回转窑直接还原法

合集下载

红土镍矿回转窑直接还原镍铁生产技术

红土镍矿回转窑直接还原镍铁生产技术

山西潞城市宏祥化冶厂回转窑红土镍矿直接还原镍铁项目介绍及技术合作一、企业简介潞城市宏祥化冶厂2005年建厂,是潞城市民政局福利企业。

本厂主要以铁矿深加工为主,先后完成有:5万吨磁铁矿生产项目、10万吨低品位褐铁矿精粉项目。

从建厂以来就重视技术研发工作,并吸收北京冶金大学徐伟为科技研发带头人,组织一班科技人员驻厂研发,长期和长沙矿业研究院共同研发新型选矿设备,已形成一支以产、学、研的科技专业队伍。

并在2006年开始对赤铁矿、褐铁矿、红土镍矿还原铁进行研发工作。

2009年承担长治市创新科技项目,2010年列入长治市火炬计划项目。

从2007年—2010年先后投入1700余万元自主研发攻关“褐铁矿直接还原铁技术”、“红土镍矿直接还原镍铁技术”、“硫酸渣直接还原黄金置换剂技术”,取得了三项技术创新重大成果,达到国内的领先技术。

现正在筹措资金,建设“年产10万吨红土镍矿直接还原镍铁项目”。

二、项目概况1、项目名称:潞城市宏祥化冶厂年产10万吨红土镍矿直接还原镍铁项目2、项目主办单位:潞城市宏祥化冶厂企业性质:民营项目地点:潞城市潞华办事处侯家庄村3、项目规模:拟建项目占地面积133200㎡(200亩),总建筑面积31900㎡,项目总投资5.5亿元。

以自行研发发明专利技术自行设计合作投资,建设年产10万吨红土镍矿直接还原镍铁项目生产线。

三、镍冶金概况1、镍矿资源全世界镍的矿物资源主要有硫化镍矿、氧化镍矿和深海底含镍锰结核三种。

陆地资源中氧化镍矿约占65%,硫化镍矿约占35%,总储量约6200万吨,其中氧化镍矿约126亿吨,我国镍矿资源主要是硫化镍矿,氧化镍矿极少。

(附表)2、镍铁生产现状我国镍铁产业的发展始于2006年,随着我国不锈钢产量提高和镍冶金产品多元化发展趋势的双重带动下,尤其是在硫化镍矿逐步减少,红土镍矿开发价值空间大幅提升的情况下,镍铁行业迎来新的发展机遇。

但据我国不锈钢网站调研,目前我国镍铁生产企业总数在70家以上,主要以高炉法、电炉法生产镍铁。

回转窑工艺、操作要求及推荐参数

回转窑工艺、操作要求及推荐参数

九沣矿业直接还原铁铁磷还原法生产回转窑工艺、操作要求及推荐参数一、回转窑直接还原法工艺流程1、回转窑法工艺流程一般如上图所示(九沣矿业使用的工艺流程与上图不完全一致)。

回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。

作业时,将一定粒度的原料(氧化铁皮)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。

在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。

窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。

如热量不足,可在窑头增设煤粉烧嘴补充。

物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。

调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。

使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。

从排料端排出的高温料通过溜槽落入冷却筒。

靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。

为改善物料运动强化冷却,筒内装有扬料板。

在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发生再氧化。

冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。

非磁性颗粒料含较高固定碳,可作还原剂重新利用。

二、回转窑设备组成回转窑设备主要由筒体、滚圈、支承装置、传动装置、窑头罩、密封装置、集尘室、燃烧装置及热烟室等部分构成,详见上图。

(1)筒体。

回转窑的筒体由钢板卷成,从铆接已发展为全部焊接。

筒体应具有足够的刚度和强度,以保证在安装和运转中轴线的直线性和截面的圆度。

直接还原铁生产工艺标准

直接还原铁生产工艺标准

直接还原铁回转窑铁磷还原法生产工艺一、直接还原铁是精铁粉或氧化铁在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。

二、直接还原铁生产工艺概述1、什么是直接还原炼铁法?直接还原炼铁法是在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺过程。

2、常用的直接还原炼铁法有哪些?在工业上应用较多的有铁磷还原法,铁精矿粉还原法等,即将轧钢氧化铁磷或精矿粉经还原铁压块机压制成块后,装入焙烧管进窑焙烧,生产出了优质还原铁。

直接还原铁经粗破(将直接还原铁锭破成块状)中破(将块状直接还原铁破碎成0~15mm的颗粒状)后,再经过磁选,去除SiO2、、CaS和游离碳等杂质。

用户可再次使用还原铁压块机压制直接还原铁颗粒,使直接还原铁颗粒成型并达到一定的堆比重g/cm3要求。

直接还原铁破碎颗粒直接影响压块物理特性(压缩性、成型性、堆比重g/cm3)对特钢生产起到至关重要的作用。

三、铁磷还原法概述1、什么是铁磷?铁鳞又称氧化铁皮、氧化皮。

在钢材加热和轧制过程中,由于表面受到氧化而形成氧化铁层,剥落下来的鱼鳞状物。

铁鳞可用作氧化剂和制铁粉的原料。

轧钢氧化铁磷是钢材在加热炉中加热后在轧制过程中,其表面氧化层自行脱落而产生的。

2、为什么用氧化铁磷?有什么注意事项?还原海绵铁可采用热轧沸腾钢氧化铁磷作原料,因为沸腾钢氧化铁磷中的TFe、C、S、P化学成分含量,能满足还原海绵铁生产的技术要求。

在还原海绵铁中最好不要以高碳钢或合金钢氧化铁磷为原料。

3、什么是铁磷还原法?有哪些类型?铁鳞还原法就是以铁鳞为原料的直接还原法生产工艺。

铁鳞还原法生产过程可分为粗还原与精还原。

在粗还原过程中,铁氧化物被还原,铁粉颗粒烧结与渗碳。

增高还原温度或延长保温时间皆有利于铁氧化物还原、铁粉颗粒烧结,但会生产部分渗碳。

鉴于在精还原过程中脱碳困难,在粗还原过程中,控制铁氧化物还原到未渗碳的程度是必要的。

直接还原铁技术.

直接还原铁技术.

直接还原铁技术直接还原铁是铁矿在固态条件下宜接还原为铁,可以用来作为冶炼优质钢、特殊钢的纯净原料,也可作为铸造、铁合金、粉末冶金等工艺的含铁原料。

这种工艺是不用焦碳炼铁, 原料也是使用冷压球团不用烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全世界钢铁冶金的前沿技术之一。

直接还原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反应罐法、罐式炉法和流化床法等。

目前,世界上90%以上的直接还原铁产量是用气基法生产出来的。

但是天然气资源有限、价高,使生产量增长不快。

用煤作还原剂在技术上也已过关,可以用块矿,球团矿或粉矿作铁原料(如竖炉、流化床、转底炉和回转窑等)。

但是, 因为要求原燃料条件高(矿石品位要大于66%,含SQ2+AI2O3杂质要小于3%,煤中灰分要低等),规模小,设备寿命低,生产成本髙和某些技术问题等原因,致使直接还原铁生产在全世界没有得到迅速发展。

因此,髙炉炼铁生产工艺将在较长时间内仍将占有主导地位。

1. 直接还原铁的质量要求直接还原铁是电炉冶炼优质钢种的好原料,所以要求的质量要高(包括化学成份和物理性能),且希望英产品质量要均匀、稳泄。

1. 1 化学成份直接还原铁的含铁量应大于90%,金属化率要〉90%。

含SiO2每升髙1%,要多加2%的石灰,渣量增加30Kg/t,电炉多耗电18.5kwho所以,要求直接还原铁所用原料含铁品位要高:赤铁矿应〉66.5%,磁铁矿>67.5%,脉石(SiO2+Al2O3)量<3%〜5%.直接还原铁的金属化率每提高1 %,可以节约能耗8-10度电/仁直接还原铁含C<0.3%, P<0. 03%, S<0.03%, Pb、Sn、As、Sb、Bi 等有害元素是微呈:。

1. 2 物理性能回转窑、竖炉、旋转床等工艺生产的直接还原铁是以球团矿为原料,要求粒度在5〜30mm。

隧道窑工艺生产的还原铁大多数是瓦片状或棒状,长度为250〜380mm,堆密度在1.7〜2. 0t/m3o生产过程中产生的3-5mm磁性粉料,必须进行压块,才能用于炼钢。

回转窑直接还原法

回转窑直接还原法

回转窑直接还原法(direct reduction process with rotary kiln)以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。

回转窑直接还原是在950~1100℃进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。

由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。

由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。

高炉炼铁法有久远历史,已发展成高效、节能的冶金方法,是生产铁的基本方法,但它有一定局限性。

随着人类对钢铁需求的增长和技术进步,早在18世纪又提出开发直接还原技术的想法,直到20世纪初才出现了工业化生产。

20世纪60年代后,由于石油和天然气的大量开发,为钢铁工业提供了丰富和廉价的新能源;选矿技术进步,为直接还原生产提供了优质精矿原料;电力工业开发,电炉技术和能力的迅速发展,导致优质废钢供应紧张;而高新技术发展需要大量优质钢和纯净钢,这又需要纯净的优质炼钢炉料。

总之,诸方面均为直接还原的开发开创了有利条件。

70年代起,直接还原技术,工业规模,实际产量都取得重大进步和稳步发展。

1975年世界直接还原炼铁的生产能力为436万t,实际产量为281万t,占生铁产量的0.6%,到1995年分别跃增到4460万t,3075万t和5.7%。

至今气基直接还原炼铁法的生产能力和实际产量都占主导地位,约占总生产能力和总产量的90%,其中以米德莱克斯Midrex法和希尔(HYL)法占绝对优势。

煤基直接还原法仅占10%左右,其中主要为回转窑直接还原法。

回转窑直接还原法开发于50~60年代。

60年代末发展较快,世界各地建设了一批工业生产窑,但由于工艺不够成熟,技术和装备上遇到一系列困难。

直接还原法

直接还原法

5、世界煤基直接还原铁生产概况 ★据统计 ,1980 年全球直接还原铁(海绵铁)的产 量仅为728 万 t ,2006 年约为 5980 万 t。平均 年增长率在 8 % 以上。印度连续四年为最大 的直接还原铁生产国 ,2006 年产量接近1500 万t , t ,同比增长35 % , 35 ,占世界总产量的 25 % , ,委 内瑞拉以产量 860 万 t 位居第二 ,伊朗以产量 690 万 t 位居第三 ,墨西哥以产量620 万 t 位 居第四。 2008 年底还有一些新增产能将投
1、Fastmet法 ★Fastmet 法是采用环形回转炉生产直接还原铁的一种 方法。该方法用煤粉和铁矿粉作原料 ,制成的冷固结含 炭球团矿在炉中不依靠焦炭和天然气而实现高温还原。 ★特点: (1)用转底炉运载炉料 ,并在高温敞焰下加热实现快速还 原。 (2)还原过程时间很短 ,仅仅 6~12 min ,设备的起动与 停止、 产量的调整都可比较简单地进行。
2、直接还原法的优点 ①不用焦炭,取消了焦炉、烧结等工序 ②DRI中硫、磷、有色金属杂质含量低,利于炼优 质钢 3、直接还原法的缺点 ①对原料要求高,要优质的高品家地区严重缺乏焦煤, 不能发展高炉— —转炉工艺, 但他们有丰富的天然气和普通烟 煤, 有价廉质优的铁矿石。 ②科学技术进步,对钢材质量和品种提出了更 高的要求。 ③废钢-电炉-连铸连轧钢铁生产短流程的兴起。
1、Midrex和 Hy L - Ⅲ 气基竖炉技术 目前 ,全世界共有百余家直接还原铁生产厂。 Midrex和 Hy L - Ⅲ 气基竖炉法是最主要的直接还 原铁生产工艺 , 2006年这两种方法所生产的直接 还原铁产量占世界直接还原铁总产量的 78 . 1% ( Midrex 法 占 59 . 7 %, Hy L - Ⅲ法 占18 . 4 % )。 近年 ,这两种工艺技术得到不断发展。

回转窑直接还原法

回转窑直接还原法

回转窑直接还原法(direct reduction process with rotary kiln)以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。

回转窑直接还原是在950〜1100C进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。

由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。

由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。

高炉炼铁法有久远历史,已发展成高效、节能的冶金方法,是生产铁的基本方法,但它有一定局限性。

随着人类对钢铁需求的增长和技术进步,早在18世纪又提出开发直接还原技术的想法,直到20世纪初才出现了工业化生产。

20世纪60年代后,由于石油和天然气的大量开发,为钢铁工业提供了丰富和廉价的新能源;选矿技术进步,为直接还原生产提供了优质精矿原料;电力工业开发,电炉技术和能力的迅速发展,导致优质废钢供应紧张;而高新技术发展需要大量优质钢和纯净钢,这又需要纯净的优质炼钢炉料。

总之,诸方面均为直接还原的开发开创了有利条件。

70年代起,直接还原技术,工业规模,实际产量都取得重大进步和稳步发展。

1975年世界直接还原炼铁的生产能力为436万t,实际产量为281万t,占生铁产量的0.6 %, 到1995年分别跃增到4460万t ,3075万t 和5.7%。

至今气基直接还原炼铁法的生产能力和实际产量都占主导地位,约占总生产能力和总产量的90%,其中以米德莱克斯Midrex法和希尔(HYL)法占绝对优势。

煤基直接还原法仅占10%左右,其中主要为回转窑直接还原法。

回转窑直接还原法开发于50〜60年代。

60年代末发展较快,世界各地建设了一批工业生产窑,但由于工艺不够成熟,技术和装备上遇到一系列困难。

回转窑生产直接还原铁工艺(网络收集)图文并茂详解 一、二、三.

回转窑生产直接还原铁工艺(网络收集)图文并茂详解 一、二、三.

直接还原铁生产工艺——回转窑(一)2011-05-30 15:00来源:我的钢铁网试用手机平台回转窑直接还原法是以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。

回转窑直接还原是在950~1100℃进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。

由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。

由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。

原料要求铁矿石(包括氧化球团矿、还原与燃烧用煤和脱硫剂是煤基回转窑直接还原生产的主要原料,是直接还原生产的物质基础。

原料的质量不仅对直接还原的生产效率、产品质量和能源消耗等技术经济指标有直接影响,还决定着直接还原工艺的成败。

因此,做好原料选择和加工准备是直接还原生产十分重要的基础工作,是能否生产出直接还原铁的关键。

一含铁原料的选用用于回转窑直接还原生产的含铁原料可以是天然铁矿石(即块矿,也可以是氧化球团。

决定含铁原料质量的主要因素是:化学成分、物理性质和冶金性能。

适宜于回转窑直接还原生产的铁矿石必须:含铁量高、脉石含量少、有害杂质少、化学成分稳定、粒度适宜,并且具有良好的还原性及一定的强度。

化学成分1.含铁量与脉石含铁原料以铁氧化物为主,还含有SiO2Al2O3、CaO、MgO等成分。

在回转窑还原过程中,所发生的主要化学变化是在固态下脱除含铁原料中的氧,而不能脱除脉石成分和其他杂质。

因此选用的含铁原料必须是含铁量高、脉石含量低。

通常要求含铁量在66%以上,脉石总量小于8%。

CaO与MgO通常在矿石中含量不多,在炼钢过程中不是有害成分,对回转窑工艺也没有大的影响。

一般要求原料中CaO<2.5%,Mgo<1.5%。

保留在直接还原铁中的酸性脉石SiO2和Al2O3导至炼钢电耗增高,生产率下降,渣量和各种材料消耗增加、炉衬寿命缩短。

回转窑直接还原工艺技术

回转窑直接还原工艺技术

回转窑直接还原工艺技术回转窑是一种常见的热工设备,广泛应用于水泥生产、冶金矿山等领域。

它通过高温处理将原材料转化为熟料,实现水泥生产的工艺过程。

回转窑直接还原工艺技术是一种在回转窑中直接还原原材料的工艺方法,本文将从工艺原理、工艺流程和应用前景三个方面进行介绍。

一、工艺原理回转窑直接还原工艺技术是指在回转窑内,利用高温气氛和还原剂直接还原原材料。

其中,高温气氛是通过燃烧燃料产生的,而还原剂则是通过加入适当的还原剂来实现的。

在高温下,还原剂与原材料发生反应,使原材料中的氧化物还原成金属或氧化物以外的物质。

这种工艺方法能够提高原材料的利用率,降低生产成本,同时还能减少对环境的污染。

二、工艺流程回转窑直接还原工艺技术的工艺流程主要包括原料制备、还原反应、冷却和成品处理等环节。

首先,将原料进行粉磨和混合,使其达到还原反应的要求。

然后,将混合后的原料送入回转窑,并在高温气氛中进行还原反应。

在反应过程中,适当控制还原剂的投入量和温度,以实现最佳的还原效果。

完成还原反应后,将产生的熟料进行冷却,并进行成品处理,最终得到符合要求的水泥产品。

三、应用前景回转窑直接还原工艺技术具有广阔的应用前景。

首先,它可以应用于水泥生产领域。

通过直接还原工艺,可以提高原材料利用率,降低生产成本,同时还能减少对环境的污染。

其次,该技术还可以应用于冶金矿山领域。

在冶金过程中,直接还原工艺可以提高金属回收率,降低能耗,并减少对环境的影响。

此外,回转窑直接还原工艺技术还可以应用于其他领域,如化工、环保等。

通过不断的研究和创新,可以进一步拓展该技术的应用范围。

回转窑直接还原工艺技术是一种在回转窑中直接还原原材料的工艺方法。

通过合理控制工艺流程和条件,可以实现高效、低成本的生产过程。

该技术具有广泛的应用前景,在水泥生产、冶金矿山等领域具有重要的地位和作用。

随着科技的不断进步和工艺的不断改进,相信回转窑直接还原工艺技术将在未来得到更广泛的应用和推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回转窑直接还原法(direct reduction process with rotary kiln)以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。

回转窑直接还原是在950~1100℃进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。

由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。

由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。

高炉炼铁法有久远历史,已发展成高效、节能的冶金方法,是生产铁的基本方法,但它有一定局限性。

随着人类对钢铁需求的增长和技术进步,早在18世纪又提出开发直接还原技术的想法,直到20世纪初才出现了工业化生产。

20世纪60年代后,由于石油和天然气的大量开发,为钢铁工业提供了丰富和廉价的新能源;选矿技术进步,为直接还原生产提供了优质精矿原料;电力工业开发,电炉技术和能力的迅速发展,导致优质废钢供应紧张;而高新技术发展需要大量优质钢和纯净钢,这又需要纯净的优质炼钢炉料。

总之,诸方面均为直接还原的开发开创了有利条件。

70年代起,直接还原技术,工业规模,实际产量都取得重大进步和稳步发展。

1975年世界直接还原炼铁的生产能力为436万t,实际产量为281万t,占生铁产量的0.6%,到1995年分别跃增到4460万t,3075万t和5.7%。

至今气基直接还原炼铁法的生产能力和实际产量都占主导地位,约占总生产能力和总产量的90%,其中以米德莱克斯Midrex法和希尔(HYL)法占绝对优势。

煤基直接还原法仅占10%左右,其中主要为回转窑直接还原法。

回转窑直接还原法开发于50~60年代。

60年代末发展较快,世界各地建设了一批工业生产窑,但由于工艺不够成熟,技术和装备上遇到一系列困难。

如入窑料粉化严重,频繁出现窑衬粘结,无法实现正常运行,一度限制了该工艺发展。

70年代中,重视对原料、燃料的性能研究,开发和改进送煤、送风技术,改革操作工艺,完善和提高设备,开发废热回收技术,保证了窑的正常操作,使生产率提高,能耗大幅度下降;同时,加强生产过程监测和自动化管理,促使回转窑直接还原技术步入成熟;此外70年代能源危机,天然气价格大幅度上涨,天然气又是重要化工原料,资源有限等,由此也促进了回转窑直接还原法的发展。

1980~1995年期间,生产能力从216.2万t增加到365.5万t,直接还原铁产量从37万t增长到246万t。

印度生产能力达151万t,南非为108万t。

筒史 1907年琼斯(J.T.Jones)最早提出回转窑直接还原法。

在回转窑卸料端设煤气发生炉,热煤气从卸料端入窑,在距窑加料端1/3窑长处导入空气,与热煤气燃烧形成氧化加热带。

铁矿石和还原煤从加料端加入,被高温废气干燥、预热、氧化去硫,随窑体转动铁矿石向卸料端前移,同时被热煤气和还原煤还原,然后从卸料端排出。

后来改进为两台窑作业,一台氧化加热,另一台窑内铁矿石被油或煤粉不完全燃烧产生的还原气所还原,但因这样作业不经济,1912年停产。

1926年鲍肯德(Bourcond)、斯奈德(Snyder)在实验室进行了用发生炉煤气的回转窑直接还原实验成功。

同年还出现了用回转窑进行还原、增碳、得到熔融铁水的巴塞特(Basset)法。

1930年克虏伯(krupp)公司开发了克虏伯一雷恩(krupp—Renn)法,用低质煤作燃料和还原剂,在回转窑内将低品位高硅铁矿石还原,实现渣铁分离,铁聚合成细颗粒被夹裹在半液态的黏稠渣中,经水淬、破碎、磁选分离出铁粒。

到50年代发展到生产能力200万t,后因自身缺陷相继停产。

1960年克虏伯公司在此基础上开发了以煤作还原剂的固相还原生产直接还原铁的krupp—CODIR法。

1970年在南非邓斯沃特(Dunswart)建设了年产15万t的生产装置,1974年投产。

1920~1930年美国共和钢铁公司(Republic steel)和国际铝公司(National lead)开发了用回转窑从低品位铁矿石中还原富集铁的RN法;1960年加拿大钢铁公司和德国鲁奇(Lurgi)公司开发了生产高品位海绵铁的SL法,取长补短,1969年合并为SL—RN法。

现已成为回转窑直接还原法的主导工艺,其生产能力和产量分别占煤基直接还原炼铁法的90%和75%。

1976年美国阿瑟•G•麦基直接还原铁公司引入澳大利亚西方钛公司用回转窑还原钛铁矿生产金红石的方法,在美国田纳西州罗克伍德(Roekwood)建成50000t/a的示范装置,完成了多种煤和铁矿石的试验,1981年取得DRC法技术许可证,后与英国戴维公司合并为戴维一麦基(Davy—Mckee)公司,并为南非斯考金属公司(Scaw Metal Ltd.)建设了年产75000t的生产装置1983年投产,8天后全面达到设计指标,连续作业18个月。

1960年美国阿里斯一恰尔默斯公司(Allis-chalmos)开发了双层结构窑的ACCAR法,1965年发展成可控气氛回转窑直接还原法,可用煤与油或天然气为燃料。

1969年建成中间试验装置。

通过用不同燃料和铁矿石进行生产试验得出了生产指标和设计参数。

同时进行了改造φ3.5×50m的SL—RN窑的生产试运行,证明该工艺可使用多种燃料,有效控制窑内温度和气氛,产品的金属化和含碳量可控,生产率高。

1983年为印度奥里萨(Oressa)海绵铁公司建设的年产直接还原铁的ACCAR窑投产,采用全煤作业。

回转窑直接还原工艺不仅用于生产直接还原铁,由于它具有作业温度较低,料层薄,物料连续翻滚运动,料层内气体易于排出等特性,还被广泛用于多金属共生矿和含铁粉尘、尾矿等的综合利用。

1963年日本川崎公司(Kawasaki)根据krupp-Renn法实践建设了处理高炉和转炉粉尘的φ1.3×25m回转窑;1968~1977年分别在千叶厂和水岛厂建设了年产4万t和18万t还原铁的工业装置3套,以焦粉作还原剂,称川崎法(见川崎熔融还原法);1971年日本住友金属公司(Sumitomo metal Co.)开发了用钢铁厂粉尘生产低品位海绵块用作高炉精料和同时回收锌的住友粉尘法(Sumitomo dust reduction),1975年在和歌山厂建成年产16万t的工业装置,后与久保田公司合作开发了SPM法,在鹿岛厂建成月产1.8万t的工业装置,此外krupp 公司也开发了Recyc法处理粉尘,一方面可脱除多种易挥发元素,另一方面为高炉提供优质炉料。

此外南非海维尔德钢钒公司(Highveld steel & vanadium Co.)1969年采用回转窑直接还原-矿热电炉炼铁工艺实现了钒钛磁铁矿同时回收铁和钒的综合利用,年产热还原料260万t,是世界最大钒生产基地。

1981年新西兰也采用此工艺建成年产90万t还原料生产厂;希腊拉尔科公司用Krupp法处理贫镍矿(红土矿)生产含Ni7%~25%的镍铁或金属镍。

运出回转窑直接还原工艺渡程举例工艺特征回转窑法工艺流程如图示。

回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。

作业时,将一定粒度的铁矿石(块矿、球闭矿)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。

在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。

窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。

如热量不足,可在窑头增设煤粉烧嘴补充。

物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。

调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。

使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。

有些回转窑为扩大高温还原带长度,在预热段安有埋入烧嘴,空气送入料层燃烧窑尾还原煤释放的挥发分,提高预热段温度。

从排料端排出的高温料通过溜槽落入冷却筒。

靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。

为改善物料运动强化冷却,筒内装有扬料板。

在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发生再氧化。

冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。

磁性粉料拌加黏结剂后压成块,与直接还原铁一起供电炉炼钢。

非磁性颗粒料含较高固定碳,可作还原剂重新利用。

因回转窑还原温度较高(950~1100℃),产品比较安定,通常不需钝化处理。

回转窑直接还原铁含碳低(0.05%~0.3%),S、P均<0.03%、金属化率按要求控制在88%~93%。

当使用细精矿为原料时,可采用细精矿造球,铺放在与回转窑加料端相连的链箅机箅床上,利用回转窑排出的高温废气将球团干燥、预热和固结,到一定强度后从链算机卸料端卸下进入回转窑继续还原作业。

用一套装置完成从精矿粉生产金属化球团过程。

称回转窑一步法省去细精矿生产氧化球团环节,简化生产工艺、减少建设投资、节省能源、生产费用降低。

工艺原理随着窑体连续旋转,入窑物料因摩擦力被带起,超过物料运动角后,在重力作用下从堆尖滚落到底脚。

因窑体倾斜,物料稳定的料流分布。

物料偏析对窑内还原过程和还原煤的利用极为不利。

物料轴向移行速度决定了其在窑内停留时间,也即决定了窑的生产率。

物料在窑内停留时间(min)可用下式表示:τ=L/v=L/knS式中L为窑体长度,m;v为轴向移行速度,m/min;k为窑体转一周物料滚落次数;n为窑体转速,r /min;S为物料每次被带起落下所前移的距离,m。

S受多种因素影响,如窑的进、出料端设挡料圈;入窑铁矿石和还原煤的粒度、形状和密度差,以及热态物料性质变化等对移行速度引起变化等。

因此上式仅适于定性分析。

对颗粒状料可用Bayavd经验式来确定物料在窑内停留时间τ(min):τ=θ(θ+θ’+24)/5.16nDgi式中θ为物料堆角,rad;θ'为物料在旋转窑内堆角的增值,θ'=n/(g/R)0.5,rad;R为窑的半径,m;D为窑直径,m;n为窑的转速,rad/min;g为重力加速度,m/s2;i为窑体倾角,rad。

回转窑直接还原工艺所需热量主要由窑头及窑中供入空气燃烧还原煤释放的挥发分、碳素和还原生成的CO提供。

相关文档
最新文档