=+>≠≠即()J x 于0x 取极小值。
证毕。
三、证明下列定理:设02*(),f C I u C ∈∈是边值问题(),(,)(),()0d du Lu p qu f x a b dx dx u a a u b ⎧=-+=∈⎪⎨⎪'==⎩ 的解,则*u 使1()(,)(,)2J u a u u f u '=-达到极小值;反之,若21*E u C H ∈ 使()J u 达到极小值,则*u 是上述边值问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题一及答案----------------------------------------------------------------------------------------------------------------------1.用欧拉法解初值问题⎩⎨⎧1=060≤≤0--='2)().(y x xy y y ,取步长h =0.2.计算过程保留4位小数。
解:h =0.2, f (x )=-y -xy 2.首先建立欧拉迭代公式),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0.2时,已知x 0=0,y 0=1,有 y (0.2)≈y 1=0.2×1(4-0×1)=0.800 0当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.614 4,有y (0.6)≈y 3=0.2×0.614 4×(4-0.4×0.4613)=0.800 02.对于初值问题⎩⎨⎧1=0='2)(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值.3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([211+++k k k k y x f y x f h, h =x k +1-x k(k =0,1,2,…,n -1),4.将下列方程化为一阶方程组(1)430(0)1,(0)0y y y y y '''-+=⎧⎨'==⎩(2)2322ln (1)1,(1)0x y xy y x x y y '''⎧-+=⎨'==⎩ (3)26(0)1,(0)1,(0)2y y y y y y ''''⎧=⎨'''==-=⎩5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。
6.下列各题先用龙格――库塔法求表头,然后用阿当姆斯法继续求以后各值(1)⎩⎨⎧==≤≤-=1.03)1(5.112'h y x y x y(2)⎪⎩⎪⎨⎧==≤≤=+1.01)1(5.1111'2h y x xy x y7.试确定公式11211()n n n n nn n y ay by cy h dy ey fy +--+-'''=+++++中的系数,,,,,a b c d e f ,使之成为一个四阶方法.8.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==9. 2.(1)0,dx x dy y ++=并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题二及答案----------------------------------------------------------------------------------------------------------------------1.用欧拉预报-校正公式求解初值问题⎩⎨⎧1=10=++'2)(sin y x y y y ,取步长h =0.2,计算 y (0.2),y (0.4)的近似值,计算过程保留5位小数.l解:步长h =0.2, 此时f (x ,y )=-y -y 2sin x .欧拉预报-校正公式为:⎪⎩⎪⎨⎧++=+=++++)],(),([2),(1111k k k k k k k k k k y x f y x f hy y y x hf y y 校正值预报值有迭代公式:⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=--+--+=-=--+=++++++++)sin (1.0)sin 1.09.0()]sin ()sin [(2)sin 2.08.0()sin (121112112121k k k k k k k k k k k k k k k k k k k k k k x y y x y y x y y x y y h y y x y y x y y h y y 校正值预报值 当k =0,x 0=1, y 0=1时,x 1=1.2,有631710=11⨯02-80⨯1=20-80=0001.)sin .()sin ..(x y y y715490=21631710+63171010-1⨯1⨯10-90⨯1=≈2121.).sin ..(.)sin ..().(y y 当k =1,x 1=1.2, y 1=0.71549时,x 2=1.4,有476970=21715490⨯02-80⨯715490=20-80=1112.).sin ..(.)sin ..(x y y y).sin ..(.).sin ...(.).(41476970+47697010-21⨯715490⨯10-90⨯715490=≈4122y y=0.526082.试写出用欧拉预报-校正公式求解初值问题⎩⎨⎧1=00=+')(y y y 的计算公式,并取步长h =0.1,求y (0.2)的近似值.要求迭代误差不超过10-5.3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([211+++k k k k y x f y x f h, h =x k +1-x k(k =0,1,2,…,n -1),4.求出梯形格式的绝对稳定性区域.5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。
6.用差分法求方程⎩⎨⎧===+''1)1(0)0(0y y y y的数值解(h = 0.2)7yxy dx dy x y 321++=解:原式可化为:x x y xx y x yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然(1)(1)0110000ln ln ,ln ,ln ;0;0.x ydx y xdy x yy x xy dx dy x yx x y y c xy x y c xy x y c y x ++-=+-==≠==++-=+-==-===8:解:由或是方程的解,当时,变量分离两边积分即故原方程的解为----------------------------------------------------------------------------------------------------------------------《常分方程数值解法》试题三及答案----------------------------------------------------------------------------------------------------------------------1.写出用四阶龙格-库塔法求解初值问题⎩⎨⎧2=03-8=')(y yy 的计算公式,取步长h =0.2计算y (0.4)的近似值.计算过程保留4位小数. 解:此处f (x ,y )=8-3y , 四阶龙格-库塔法公式为)22(643211κκκκ++++=+hy y k k其中 κ1=f (x k ,y k );κ2=f (x n +12h ,y k +21h κ1);κ3=f (x k +12h ,y n +21h κ2);κ4=f (x k +h ,y k +h κ3)本例计算公式为:)(.43211++2+2+620+=κκκκk k y y其中 κ1=8-3 y k ;κ2=5.6-2.1 y k ;κ3=6.32-2.37y k ; κ4=4.208+1.578y k)1,...,2,1,0(5494.02016.1))578.1208.4()37.232.6(2)1.26.5(238(62.01-=+=-+-+-+-+=+n k y y y y y y y k k k k k k k 当x 0=0,y 0==2,46542=30042⨯54940+20161=54940+20161=≈4030042=2⨯54940+20161=54940+20161=≈201201......).(.....).(y y y y y y2.对于初值问题⎩⎨⎧1=0='2)(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值.3.用Euler 法解初值问题(0)0y ax b y '=+⎧⎨=⎩,证明:其截断误差为21()2n n y x y anh -=,这里n x nh =,n y 是Euler 法的近似解.4.求出梯形格式的绝对稳定性区域.5.取步长h = 0.2再用四阶龙格――库塔方法解初值⎩⎨⎧=≤≤+=1)0(10'y x y x y并用前题比较结果。