分子生物学基本知识(下)

合集下载

分子生物学基础知识点

分子生物学基础知识点

分子生物学基础知识点分子生物学是研究生物体内分子结构与功能的学科,主要研究生物分子的组成、结构、功能以及其在生命过程中的调控。

下面将从DNA、RNA、蛋白质和基因调控四个方面,介绍分子生物学的基础知识点。

DNA(脱氧核糖核酸)DNA是细胞的基因遗传物质,由鸟嘌呤(G)、胸腺嘧啶(T)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

DNA通过碱基配对的方式,以双螺旋结构存在,形成了著名的DNA双螺旋结构。

DNA 的重要性体现在多个方面,其中包括:1. 遗传信息的传递:DNA携带了生物个体的遗传信息,通过遗传物质的传递实现了物种遗传的延续。

2. DNA复制:DNA能够通过复制过程产生与自身一模一样的新的DNA分子,确保细胞的遗传信息能够传递给下一代细胞。

3. DNA修复:细胞会受到环境因素的影响,导致DNA损伤。

细胞通过DNA修复机制,修复受损的DNA,维持DNA的完整性。

RNA(核糖核酸)RNA也是生物分子的一种,由鸟嘌呤(G)、尿嘧啶(U)、腺嘌呤(A)和胞嘧啶(C)四个碱基组成。

与DNA不同,RNA通过单链结构存在,包括了信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等不同类型。

RNA的重要性主要在于:1. 转录:RNA通过转录过程,可以将DNA的遗传信息转录成RNA 分子,为蛋白质的合成提供模板。

2. 翻译:mRNA进入到细胞质中,参与到蛋白质的合成过程中,被tRNA识别并翻译成相应的氨基酸序列,进而组装成蛋白质。

3. 调控功能:RNA还可以通过miRNA、siRNA等形式参与到基因的调控过程中,影响蛋白质合成的速率和用途。

蛋白质蛋白质是生物体内功能最为复杂和多样的分子。

蛋白质的组成由氨基酸构成,共有20种氨基酸,通过肽键连接形成多肽链,进而折叠形成特定的三维结构。

蛋白质的重要性体现在:1. 功能和结构:蛋白质具有多样的功能和结构,是细胞的工作驱动力,包括酶、结构蛋白、抗体等。

分子生物学知识点

分子生物学知识点

分子生物学知识点(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章染色体与DNA1.原核生物的DNA的主要特征:一般只有一条染色体且大都带有单拷贝基因,只有少数的基因是以多拷贝形式存在的;整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。

2.真核生物染色体所具有的特征:分子结构稳定;能够自我复制,使亲代之间保持连续性;能够知道蛋白质的合成,从而控制整个生命活动过程;能够产生可遗传的变异。

3.染色体上的蛋白质主要包括组蛋白和非组蛋白。

组蛋白是染色体的结构蛋白,与DNA组成核小体。

其中组蛋白又分为:H1、H2、H2B、H3及H4。

4.组蛋白的特性:①进化上的极端保守性:不同种生物组蛋白的氨基酸组成是十分相似的②无组织特异性③肽链上的氨基酸分布的不对称性:碱性氨基酸集中分布在N端的半条链上④组蛋白的修饰作用:包括甲基化、乙酰化、磷酸化、泛素华及ADP核糖基化(修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)⑤富含赖氨酸的组蛋白H5。

5.非组蛋白包括酶类,与细胞分裂有关的收缩蛋白、骨架蛋白、核孔复合蛋白以及肌动蛋白、肌球蛋白、微管蛋白、原基蛋白等。

①HMG蛋白:其特点在于能与DNA结合,也能与H1作用,但都容易用低盐溶液抽提,说明他们与DNA的结合并不牢靠。

②DNA结合蛋白:相对分子质量较低的蛋白质,约占非组蛋白的20%,可能是一些与DNA的复制或者转录相关的酶或调节物质。

③A24非组蛋白:其有两个N端,呈酸性,含有较多的谷氨酸和天冬氨酸,总含量大约是H2A的1%,位于核小体内。

值(C value):一种生物单倍体基因组DNA的总量。

C值反常现象:某些两栖类的C值甚至比哺乳动物还大,而在两栖类中C值的变化也很大,可相差100倍。

7.真核细胞的DNA序列大概可分为三类(根据对DNA的动力学):①不重复序列:这些序列一般只有一个或几个拷贝,它占DNA总量的40%—80%。

分子生物学知识点总结

分子生物学知识点总结

分子生物学知识点总结分子生物学是研究生物体中分子结构、功能和相互作用的学科。

它在解释细胞和生命现象的分子基础方面发挥着重要作用。

以下是分子生物学的几个核心知识点总结:DNA的结构和功能DNA是生物体中遗传信息的储存和传递的分子。

它由核苷酸组成,每个核苷酸包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。

DNA的双螺旋结构由两股互补的链组成,通过氢键相连。

DNA的功能包括遗传信息的复制、转录和翻译,是细胞遗传信息的储存库。

RNA的结构和功能RNA也是由核苷酸组成的分子,与DNA的结构类似,但包含的糖是核糖,而不是脱氧核糖。

RNA起到多种功能,其中包括转录DNA信息、参与蛋白质合成等。

mRNA是将DNA信息转录成蛋白质合成的模板,tRNA通过与mRNA和氨基酸的配对作用,在翻译过程中帮助氨基酸正确排列。

基因表达调控基因表达调控是细胞根据内外环境调节基因转录和翻译的过程。

它包括转录因子、启动子、启动子结合因子、RNA干扰等。

转录因子结合在DNA上的启动子区域,促进或抑制转录的发生。

通过不同的基因表达调控方式,细胞可以在不同的发育和环境条件下产生不同的蛋白质。

基因突变和遗传疾病基因突变是DNA序列发生突变或改变的现象。

它可以是点突变、插入突变、缺失突变等。

基因突变可能导致蛋白质功能的改变,从而引起遗传疾病。

例如,单基因遗传病如囊性纤维化和苯丙酮尿症,以及复杂遗传病如癌症,都与基因突变有关。

PCR技术聚合酶链反应(PCR)是一种体外扩增DNA的技术,可以从微弱的DNA样本中扩增特定片段。

PCR由三步循环组成:变性、退火和延伸。

它广泛应用于分子生物学研究、基因工程和医学诊断等领域。

基因克隆和DNA测序基因克隆是将特定的DNA片段插入载体DNA(如质粒)中,形成重组DNA分子。

通过基因克隆,可以大量复制目标DNA片段。

DNA 测序是确定DNA序列的过程,它有助于揭示基因的结构和功能,促进遗传学和进化生物学的研究。

分子生物学总结知识点

分子生物学总结知识点

分子生物学总结知识点(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分子生物学总结知识点分子生物学总结知识点篇一:分子生物学总结第一章绪论1、细胞学说1847年由德国科学家施莱登和施旺提出。

细胞学说的主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。

2、分子生物学的概念:分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与核酸、蛋白质与蛋白质之间的相互作用的关系及其基因表达调控机理的学科。

3、中心法则1958年由克里克提出4、分子生物学的研究内容:a:DNA重组技术(基因工程)b:基因的表达调控c:生物大分子的结构和功能研究(结构分子生物学)d:基因组、功能基因组与生物信息学研究RNA复制逆转录蛋白质【名词解释】:1、同功tRNA:多个tRNA携带一种氨基酸,这些tRNA称为同功tRNA。

2、iRNA:即起始RNA,DNA合成的引物3、核酶:即具有催化作用的一类RNA分子。

4、端粒酶:是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。

5、反义核酸:是根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA或RN段(或其化学修饰的衍生物),能够与目的序列结合,通过空间位阻效应或诱导RNase活性,在复制、转录、剪接、mRNA转运及翻译等水平,抑制或封闭目的基因的表达。

第二章核酸的结构与功能1、染色质的类型分为两种类型:常染色质和异染色质。

常染色质处于伸展状态,碱性染料着色浅而均匀;异染色质处于凝集状态,碱性染料着色较深。

2、染色质蛋白质分为两类:组蛋白和非组蛋白。

分子生物学知识点整理

分子生物学知识点整理

分子生物学知识点整理1.基本分子生物学概念:基因、DNA、RNA和蛋白质是分子生物学的基本概念。

基因是一段DNA序列,负责编码产生RNA和蛋白质。

DNA是脱氧核糖核酸,由含有遗传信息的碱基序列组成。

RNA是核糖核酸,负责将DNA的信息转录成具体蛋白质的制作指令。

蛋白质是由氨基酸组成的大分子,负责细胞的结构和功能。

2.DNA的结构:DNA是双螺旋结构,由两条互相缠绕的链组成,这两条链通过碱基之间的氢键相互连接。

DNA的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

3.DNA复制:DNA复制是细胞分裂的过程中,DNA双链被复制为两条相同的DNA双链。

这是生命的一个基本过程,确保每个新细胞都有完整的遗传信息。

DNA复制是由DNA聚合酶酶进行的,它们能够将新的碱基加到原有的DNA链上。

4.转录:转录是将DNA的信息复制成RNA的过程。

这个过程包括三个步骤:启动、延伸和终止。

在转录开始时,RNA聚合酶酶会识别DNA链上一个特定的启动位点,然后沿着DNA模板链向前延伸合成RNA链。

转录的终止是由特定的序列标志着的,一旦被识别,RNA聚合酶酶就会停止合成RNA。

5.翻译:翻译是将RNA的信息转化成蛋白质的过程。

这个过程涉及到tRNA和核糖体的作用。

tRNA具有与特定氨基酸结合的能力,并根据mRNA 模板上的密码子序列,将氨基酸逐个带入核糖体中合成蛋白质。

6.基因调控:基因调控是细胞内基因表达的调控机制,使细胞能够根据需要调整哪些基因的表达,以适应不同的环境条件。

这包括启动子、转录因子和RNA干扰等机制。

7.基因突变和遗传变异:基因突变是指在DNA链上发生的改变,可能导致蛋白质的结构和功能的改变。

遗传变异包括基因重组、基因扩增和基因缺失等,能够产生新的基因组和生物特征。

8.PCR:聚合酶链式反应(PCR)是一种用于扩增DNA片段的技术。

它涉及到短的引物,用于界定所需扩增的DNA片段,然后通过多次的加热和冷却循环,DNA被不断复制,产生大量的DNA片段。

分子生物学基础知识

分子生物学基础知识

四、RNA的结构
(一) RNA的结构特征:
1. 组成:核糖 碱基——A U C G 2. 单链,局部形成双链。 3. 含稀有碱基较多——DHU(二氢尿嘧啶),Tф(假尿嘧啶),
甲基化,甲羟化,乙酰化等
(二) RNA的种类:
1、参与基因表达的RNA
① 信使RNA(mRNA):遗传信息的传递,翻译模板 ② 转运RNA (tRNA):氨基酸载体 ③ 核糖体RNA (rRNA):提供蛋白质合成的场所
②嘧啶
5 4 3N 612
NH
NH2
N
NH
O
胞嘧啶(cytosine, C)
O
NH
NH
O
尿嘧啶(uracil, U)
O
H3C NH
NH
O
胸腺嘧啶(thymine, T)
(二) 戊 糖
HO CH2
OH
5´ O


3´ 2´
HO CH2
OH
O
OH 1、核糖(ribose) (构成RNA)
2-OH 亲水极性集团 易水解 易受攻击
1、mRNA的特征:
① 含量最少 ② 种类繁多 ③ 半衰期最短 ④ 原核生物mRNA为多顺反子
真核生物mRNA为单顺反子
2、真核生物mRNA的帽子结构:
①类型
m7G 5’ppp 5’ Np (O型)
m7G 5’ppp 5’ NmpNp (I型)
m7G 5’ppp 5’ NmpNmpNp (II型)
②功能
a、稳定mRNA b、有利于mRNA由核内到胞浆的转位 c、有利于与核糖体蛋白的结合、与翻译起始蛋白的结合
3、真核生物mRNA的3´-poly(A)尾巴:

分子生物学的知识点

分子生物学的知识点
4.基因的表达调控
基因的表达调控是分子生物学的重要研究内容之一。它包括转录调控和翻译调控两个层次。转录调控通过转录因子的结合来调节基因的转录水平,而翻译调控则通过调控mRNA的翻译过程来控制蛋白质的合成。
5.基因突变和遗传疾病
基因突变是指基因序列发生改变,它可以导致基因功能的改变或丧失。一些基因突变与遗传疾病的发生有关,如遗传性疾病、癌症等。通过研机制,并为疾病的预防和治疗提供理论基础。
2. RNA的结构和功能
RNA是DNA的转录产物,也是生物体内的重要分子。它由核苷酸组成,包括腺苷酸、鸟苷酸、胸苷酸和尿苷酸。RNA的结构包括mRNA、tRNA和rRNA等不同类型,它们分别参与基因的转录、翻译和蛋白质合成等过程。
3.蛋白质的结构和功能
蛋白质是生物体内最重要的分子之一,它由氨基酸组成,通过肽键连接成链状结构。蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等不同层次,它们决定了蛋白质的功能和性质。蛋白质的功能包括酶的催化作用、结构支持、信号传导和免疫防御等。
6. PCR技术和基因克隆
PCR技术是分子生物学中常用的一种技术,它可以在体外扩增DNA片段。PCR技术的原理是通过DNA的复制过程,使用引物选择性地扩增目标DNA片段。基因克隆是指将DNA片段插入到载体中并复制出多个相同的DNA分子。基因克隆技术在基因工程和生物医学研究中有着广泛的应用。
7.基因组学和蛋白质组学
基因组学是研究基因组的科学,它包括基因的组成、结构和功能等方面的研究。蛋白质组学是研究蛋白质组的科学,它包括蛋白质的组成、结构和功能等方面的研究。基因组学和蛋白质组学的发展,为我们更好地理解生物体的功能和调控机制提供了重要的工具和方法。
总结起来,分子生物学是研究生物体内分子的结构、功能和相互作用的学科。它涉及到DNA、RNA、蛋白质等生物分子的研究,对于理解生命的本质和生物体的功能具有重要意义。通过对分子生物学的学习和研究,我们可以更好地了解生物体的基本结构和功能,为生物医学研究和生物技术的发展提供基础。

分子生物学知识点归纳

分子生物学知识点归纳

分子生物学知识点归纳1.DNA的结构和功能:DNA是生物体内贮存遗传信息的分子,由磷酸、五碱基、脱氧核糖组成。

DNA以双螺旋结构存在,通过序列编码生物体的遗传信息,并在细胞分裂中复制和传递。

2.RNA的结构和功能:RNA是将DNA信息翻译为蛋白质的中间分子,有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)。

RNA具有与DNA类似的结构,但是鸟嘌呤(G)和胸腺嘧啶(T)被腺嘌呤(A)和尿嘧啶(U)所取代。

3.基因表达:基因表达是指将DNA中的遗传信息转录成RNA,然后翻译成蛋白质的过程。

这个过程包括转录、剪接、RNA修饰、起始和终止等多个步骤。

基因表达过程中的调控对于维持生物体的正常功能至关重要。

4.蛋白质合成:蛋白质合成是指RNA翻译成蛋白质的过程。

这个过程包括译码、蛋白质折叠和修饰。

蛋白质的结构和功能由其氨基酸序列决定,但结构和功能的形成还受到其他因素的调控。

5.基因组学:基因组学是研究生物体基因组的学科,包括基因组的结构、功能和演化。

随着高通量测序技术的发展,基因组学成为了分子生物学的前沿领域。

6.分子遗传学:分子遗传学是研究遗传信息传递和表达的分子机制的学科。

它研究遗传物质的结构、复制、易位、突变和修复等,以及遗传信息的传递和表达的分子级机制。

7.基因调控:基因调控是指细胞内基因表达的调节过程。

这个过程包括转录因子与DNA结合、组蛋白修饰、DNA甲基化等多个调控机制。

基因调控决定了细胞的发育、分化和对环境刺激的响应。

9.蛋白质相互作用和信号传导:蛋白质相互作用是指蛋白质之间的物理或化学交互作用。

这些相互作用对于细胞信号传导、代谢调控和细胞活动的协调起着重要作用。

10.DNA修复和细胞凋亡:DNA修复是细胞内修复DNA损伤的过程,以维持遗传稳定性。

细胞凋亡是指细胞主动性死亡的过程,常常发生在DNA 严重损伤和细胞失控增殖时。

以上只是分子生物学的一些知识点,这个领域还有很多其他的重要概念和研究方向,如非编码RNA、表观遗传学和细胞信号转导等。

《分子生物学》知识要点汇总

《分子生物学》知识要点汇总

《分子生物学》知识要点汇总1. 基因表达:转录+翻译。

2. 时间特异性、空间特异性,管家基因(组成性表达)3. 转录起始(基本控制点)4. 原核与真核区别:基因表达原核真核启动子o 因子识别-35 区TTGACA-10 区TATAAT -25 区TATA 盒TF- ⅡD 决定了聚合酶识别特异性特点操纵子模型具有普遍性顺式作用原件具有普遍性机制主要是负性调节(阻遏调节)主要是正性调节(诱导调节)结果转录衰减染色体结构改变原核生物:单复制子,多顺反子真核生物:多复制子,单顺反子1. 得:染色体分离、化学合成、基因组文库、cDNA 法、PCR 法。

2. 选:克隆载体(质粒、自我复制),表达载体(大肠杆菌)3. 接:DNA 连接酶,黏性末端连接准确性最高。

4. 转:重组质粒导入宿主细胞为转化,重组噬菌体导入大肠杆菌为转染。

5. 筛:载体遗传标志、标志补救、序列特异性(分子杂交、PCR、测序、RE 酶切)、亲和筛选1. RE:细菌产生,识别回文结构,切割双链DNA 得到黏性末端。

2. DNA 连接酶:目的基因+载体重组。

2. DNApol I 的大片段(Klenow):cDNA→dsDNA,标记3´-端。

3. 逆转录酶:mRNA→cDNA。

5. 多聚核苷酸激酶:5´-OH 末端磷酸化作标记探针。

6. 末端转移酶:3´-OH 末端加尾。

7. 碱性磷酸酶:切除末端磷酸基团。

1. 正常。

2. 获得启动子或增强子、染色体易位、基因扩增、点突变。

3. 产物:类别名称生长因子(本质是多肽)sis(过度表达)、int-2生长因子受体(本质蛋白质) fms、kit、her-2/erb-b2 (扩增)、EGFR/erb-b1细胞信号转导蛋白膜结合酪氨酸激酶src、abl(转位)细胞内酪氨酸激酶TRK细胞内丝/苏氨酸激酶 raf膜GTP 结合蛋白ras(点突变)转录因子fos、jun、myc(转位)细胞周期蛋白cyclin D4. 与肿瘤相关。

生化药物分子生物学 下篇重点知识总结

生化药物分子生物学 下篇重点知识总结

药物分子生物学下篇一、名词解释1.药物基因组学(Pharmacogenomics):研究遗传变异与药物反应相互关系的一门学科,是以提高药物的疗效及安全性为目标。

2.遗传药理学(pharmacogenetics):研究遗传因素对药物反应影响的学科3.单核苷酸多态性(Single nucleotide polymorphism, SNP):指不同个体基因组DNA序列上单个碱基的差异。

4.单体型(Haplotype):位于一条染色体上倾向于整体遗传的一组紧密连锁的遗传标记物。

5.单体型图(HapMap):以SNP为标志物构建人类DNA序列中多态位点的常见模式。

6.全基因组关联性分析(Genome-wide association study, GW AS):假设基因组上任何基因变异都与药物效应或毒性应答具有相关性,在全基因组范围内寻找与药物应答相关遗传变异。

7.转录组(Transcriptome):广义是指某一生理条件下,一种细胞、组织、器官、或生物体所能转录出来的所有RNA的总和,包括mRNA和非编码RNA。

狭义上是指一个活细胞所能转录出来的所有mRNA,即从基因组DNA转录的基因总和,也成为表达谱。

8.转录组学(Transcriptomics):是一门在整体水平上研究细胞中基因转录的情况及转录调控规律的学科。

简而言之,转录组学是一个细胞的基因组转录全部mRNA以研究基因表达的情况。

9.反义药物(Antisense drugs):利用反义技术研制的药物,通常指反义寡核苷酸药物,是指人工合成长度为10~30个碱基的DNA分子及其类似物。

10.蛋白质组(Proteome):一个基因组,一个细胞、一个有机体或某一特定的组织类型所表达的全部蛋白质。

11.蛋白质组学(Proteomics):是指研究蛋白质组的科学。

是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。

分子生物学知识点整理

分子生物学知识点整理

分子生物学知识点整理1.基因结构与功能:基因是编码蛋白质的单位,基因通常由DNA组成。

基因在转录过程中产生mRNA,然后通过翻译过程合成蛋白质。

基因还可通过调控元件控制其表达水平。

2.DNA复制:DNA复制是生物体维持基因遗传的关键过程。

在DNA复制过程中,DNA双链被解旋,然后酶类将合适的核苷酸加到模板链上,形成两条新的DNA双链。

DNA复制是半保守性的,意味着每个新生成的DNA分子含有一条模板链和一条新合成的链。

3.转录与翻译:转录是将DNA的信息转录成mRNA的过程。

在转录过程中,RNA聚合酶将mRNA合成出来。

翻译是将mRNA的信息翻译成蛋白质的过程。

在翻译过程中,mRNA被核糖体翻译出蛋白质。

4.蛋白质结构与功能:蛋白质是生物体内的重要分子,它们具有多种结构和功能。

蛋白质的结构通常包括四级结构,即原始结构、α-螺旋和β-折叠的二级结构、特定的三级结构和蛋白质复合物的四级结构。

蛋白质的功能取决于它的结构,例如,酶是催化反应的蛋白质,抗体是免疫系统的重要组成部分。

5.基因调控:基因调控是通过一系列的转录因子、启动子、增强子和抑制子等调控元件控制基因表达的过程。

转录因子与DNA结合,可以促进或抑制RNA聚合酶的结合和转录。

6.基因突变与重组:基因突变是指DNA序列中的任何变化,例如点突变、插入、缺失和倒位等。

基因重组是指DNA发生重组,导致新的基因组合。

突变和重组对物种的遗传多样性和进化起着重要作用。

7.DNA修复与基因组稳定性:DNA会受到内部和外部因素的损害,例如紫外线、化学物质和代谢产物等。

细胞通过DNA修复机制来修复这些损伤,以维持基因组的稳定性。

8.分子遗传学与细胞周期:分子遗传学研究基因的遗传传递和表达的过程。

细胞周期是一系列有序的细胞分裂和生长阶段。

9.基因组学与蛋白质组学:基因组学研究整个基因组的结构和功能;蛋白质组学研究蛋白质组的结构和功能。

这两个领域的发展对于了解生物体的整个基因和蛋白质组合具有重要意义。

分子生物学的基础知识和技术

分子生物学的基础知识和技术

分子生物学的基础知识和技术分子生物学是一门集化学、生物学、物理学等多门学科于一体的综合性学科,它研究的是生物体内分子的结构、功能、调控和相互关系。

分子生物学的研究对象从DNA、RNA、蛋白质等单一分子开始,进而涉及到基因、基因组、细胞和生物体等更加复杂的层次。

本文将从分子生物学的基础知识、技术和研究进展等方面进行介绍。

一、分子生物学的基础知识1. DNA分子的结构DNA分子是生物遗传信息的载体,它由4种不同的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳮嘌呤)构成的双链螺旋结构。

碱基之间通过氢键进行配对,腺嘌呤与胸腺嘧啶之间形成两个氢键,鸟嘌呤与鳮嘌呤之间形成三个氢键。

DNA分子还有两个极性,一个是5'端(还原端),一个是3'端(羟基端)。

2. RNA分子的结构RNA分子是基因转录产物和蛋白质合成的中介体,它由4种不同的碱基(腺嘌呤、鸟嘌呤、尿嘧啶和胸腺嘧啶)构成的单链。

RNA分子与DNA分子不同的是,它在鸟嘌呤和胸腺嘧啶之间没有氢键形成配对,而是通过胞苷和尿嘧啶之间的氢键进行配对。

RNA分子同样有5'端和3'端。

3. 蛋白质的结构蛋白质是生物体内最广泛和最复杂的分子之一,是生物体内各种功能的主要执行者。

蛋白质的结构分为4级,一级结构是指蛋白质的氨基酸序列;二级结构是指α螺旋、β折叠等结构;三级结构是指蛋白质立体结构的样子;四级结构是指蛋白质的亚基组成的多聚物结构。

二、分子生物学的技术1. PCR技术PCR技术(聚合酶链反应技术)是一种在体外进行的基因扩增技术,它可以通过DNA的复制过程实现无限的扩增。

PCR技术一般分为3个步骤:变性(DNA 双链变为单链)、退火(引物与DNA碱基配对)、合成(聚合酶在模板DNA上复制过程)。

2. DNA-测序技术DNA-测序技术用于测定DNA序列,可以精确地确定DNA分子的碱基序列。

最常用的测序方法是Sanger测序,该方法利用末端标记的反链末端引物,加入少量的ddNTPs(二磷酸去氧核苷酸,其衍生物缺乏3'OH末端),使聚合酶停止复制,从而实现DNA序列的测定。

分子生物学知识要..

分子生物学知识要..

《分子生物学》知识要点第二章染色体与DNA一、名词解释1.DNA二级结构:指俩条多核苷酸链反向平行盘绕所生成的双螺旋结构。

2.半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的俩条链。

3.切除修复:在一系列酶的作用下,将DNA分子中受损伤部分切除,以互补链为模板,合成出空缺的部分,使DNA 恢复正常结构的过程。

4. SOS反应:是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。

5.DNA转座:是有可移位因子介导的遗传物质重排现象。

二、知识要点1. DNA的复制过程(1)复制起始,DNA双螺旋结构解旋,形成复制叉,由RNA聚合酶在DNA模板上合成一段RNA引物;(2)DNA链的延伸,由聚合酶从RNA引物3’端开始合成新的DNA链,在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止;(3)复制终止,由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。

2. 总结DNA复制的基本规律DNA的复制,是以DNA分子本身为模板进行DNA生物合成的过程。

这种复制方式保证了遗传信息准确无误地传给后代。

DNA复制主要包括引发、延伸、终止三个阶段。

半保留复制、复制起始点、双向复制、半不连续复制3. DNA损伤的修复系统类型及修复机制(1)错配修复,能识别母链的依据来自Dam甲基化酶,它能使位于5’-GATC序列中腺苷酸的N6位甲基化;(2)切除修复,酸内切酶识别DNA损伤部位,并在5’端作一切口,再在外切酶的作用下从5’端到3’端方向切除损伤;然后在 DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二酯链相接而完成修复过程;(3)重组修复,从 DNA分子的半保留复制开始,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成修复过程;(4)DNA的直接修复,把损伤的碱基回复到原来状态的一种修复;(5)SOS反应,是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存的一种应急措施。

分子生物学知识点

分子生物学知识点

分子生物学知识点分子生物学是生物学的一个重要分支,研究生物体内分子的结构、功能和相互作用等方面的知识。

本文将介绍分子生物学的几个重要知识点,包括基因、DNA复制、蛋白质合成、转录与翻译、基因调控和突变等。

一、基因基因是生物遗传信息的基本单位,是指能够编码蛋白质或功能RNA的DNA片段。

基因分为编码基因和非编码基因两类。

编码基因是指能够直接转录成mRNA并翻译成蛋白质的基因,而非编码基因则是指不具备编码蛋白质能力的基因,其转录产物主要是功能RNA。

二、DNA复制DNA复制是指在细胞分裂过程中,DNA分子能够通过互补配对原则进行复制的过程。

DNA复制是生物体遗传信息传递的基础,也是细胞分裂和繁殖的重要过程。

DNA复制的关键酶是DNA聚合酶,它能够在模板DNA链上合成新链。

三、蛋白质合成蛋白质合成是指在细胞中将mRNA上的遗传信息翻译成蛋白质的过程。

蛋白质合成包括转录和翻译两个过程。

转录是指在细胞核内将DNA上的遗传信息转录成mRNA的过程,而翻译则是在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。

四、转录与翻译转录是指在细胞核内,由RNA聚合酶将DNA模板上的遗传信息转录成mRNA的过程。

转录分为初始化、链式生长和终止三个阶段。

翻译是指在核糖体上将mRNA上的遗传信息翻译成氨基酸序列的过程。

翻译过程中需要使用到tRNA和rRNA等辅助分子。

五、基因调控基因调控是指在生物体内控制基因表达的过程。

基因调控包括转录水平的调控和转录后水平的调控两个层次。

转录水平的调控主要涉及到转录因子和启动子区域的结合,以及染色质构象的调整等。

转录后水平的调控则主要包括RNA剪接、RNA修饰和RNA降解等过程。

六、突变突变是指生物体遗传信息发生永久性改变的现象。

突变可以分为基因突变和染色体突变两类。

基因突变是指基因上的DNA序列发生改变,包括点突变、插入突变和缺失突变等。

染色体突变是指染色体上的结构发生改变,包括染色体缺失、染色体断裂和染色体重排等。

研究生分子生物学知识点

研究生分子生物学知识点

研究生分子生物学知识点分子生物学是生物学的一个重要分支,研究生分子生物学需要掌握一定的知识点。

下面将详细介绍分子生物学的一些重要知识点。

1.DNA和RNA:DNA和RNA是分子生物学的基础。

DNA是携带遗传信息的分子,通过其碱基序列确定了生物体的遗传特征。

RNA则在转录过程中将DNA的信息转化为蛋白质。

分子生物学研究中需要了解DNA和RNA的组成、结构、功能及相互作用。

2.转录和翻译:转录和翻译是分子生物学中最重要的过程之一、转录是指将DNA信息转录成RNA的过程,翻译是指将RNA信息翻译成蛋白质的过程。

研究生分子生物学需要了解这两个过程的机制、调控以及相关的分子机器。

3.基因调控:基因调控是指通过启动子、转录因子、染色质重塑等方式调节基因表达的过程。

研究生分子生物学需要了解基因调控机制,包括转录因子的结构和功能、染色质的结构和动态调节等。

4.RNA干扰:RNA干扰是一种通过RNA分子干扰特定基因表达的机制。

研究生分子生物学需要了解RNA干扰的机制、类型以及相关技术的应用。

5.转座子和基因突变:转座子是能够在基因组中移动的DNA片段,基因突变则是DNA序列中的改变。

研究生分子生物学需要了解转座子的分类、机制以及基因突变的种类和对生物体的影响。

6.蛋白质结构和功能:蛋白质是生物体中最重要的分子之一,研究生分子生物学需要了解蛋白质的结构和功能。

包括如何通过蛋白质序列推断其结构、蛋白质与其他分子的相互作用等。

7.DNA修复和突变:DNA修复是维护基因组稳定性的重要机制,而突变则是造成遗传变异的原因之一、研究生分子生物学需要了解DNA修复的机制、类型以及突变的产生原因和后果。

8.基因组学和转录组学:基因组学研究基因组的结构和功能,转录组学研究转录过程中的基因表达情况。

研究生分子生物学需要了解基因组学和转录组学的技术手段和应用,包括测序技术、基因表达分析等。

9.蛋白质组学:蛋白质组学研究生物体中所有蛋白质的组成、结构和功能。

分子生物学知识点

分子生物学知识点

一、名词解释:1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链。

2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。

3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。

如GAPDH、β-肌动蛋白基因。

4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。

5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。

如:乳糖操纵子、色氨酸操纵子等。

6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。

7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列。

是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。

8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。

(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。

)9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。

10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。

11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。

分子生物学实验基础知识

分子生物学实验基础知识

分子生物学实验基础知识分子生物学是在生物化学基础上进展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、医治和预后的机制。

其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术能够改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方式,也是分子水平研究疾病发生机制、基因诊断和基因医治的方式。

转化(tran sformation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采纳的手腕。

基因重组的目的之一是基因克隆(gene clone),基因克隆可明白得为以一分子基因为模板扩增取得的与模板分子结构完全相同的基因。

使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。

外来基因引发细胞生物性状改变的进程叫转化(transformation),以噬菌体把外源基因导入细菌的进程叫转染(transfection)。

利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的进程叫转导(transduction)。

一个或一组基因从一处转移到基因组另一处的进程叫转位(transposition),这些游动的基因叫转位子。

一、基因工程的经常使用工具(一)载体载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。

载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性结尾质粒(粘粒)、病毒等。

载体具有能自我复制;有可选择的,便于挑选、鉴定的遗传标记;有供外源DNA插入的位点;本躯体积小等特点。

质粒存在于多种细菌,是染色体(核)之外的独立遗传因子,由双链环状DNA组成,几乎完全袒露,很少有蛋白质结合。

质粒有严紧型和松弛型之分。

严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。

而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,若是用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质合成后的分泌及加工修饰不论是原核还是真核生物,在细胞浆内合成的蛋白质需定位于细胞特定的区域,有些蛋白质合成后要分泌到细胞外,这些蛋白质叫做分必蛋白。

在细菌细胞内起作用的蛋白质一般靠扩散作用而分布到它们的目的地。

如内膜含有参与能量代谢和营养物质转运的蛋白质;外膜含有促进离子和营养物质进入细胞的蛋白质;在内膜与外膜之间的间隙称为周质,其中含有各种水解酶以及营养物质结合蛋白。

真核生物细胞结构更为复杂,而且有多种不同的细胞器,它们又具有各不相同的膜结构,因此合成好的蛋白质还要面临跨越不同的膜而到达细胞器械,有些蛋白质在翻译完成后还要经过多种共价修饰,这个过程叫做翻译后处理。

(一)细菌中蛋白质的越膜细胞的内膜蛋白,外膜蛋白和周质蛋白是怎样越过内膜而到其目的地的呢?绝大多数越膜蛋白的N端都具有大约15-30个以疏水氨基酸为主的N端信号序列或称信号肽。

信号肽的疏水段能形成一段α螺旋结构。

在信号序列之后的一段氨基酸残基也能形成一段α螺旋,两段α螺旋以反平行方式组成一个发夹结构,很容易进入内膜的脂双层结构,一旦分泌蛋白质的N端锚在膜内,后续合成的其它肽段部分将顺利通过膜。

疏水性信号肽对于新生肽链跨膜及把它固定的膜上起一个拐掍作用。

之后位于内膜外表面的信号肽酶将信号肽序列切除。

当蛋白质全部翻译出来后,羧端穿过内膜,在周质中折叠成蛋白质的最终构象(图1)。

图1蛋白质合成后的分泌过程(二)真核生物蛋白质的分泌真核生物不但有细胞核、细胞质和细胞膜,而且还有许多膜性结构的细胞器,在细胞须内合成的蛋白质怎样的到达细胞的不同部位呢?了解比较清楚的是分泌性蛋白质的转运。

像原核细胞一要,真核细胞合成的蛋白质N端也有信号肽也能形成两个α螺旋的发夹结构,这个结构可插入到内质网的膜中,将正在合成中的多肽链带和内质网内腔。

80年代中期在胞浆中发现一种由小分子RNA和蛋白质共同组成的复合物,它能特异地与信号肽识别而命名为信号肽识别颗粒。

它的作用是识别信号肽与核糖体结合并暂时阻断多肽链的合成。

内质网外膜上的SRP受体,当ARP与受体结合后,信号肽就可插入内质网进入内腔,被内质网内膜壁上的信号肽酶水解除去SRP与受体结合后,信号肽就可插入内质网进入内腔,被内质网内腔壁上的信号肽酶水解除去SRP与受体解离并进入新的循环,而信号肽后序肽段也进入内质网内腔,并开始继续合成多肽链(图2)。

图2在蛋白质越过内质网的转运过程中,SRP和船坞蛋白(或SRP受体)的作用SRP对翻译阶段作用的重要生理意义在于:分泌性蛋白及早进入细胞的膜性细胞,能够正确的折叠、进行必要的后期加工与修饰并顺利分泌出细胞。

现以哺乳动物的胰岛素为例说明这种分泌过程。

胰岛素由51个氨基酸残基组成,但胰岛素mRNA的翻译产和在兔网织红细胞无细胞翻译体系中为86个氨基酸残基,称为胰岛素原,在麦胚无细胞翻译系统中为110个氨基酸残基组成的前胰岛素原,后来证明,在前胰岛素原的N末端有一段富含疏水氨基酸的肽段做为信号肽,使前胰岛素原能穿越内质网膜进入内质网内腔,在内腔壁上信号肽被水介。

所以在哺乳动物细胞内,当多肽链合成完成时,前胰岛素原已成为胰岛素原。

然后胰岛素原被运到高尔基复合体,切去C肽成为成熟的胰岛素,最终排出胞外。

像真核细胞的前清蛋白,免疫球白轻链,催乳素等都有相似的分必方式。

(三)蛋白质翻译后加工修饰从核糖体上释放出来的多肽链,按照一级结构中氨基酸侧链的性质,自竹卷曲,形成一定的空间结构,过去一直认为,蛋白质空间结构的形成靠是其一级结构决定的,不需要另外的信息。

近些年来发现许多细胞内蛋白质正确装配都需要一类称做“分了伴娘”的蛋白质帮助才能完成,这一概念的提出并未否定“氨基酸顺序决定蛋白空间结构”这一原则。

而是对这一理论的补充,分子伴娘这一类蛋白质能介导其它蛋白质正确装配成有功能活性的空间结构,而它本身并不参与最终装配产物的组成。

目前认为“分子伴娘”蛋白有两类,第一类是一些酶,例如蛋白质二硫键异构酶可以识别和水解非正确配对的二硫键,使它们在正确的半胱氨酸残基位置上重新形成二硫键,第二类是一些蛋白质分子,它们可以和部分折叠或没有折叠的蛋白质分子结合,稳定它们的构象,免遭其它酶的水解或都促进蛋白质折叠成正确的空间结构。

总之“分子伴娘”蛋白质合成后折叠成正确空间结构中起重要作用,对于大多数蛋白质来说多肽链翻译后还要进行下列不同方式的加工修饰才具有生理功能。

1.氨基端和羧基端的修饰在原核生物中几乎所有蛋白质都是从N-甲酰蛋氨酸开始,真核生物从蛋氨酸开始。

甲酰基经酶水介而除去,蛋氨酸或者氨基端的一些氨基酸残基常由氨肽酶催化而水介除去。

包括除去信号肽序列。

因此,成熟的蛋白质分子N-端没有甲酰基,或没有蛋氨酸。

同时,某些蛋白质分子氨基端要进行乙酰化在羧基端也要进行修饰。

2.共价修饰许多的蛋白质可以进行不同的类型化学基团的共价修饰,修饰后可以表现为激活状态,也可以表现为失活状态。

(1)磷酸化:磷酸化多发生在多肽链丝氨酸,苏氨酸的羟基上,偶尔也发生在酪氨酸残基上,这种磷酸化的过程受细胞内一种蛋白激酶催化,磷酸化后的蛋白质可以增加或降低它们的活性,例如:促进糖原分解的磷酸化酶,无活性的磷酸化酶b经磷酸化以后,变居有活性的磷酸化酶a。

而有活性的糖原合成酶I经磷酸化以后变成无活性的糖原合成酶D,共同调节糖元的合成与分介。

(2)糖基化:质膜蛋白质和许多分泌性蛋白质都具有糖链,这些寡糖链结合在丝氨酸或苏氨酸的羟基上,例如红细胞膜上的ABO血型决定簇。

也可以与天门冬酰胺连接。

这些寡糖链是在内质网或高尔基氏体中加入的(图3)。

图3糖蛋白中常见的糖一肽连接键(3)羟基化:胶原蛋白前α链上的脯氨酸和赖氨酸残基在内质网中受羟化酶、分子氧和维生素C作用产生羟脯氨酸和羟赖氨酸,如果此过程受障碍胶原纤维不能进行交联,极大地降低了它的张力强度。

(4)二硫键的形成:mRNA上没有胱氨酸的密码子,多肽链中的二硫键,是在肽链合成后,通过二个半胱氨酸的疏基氧化而形成的,二硫键的形成对于许多酶和蛋白质的活性是必需的。

3.亚基的聚合:有许多蛋白质是由二个以上亚基构成的,这就需这些多肽链通过非共价键聚合成多聚体才能表现生物活性。

例如成人血红蛋白由两条α链,两条β链及四分子血红素所组成,大致过程如下:α链在多聚核糖体合成后自行释下,并与尚未从多聚核糖体上释下的β链相连,然后一并从多聚核糖体上脱下来,变成α、β二聚体。

此二聚体再与线粒体内生成的两个血红素结合,最后形成一个由四条肽链和四个血红素构成的有功能的血红蛋白分子。

4.水介断链:一般真核细胞中一个基因对应一个mRNA,一个mRNA对应一条多肽链,但也有少数的情况,即一种三思而行翻译后的多肽链经水介后产生几种不同的蛋白质或多肽。

例如哺乳动物的鸦片样促黑皮激素原初翻译产物为265个氨基酸,它在脑下垂体前叶细胞中,POMC初切割成为N-端片断和C端片段的β-促脂解激素。

然后N端片段又被切割成较小的N端片断和工9肽的促肾上腺皮质激素。

而在脑下垂体中叶细胞中,β-促脂解激素再次被切割产生β-内啡肽;ACTH也被切割产生13肽的促黑激素(α-melanotropin)(图4)。

图4POMC作为多种活性物质的前体第一行为POMC前体,K、R为赖氨酸和精氨酸残基蛋白质合成的抑制剂影响蛋白质生物合成的物质非常多,它们可以作用于DNA复制和RNA转录,对蛋白质的生物合成起间接作用,本节主要讨论抑制蛋白质生物合成翻译过程的阻断剂。

(一)抗生素类阻断剂:许多抗生素都是以直接抑制细菌细胞内蛋白质合成而对人体副作用最小为目的而设计的,它们可作用于蛋白质合成的各个环节,包括抑制起始因子,延长因子及核糖核蛋白体的作用等等。

1、链霉素、卡那霉素、新霉素等:这类抗生素属于基甙类,它们主要抑制革兰氏阴性细菌蛋白质合成的三个阶段:①S起始复合物的形成,使氨基酰tRNA从复合物中脱落;②在肽链延伸阶段,使氨基酰tRNA与mRNA错配;③在终止阶段,阻碍终止因了与核蛋白体结合,使已合成的多肽链无法释放,而且还抑制70S核糖体的介离。

2、四环素和土霉素:①作用于细菌内30S小亚基,抑制起始复合物的形成,②抑制氨西藏酰tRNA 进入核糖体的A位,阻滞肽链的延伸;③影响终止因子与核糖体的结合,使已合成的多肽链不能脱落离核糖体。

四环素类抗生素除对菌体70S核糖体有抑制作用外,对人体细胞的80S核糖体也有抑制作用,但对70S核糖体的敏感性更高,故对细菌蛋白质合成抑制作用更强。

3、氯霉素:属于广谱抗生素。

①氯霉素与核糖体上的A位紧密结合,因此阻碍氨基酰tRNA 进入A位,②抑制转肽酶活性,使肽链延伸受到影响,菌体蛋白质不能合成,因此有较哟的抑菌作用。

4、嘌呤霉素(Puromycin)结构与酪氨酰-tRNA相似,从而取代一些氨基酰tRNA进入核糖体的A位,当延长中的肽转入此异常A位时,容易脱落,终止肽链合成。

由于嘌呤霉素对原核和真核生物的翻译过程均有干扰干扰作用,故难于用做抗菌药物,有人试用于肿瘤治疗(图1)。

图1嘌呤霉素(左)与tyr-tRNAtyr(右)5、白喉霉素(diphtheria toxin)由白喉杆菌所产生的白喉霉素是真核细胞蛋白质合成抑制剂。

白喉霉素实际上是寄生于白喉杆菌体内的溶源性噬菌体β基因编码的由白喉杆菌转运分泌出来,进入组织细胞内,它对真核生物的延长因子-2(EF-2)起共价修饰作用,生成EF-2腺苷二磷酸核糖衍生物,从而使EF-2失活,它的催化效率很高,只需微量就能有效地抑制细胞整个蛋白质合成,而导致细胞死亡(图2)。

图2白喉毒素的作用(二)干扰素对病毒蛋白合成的抑制干扰素(interferon)是病毒感染后,感染病毒的细胞合成和分泌的一种小分子蛋白质。

从白细胞中得到α-干扰素,从成纤维细胞中得到β-干扰素,在免疫细胞中得到γ-干扰素。

干扰素结合到未感染病毒的细胞膜上,诱导这些细胞产生寡核苷酸合成酶、核酸内切酶和蛋白激酶。

在细胞未被感染时,不合成这三种酶,一旦被病毒感染,有干扰素或双链RNA存在时,这些酶被激活,并以不同的方式阻断病毒蛋白质的合成。

干扰素和dsRNA激活蛋白激酶,蛋白激酶使蛋白质合成的起始因子磷酸化,使它失活,另一种方式是mRNA的降介,干扰素dsRNA激活2,5腺嘌呤寡核苷酸合成的酶的合成,2,5腺嘌呤寡核苷酸激活核酸内切酶,核酸内切酶水介mRNA (图18-24)。

由于干扰素具有很强的抗病毒作用,因此在医学上有重大的实用价值,但组织中含量很少,难于从生物组织中大量分离干扰素。

现在已难应用基因工程合成干扰素以满足研究与临床应用的需要。

小结蛋白质分子是由一个个氨基酸通过肽键连接起来的,在细胞内这种连接必须依靠核蛋白体循环来完成。

mRNA携带合成蛋白质分子中氨基酸排列顺序遗传的信息。

相关文档
最新文档