北师大版数学七年级上册第一章丰富的图形世界填空题训练(解析版)

合集下载

北师大版七年级上册数学第一章 丰富的图形世界 含答案

北师大版七年级上册数学第一章 丰富的图形世界 含答案

北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、若一个三角形的任意两边都不相等,则称之为不规则三角形。

用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是()A.18B.24C.30D.362、将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A. B. C. D.3、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A. B. C. D.4、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是A.OB.6C.快D.乐5、如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④6、由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A. B. C. D.7、如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大8、如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.9、如图,有一个正方体纸巾盒,它的平面展开图是()A. B. C. D.10、如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A.2个B.3个C.4个D.6个11、如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,则其主视图可能是()A. B. C. D.12、如图所示的几何体是由五个小正方体组合而成的,则它的左视图是()A. B. C. D.13、下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A. B. C.D.14、如图所示,该几何体的左视图是()A. B. C. D.15、下列几何体中,主视图是三角形的几何体的是()A. B. C.  D.二、填空题(共10题,共计30分)16、如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为________17、用一个平面去截正方体,截面________是三角形(填“可能”或“不可能”).18、墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________ 个小正方体.19、以直角三角形一条短直角边所在直线为轴旋转一周,得到的几何体是________20、如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.21、薄薄的硬币在桌面上转动时看上去象球,这说明了________点线面体的关系.22、笔尖在纸上快速滑动写出了一个又一个字,这说明了________;车轮旋转时,看起来像一个整体的圆面,这说明了________;直角三角形绕它的直角边旋转一周形成了一圆锥体,这说明了________.23、如图所示为8个立体图形.其中,柱体的序号为________,锥体的序号为________,有曲面的序号为________.24、已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________25、如图是某个正方体的表面展开图,各个面上分别标有1~6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.28、张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示。

北师大版七年级上册数学第一章《丰富的图形世界》试题(带答案)

北师大版七年级上册数学第一章《丰富的图形世界》试题(带答案)

七年级数学上册第一章《丰富的图形世界》试题姓名:学号:分数:一、选择题(每题3分,共30分)1.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱2.下列图形中,棱锥是()A. B.C.D.3.附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A.B.C.D.4.由4个相同的小正方体搭建了一个积木,从不同方向看积木,所得到的图形如图所示,则这个积木可能是()A.A B.B C.C D.D5.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱6.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A.B.C.D.7.下列图形中是正方体表面展开图的是()A.B.C.D.8.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B.C.D.9.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.10.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.二、填空题(每题3分,共24分)11.圆柱的侧面展开图是________形.12.一个直角三角形绕其直角边旋转一周得到的几何体是________.13.如图所示的几何体的名称是____,它由____个面组成,它有____个顶点,经过每个顶点有____条边.14.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____.15.夜晚的流星划过天空时留下一道明亮的光线,由此说明了________的数学事实.16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.17.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是_____.18.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,第六个叠放的图形中,小正方体木块总数应是_____.三、解答题(共46分)19.(6分)如图所示的是一个正方体,试在下列3×5方格中,画出它的平面展开图(要求:画出3种不同的情形)20.(8分)如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)21.(10分)图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图.22.(10分)如图所示是长方体的平面展开图.(1)将平面展开图折叠成一个长方体,与字母N重合的点有哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?23.(12分)仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:⑴填空:①正四面体的顶点数V=,面数F=,棱数E=.②正六面体的顶点数V=,面数F=,棱数E=.③正八面体的顶点数V=,面数F=,棱数E=.⑵若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:⑶如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?参考答案 一、选择题1--10DCBBA CDCDB 二、填空题 11.长方 12.圆锥13.五棱柱 7 10 3 14.8 15.点动成线 16.54 17.1,7 18.66 三、解答题19.正方体的展开图如图所示,(画出三种即可)20.解:由几何体的主视图和俯视图,可以想象出该几何体由两部分组成:上部是一个圆柱,底面直径是20cm ,高是32cm ;下部是一个长方体,长、宽、高分别是30cm ,25cm ,40cm ,所以该几何体的体积为23203.14()3230254040048(cm )2⨯⨯+⨯⨯=. 21.解:如图所示:22.解:(1)与点N 重合的点有H ,J 两个. (2)∵AG =CK =14cm ,LK =5cm ,∴CL=CK-LK=14-5=9(cm),∴长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),长方体的体积为5×9×2=90(cm3).23.解:⑴①4,4,6;②8,6,12;③6,8,12;⑵V+F-E=2⑶解:设面数为F,则20+F-30=2解得F=12答:它有12个面.。

北师大版数学七年级上册第一章丰富的图形世界填空题训练很实用

北师大版数学七年级上册第一章丰富的图形世界填空题训练很实用

第1章丰富的图形世界填空题训练很实用1.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.2.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)3.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).5.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)6.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.7.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是.9.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是.10.在一个高与底面直径相等的圆柱内放置一个体积最大的球.已知球的表面积公式为S n =4πr2,其中r为球的半径.那么该球与它的外切圆柱的表面积的比为.11.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.12.一个几何体的三视图如图,根据图示的数据计算该几何体的体积为.(结果保留π)13.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm 2.14.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.15.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.16.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是cm 2.17.如图是某几何体的三视图及相关数据(单位:cm ),则该几何体的侧面积为cm 2.18.如图为某几何体的展开图,该几何体的名称是.19.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为个.20.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为.21.如图,该正方体的主视图是形.22.已知一个几何体的三视图如图所示,这个几何体是.23.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.24.如图,在边长为12cm的正方形纸片ABCD中,EF∥AD,M、N是线段EF的六等分点,若把该正方形纸片折成一个正六棱柱,使AB与点DC重合,则M、N两点间的距离是cm.25.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.26.一个几何体的三视图如图所示,这个几何体的侧面积为.27.如图是一个包装盒的三视图,则这个包装盒的体积是.28.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.29.如图所示是一种棱长分别为3cm,4cm,5cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用3块来搭,那么搭成的大长方体表面积最小是cm,如果用4块来搭,那么搭成的大长方体表面积最小是cm,如果用12块来搭,那么搭成的大长方体表面积最小是cm.30.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.31.如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为.32.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.33.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.34.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是.35.如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于.36.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.37.一个油桶靠在墙边(其俯视图如图所示),量得AC=0.65米,并且AC⊥BC,这个油桶的底面半径是米.38.一个长方体的主视图和左视图如图所示,则这个长方体的俯视图的面积是.第1章丰富的图形世界填空题训练参考答案与试题解析1.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16【点评】本题主要考查了几何体的表面积.2.【分析】由面F在前面,从左面看是面B知上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C.【解答】解:由题意知,上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C,故答案为:E.【点评】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.5.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.6.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.7.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.8.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”对面的字是顺.故答案为:顺.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故答案为:200πcm2【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.10.【分析】设球的半径为r,根据球的表面积=4πr 2,圆柱的表面积=2×πr2+2πr×2r=6πr2,即可得到该球与它的外切圆柱的表面积的比.【解答】解:设球的半径为r,依题意得球的表面积=4πr2,圆柱的表面积=2×πr2+2πr×2r=6πr2,∴该球与它的外切圆柱的表面积的比为2:3,故答案为:2:3.【点评】本题主要考查了几何体的表面积,几何体的表面积=侧面积+底面积(上、下底的面积和).11.【分析】由圆柱的侧面展开图的特点可知:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高,长方形的长已知,从而可以求出底面积半径,进一步求得该圆柱的体积.【解答】解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.【点评】本题主要考查了立体图形,解答此题的关键是明白:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高.12.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的体积为π×32×4=12π,故答案为:12π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.13.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.14.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.15.【分析】根据主视图是从正面看到的图形直接回答即可.【解答】解:主视图是正方形的几何体可以是正方体,故答案为:正方体(答案不唯一).【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.16.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=(底面周长×母线长)÷2 可计算出结果.【解答】解:由题意得底面直径为10cm,母线长为=13cm,∴几何体的侧面积为×10π×13=65πcm2.故答案为65π.【点评】此题主要考查了由三视图判断几何体,以及圆锥的侧面积公式的应用,关键是找到等量关系里相应的量.18.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故答案为:圆柱.【点评】此题主要考查了由展开图得几何体,关键是考查同学们的空间想象能力.19.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.【点评】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.20.【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.【解答】解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位,故答案为:250π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.21.【分析】根据主视图为正面所看到的图形进而得出答案.【解答】解:正方形的主视图为正方形,故答案为:正方.【点评】本题考查了三视图的知识,主视图即为从正面所看到的图形.22.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由该几何体的三视图知,这个几何体是正三棱柱,故答案为:正三棱柱.【点评】考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.23.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.24.【分析】根据正六边形的性质解答即可.【解答】解:如图所示:∵正六边形的周长为12cm,∴MQ=QN=2cm,∠MQN=120°,连接MN,过Q作QP⊥MN,在Rt△MQP中,MP=,同理可得PN=,∴MN=2,故答案为:2【点评】此题考查几何体的展开图,关键是根据正六边形的性质解答.25.【分析】若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.【解答】解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.【点评】本题主要考查由三视图判断几何体,根据题意正确掌握三视图的观察角度是解题关键.26.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵直径为2cm,母线长为4cm,∴侧面积=2π×4÷2=4π(cm2).故答案为4πcm2.【点评】本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键;本题体现了数形结合的数学思想,熟记圆锥的侧面积公式是解题的关键.27.【分析】根据三视图,易判断出该几何体是圆柱.已知底面半径和高,根据圆柱的体积公式可求.【解答】解:综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10,高为20.因此它的体积应该是:π×10×10×20=2000π.故答案为2000π.【点评】本题主要考查了由三视图确定几何体的形状以及圆柱的体积的求法.28.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.29.【分析】如果用3块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用4块来搭,那么搭成的大长方体表面积最小是长4×2=8cm,宽3×2=6cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用12块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4×2=8cm,高5×2=10cm的长方体的表面积,根据长方体的表面积公式即可求解.【解答】解:长3×3=9cm,宽4cm,高5cm,(9×4+9×5+4×5)×2=(36+45+20)×2=101×2=202(cm2).答:如果用3块来搭,那么搭成的大长方体表面积最小是202cm2.长4×2=8cm,宽3×2=6cm,高5cm,(8×6+8×5+6×5)×2=(48+40+30)×2=118×2=236(cm2).答:如果用4块来搭,那么搭成的大长方体表面积最小是236cm2.长3×3=9cm,宽4×2=8cm,高5×2=10cm,(9×8+9×10+8×10)×2=(72+90+80)×2=242×2=484(cm2).答:如果用12块来搭,那么搭成的大长方体表面积最小是484cm2.故答案为:202;258;484.【点评】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.30.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.【点评】此题考查了由三视图判断几何体,本题要先判断出几何体的形状,然后根据其表面积公式进行计算即可.31.【分析】易得此几何体为圆柱,圆柱的侧面积=底面周长×高.【解答】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得此几何体为圆柱;易得圆柱的底面直径为2,高为1,∴侧面积=2π×1=2π,故答案为:2π.【点评】本题考查圆柱的侧面积计算公式,关键是得到该几何体的形状.32.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.【分析】首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.【解答】解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是 6故答案为: 6【点评】此题主要考查了由三视图判断几何体,考查了空间想象能力,解答此题的关键是要明确:由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状.34.【分析】根据三视图的定义求解即可.【解答】解:主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=9,故答案为:9.【点评】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.35.【分析】由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,再根据侧面积公式可得.【解答】解:由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18,故答案为:18.【点评】本题考查了由三视图求几何体的侧面积,根据三视图判断几何体的形状是关键.36.【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.【点评】解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.37.【分析】圆的圆心为O,连接OA、OB,可得四边形OBCA为正方形,从而求得这个油桶的底面半径.【解答】解:连接OA、OB,如图,∵BC⊥AC,OA⊥AC,OB⊥BC,OB=OA,∴四边形OBCA为正方形,∴OB=AC,∵AC=0.65m,∴这个油桶的底面半径是0.65m.故答案为:0.65【点评】本题考查了切线的性质,是基础知识比较简单.38.【分析】通过观察长方体的主视图和左视图可以得到,这个长方体的高4厘米,长3厘米,宽2厘米,因此俯视图是长3厘米,宽2厘米的长方形,因此得解.【解答】解:3×2=6(平方厘米);答:则其俯视图的面积是6平方厘米.故答案为:6.【点评】此题考查了从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.北师版七年级上册第一章丰富的图形世界1.2.2棱柱、圆柱、圆锥的展开与折叠同步测试一.选择题(共10小题,3*10=30)1.如图由7个小正方体组合而成的几何体,从物体正面看所得到的是( )2.将五个相同的小正方体堆成如图所示的物体,从上面看到的是( )3.如图所示的几何体是由五个小正方体组成的,从左面看到的是( )4.如图,几何体上半部分为正三棱柱,下半部为圆柱,其从上面看的形状图是( ) 5.下列四个几何体从上面看到的图形中与众不同的是( )6.下列四个几何体:其中从左面看与从上面看得到的形状图相同的几何体共有( )A.1个B.2个C.3个D.4个7.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的从三个方向看的形状图说法正确的是( )A.从正面看的形状图相同。

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上第1章丰富的图形世界单元测试卷一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,48.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.309.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.1010.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:.13.如图,将此长方形绕虚线旋转一周,得到的是体,其体积是.(结果保留π)14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是cm2,体积是cm3.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)17.指出下列平面图形各是什么几何体的展开图.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?参考答案与试题解析一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【分析】由平面图形的折叠及正方体的表面展开图的特点进行判断即可.【解答】解:由题可得,是正方体的平面展开图的有:故选:B.2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选:B.4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个【分析】根据立体图形的特征,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;故选:B.5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选:B.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.8.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.30【分析】正方体的对面不存在公共部分可确定出对面,然后可得到x、y、z的值.【解答】解:x与10为对面,y与﹣2为对面,z与3为对面,∴x=﹣5,y=7,z=2,∴x+y+z=4.故选:B.9.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选:C.10.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故选:B.二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是52.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:A对面是F,B对面是E,C对面是D.【分析】如图,以B为突破口,B与C、F、A、D相邻,所以B的对面是E;C与B、F、A、E相邻,所以C的对面是D,则剩余的A与F相对.【解答】解:A对面是F,B对面是E,C对面是D.故答案为:A对面是F,B对面是E,C对面是D.13.如图,将此长方形绕虚线旋转一周,得到的是圆柱体,其体积是16π.(结果保留π)【分析】将长方形旋转可得出圆柱体,根据圆柱体积公式即可求出该圆柱的体积.【解答】解:将此长方形绕虚线旋转一周,得到的是圆柱体,V=πr2h=π×22×4=16π.故答案为:圆柱;16π.14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是176π+160cm2,体积是320πcm3.【分析】根据圆的周长、面积公式、正方体的体积公式计算.【解答】解:长方体的表面积是:8π×20+8π×2+4×20×2=176π+160(cm2),体积是:4×20×4π=320π(cm3),故答案为:176π+160;320π.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.【分析】分别根据柱体、锥体、球体的定义得出即可.【解答】解:是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.故答案为:①②⑤⑦⑧,④⑥,③.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【分析】根据正方体的展开图中每个面都有对面,可得答案.【解答】解:如图所示:17.指出下列平面图形各是什么几何体的展开图.【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【解答】解:(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.【分析】主视图有3列,每列小正方形数目分别为3,1,2;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?【分析】利用立方体的组成特点,分别得出画出即可.【解答】解:如图所示:21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.【分析】结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点.【解答】解:(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、4、5、6).23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.【分析】(1)由三视图的特征,可得这个几何体应该是圆柱柱;(2)这个几何体的表面积应该等于两个圆的面积和一个矩形的面积和.【解答】解:(1)根据题意,这个几何体是圆柱;(2)该圆柱的高为40,底面直径为20,表面积为:2×π×102+20π×40=1000π.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【分析】(1)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(2)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(3)根据矩形旋转所的几何体的大小比较,可得答案.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3),方案二:π×()2×5=π(cm3),∵π>π,∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)知识像烛光,能照亮一个人,也能照亮无数的人。

北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)

北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)

北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)北师大版七年级上册第一章丰富的图形世界解答题1. 如图是正方体的展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对面上的两个数互为相反数.2. 下图中的立体图形是由哪个平面图形旋转后得到?请用线连接.3. 下列A组图形中的每个平面图形折叠后都得到B组图形中的某一个立体图形,请用线连接.A组: B组:4. 用线连接下列图形和与之对应的图形名称.5. 从你熟悉的实物中找类似于下列几何体的物体:正方体,长方体,圆柱,球.6. 如图是某几何体的展开图.(1)这个几何体的名称是;(2)画出这个几何体从正面看,从左面看,从上面看所得到的平面图形;(3)求这个几何体的体积.(π取3.14)7. 如图是由5个小正方形组成的L图形,请你用4种方法分别在图中添画一个正方形,使折叠后能成为正方体.8. 墙角处有由若干大小相同的小正方体堆成的如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、上面、右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?9. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察如图所示的几种简单多面体模型,解答下列问题:四面体长方体正八面体正十二面体(1)根据上面的多面体模型,完成表格:多面体顶点数(V)面数(F)棱数(E)四面体44长方体8612正八面体812正十二面体201230你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是;北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成的,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x,八边形的个数为y,求x+y的值.10. 将一个长4 cm,宽3 cm的长方形,分别绕它的相邻两边所在的直线旋转一周,得到不同的圆柱(如图所示),它们的体积分别是多少?通过计算你发现了什么?(π取3.14)11. 观察下表中的多面体,并把下表补充完整.观察上表中的结果,你能发现n棱柱中的顶点数a,棱数b,面数c与n之间的关系吗?请写出关系式.12. 请你找一找,至少找出图中几何体的3个共同点.13. 用棱长为a的小正方体摆放成如图的形状.(1)如果摆放成如图所示的上下3层,请你求出该立体图形的表面积;(2)依图中摆放方法类推,如果摆放了上下20层,请你求出该立体图形的表面积.14. 如图所示的是一个立体图形的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在立体图形的底部,那么哪一个面会在上面(字母露在外面)?(2)如果E面在前面,从右面看是F面,那么哪一个面会在上面(字母露在外面)?(3)如果从右面看是C面,D面在后面,那么哪一面会在上面(字母露在外面)?15. 从三个方向看一个几何体的形状图,如图所示,请计算该几何体的体积.16. 如图是一个棱柱形状的食品包装盒的表面展开图.(1)请写出这个包装盒形状的名称.(2)根据图中所标的尺寸,计算这个多面体的表面积.17. 如图,第1行是一些具体的物体,第2行是一些立体图形,试找出与第2行立体图形相类似的实物(用线连接).18. 某同学的茶杯是圆柱形,图(1)是茶杯的立体图形,左边下方有一只蚂蚁,从A处爬行到对面的中点B处,如果蚂蚁爬行的路线最短,请画出这条最短路线图.解:将圆柱的侧面展开成一个长方形,如图(2)所示,则A,B分别位于图(2)中所示的位置,连接AB,即是这条最短路线图.问题:某正方体盒子,如图,左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M处,如北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)果蚂蚁爬行路线最短,这样的路线有几条?请分别画出最短路线图.19. 如图,在正方体能见到的面上已写上了数字1,2,3,而在其表面展开图中也已分别写上了两个或一个指定的数,请你在其表面展开图的其他各面上写上适当的数,使得相对的面上两数的和等于7.20. 将一个长方形绕它的一边所在直线旋转一周,得到的几何体是圆柱,现在有一个长为6 cm、宽为5 cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多少?21. 将如图所示的几何体分类,并说明理由.22. 如图所示,一个正方体,六个面上各有一个整数,并且这六个整数是连续的,相对面上的两个数之和相等,你能看到的面上的数分别是7,10,11,求这6个整数的和.23. 如图,是一张铁皮.(1)计算该铁皮的面积.(2)能否用它做成一个长方体盒子?若能,画出这个长方体,并计算该长方体盒子的体积;若不能,请说明理由.24. 如果用一个平面截掉一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?25. 一个圆柱的底面半径是10 cm,高是18 cm,把这个圆柱放在水平桌面上,如图所示,用一个平面怎样截时所得截面是长方形且长方形的面积最大,请你画出这个截面并求出其面积.26. 用一些相同的小立方块搭一个几何体,使它从正面看和从上面看得到的形状图如图所示,从上面看到的形状图中小正方形中的字母表示在该位置的小立方块的个数,解答下列问题.(1)d,e,f各表示几?(2)这个几何体最多由几个小立方块搭成?最少呢?(3)当a=b=1,c=2时,画出这个几何体的从左面看到的形状图.27. 如图①,大正方体上截去一个小正方体后,可得到图②中的几何体.①②(1)设原大正方体的表面积为S,图②中几何体的表面积为S',那么S'与S的大小关系是 ( )A.S'>SB.S'=SC.S'<SD.不确定(2)小明说:“设图①中大正方体各棱的长度之和为c,图②中几何体各棱的长度之和为c',那么c'比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小正方体的棱长为x,请问当x 为何值时,小明的说法才正确?28. 用小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭成这样的一个几何体,需要多少个小正方体?(2)试画出几种从上面看到的形状,并在相应的形状图中标出各个小正方形所在位置的小正方体的个数.北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)29. 如图所示,是一个几何体的从正面与从上面看到的形状图,求该几何体的体积.30. 已知一个长方体的长为4 cm,宽为3 cm,高为5 cm,请求出:(1)长方体所有棱长的和;(2)长方体的表面积.31. 如图所示的几何体,我们称之为棱锥,棱锥的侧面都是三角形,底面是多边形,底面若有n条边,则称为n棱锥.图为三棱锥,它有4个面,6条棱,4个顶点.(1)请填写:四棱锥有个面, 条棱, 个顶点;五棱锥有个面, 条棱, 个顶点;六棱锥有个面, 条棱, 个顶点;n棱锥有个面, 条棱, 个顶点.(2)根据上题填写的结果,你发现了什么结论?这个结论适合棱柱吗?请说明理由.(3)如果一个各面都是平面的几何体有8个面,12个顶点,那么它有条棱,它可能是.32. 如图,把第一行中的平面图形绕虚线旋转一周,能形成第二行中的某个几何体,请把两行中的对应图形用短线连起来.33. 在如图所示的实物图中,分别找出与长方体、正方体、圆柱、圆锥、棱锥和球体类似的物体.34. 写出如图所示立体图形的名称.35. 如图是从上面看到的由几个小正方体搭成的几何体的形状图,数字表示处于该位置的小正方体的个数,请画出从正面、左面看到的这个几何体的形状图.北师大版七年级上册第一章丰富的图形世界参考答案1. 【答案】北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)2. 【答案】3. 【答案】4. 【答案】5. 【答案】答案不唯一.例如魔方,砖块,易拉罐,篮球.6.(1) 【答案】圆柱(2) 【答案】如图所示.(3) 【答案】πr2h=3.14×(102)2×20=1 570.答:这个几何体的体积为1 570.7. 【答案】如图所示.北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)8. 【答案】第1列最多可以搬走9个小正方体;第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体,因为9+8+3+5+2=27(个),所以最多可以搬走27个小正方体.9.(1) 【答案】表格中四面体的棱数为6;正八面体的顶点数为6;V+F-E=2(2) 【答案】20(3) 【答案】因为这个多面体有24个顶点,每个顶点处都有3条棱,且两点确定一条直线,所以这个多面体共有24×3÷2=36(条)棱,所以有24+F-36=2,解得F=14,所以x+y=14.10. 【答案】绕较短的一边所在的直线旋转一周,所得的圆柱的体积为3.14×42×3=3.14×16×3=150.72(cm3).绕较长的一边所在的直线旋转一周,所得的圆柱的体积为3.14×32×4=3.14×9×4=113.04(cm3).通过计算发现:同一长方形以较短的一边所在的直线为轴旋转一周比以较长的一边所在的直线为轴旋转一周所得的圆柱的体积大.11. 【答案】四棱柱的顶点数是8,面数是6;五棱柱的面数是7;六棱柱的棱数是18.a=2n;b=3n;c=n+2.12. 【答案】答案不唯一,如:都由平面组成, 都有上、下底面,侧面都是长方形等.13.(1) 【答案】6×6a2=36a2.(2) 【答案】从六个方向(前、后、左、右、上、下)看这个立体图形,每个方向我们都可以看到210(1+2+3+…+20=210)个边长为a的正方形.因此,该立体图形的表面积为6×210a2=1260a2.14.(1) 【答案】D面.(2) 【答案】A面.(3) 【答案】E面.15. 【答案】由图可知该几何体由两个长方体组成,其中一个长、宽、高分别为10,10,30,另一个长、宽、高分别为30,20,50,所以该几何体的体积为10×10×30+30×20×50=3000+30000=33000.16.(1) 【答案】三棱柱.(2) 【答案】因为AB=5,AC=3,BC=4,DF=6,所以AD=AC=MN=3,BE=BC=HN=4,AG=BH=EN=DF=6,×3×4)=18+30+24+12=84.所以表面积=3×6+5×6+4×6+2×(1217. 【答案】如图所示.18. 【答案】通过展开图可得到四条路线:(1)将面BCGF展开与ABCD共面,连接AM,得到第一条路线(如图(1)).(2)将面EFGI展开与ABFE共面,连接AM,得到第二条路线(如图(2)).(3)将面BCGF展开与ABFE共面,连接AM,得到第三条路线(如图(3)).(4)将面EFGI展开与AEID共面,连接AM,得到第四条路线(如图(4)).北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)以上四条路线经过测量或计算可知(1)(4)相等,(2)(3)相等.但是(1)(4)要长于(2)(3),故最短路线为(2)(3)两种.(2)通过测量比较或计算比较可得出最短路线.19. 【答案】如图所示,本题答案不唯一.20. 【答案】(1)当以5cm的边所在直线为轴旋转一周,所得到的圆柱的体积为π×62×5=180π(cm3).(2)当以6cm的边所在直线为轴旋转一周,所得到的圆柱的体积为π×52×6=150π(cm3).故所得的圆柱的体积分别是180πcm3,150πcm3.21. 【答案】(1)按柱体、锥体、球体划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面有无曲面划分:①④⑤⑦为一类,它们无曲面;②③⑥为一类,它们有曲面.(3)按几何体有无顶点划分:①③④⑤⑦为一类,它们都有顶点;②⑥为一类,它们都无顶点.22. 【答案】因为能够看到的数是7,10,11,在7~11中共有5个整数,而已知六个面上共有六个连续的整数,所以有两种可能:(1)六个数是:6~11;(2)六个数是:7~12.当六个数是6~11时,因为对面两数之和相等,所以只能是6和11,7和10,8和9相对,然而图中给出的10与7相邻,所以不符合要求.当六个数是7~12时,只能是7与12,8与11,9与10相对,对照给出的图形,符合要求,所以六个数为7~12.所以7+8+9+10+11+12 =19×3=57.23.(1) 【答案】该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(m2).(2) 【答案】能做成一个长方体盒子,如图所示.体积为3×1×2= 6(m3).24. 【答案】本题分四种情况进行讨论(如图所示):第一种情况,如图(1)所示,截去正方体一角,正方体变成一个多面体,这个多面体有7个顶点,12条棱,7个面;第二种情况,如图(2)所示,截去正方体一角,正方体变成一个多面体,这个多面体有8个顶点,13条棱,7个面;笫三种情况,如图(3)所示,截去正方体一角,正方体变成一个多面体,这个多面体有9个顶点,14条棱,7个面;第四种情况,如图(4)所示,截去正方体一角,正方体变成一个多面体,这个多面体有10个顶点,15条棱,7个面.综合探究25. 【答案】当平面沿竖直方向且经过两个底面的圆心截时,截得的长方形面积最大,此时,长方形的一边等于圆柱的高,长方形的另一边等于圆柱的底面直径.所以面积为: 18×10×2=360(cm2).26.(1) 【答案】因为从正面看左侧为2层,中间为1层,右侧为3层,对照从上面看的形状图知:a,b,c三个数值最大值应为2,最小值应为1.d,e两个数值都是1,f是3,所以d=1,e=1,f=3. (2) 【答案】由第一问可知当a,b,c中有一字母值为2,其余的等于1时,几何体最少可由1+1+2+1+1+3=9(个)小立方块搭成;当a,b,c都是2时,几何体最多可由2+2+2+1+1+3=11(个)小立方块搭成.(3) 【答案】从左面看每列最多有3,1,2个小立方块,所以从左面看到的形状图如图所示.北师大版七年级上册第一章丰富的图形世界(解答题专题,包含答案)27.(1) 【答案】B 说明:因为截去的是小正方体,所以大正方体的表面积减少的是小正方体的3个面的面积,而在大正方体中又“截出”了小正方体的另外3个面.因为正方体的六个面的面积相等,所以表面积不变.故选B.(2) 【答案】比较图①、图②可知,图②比图①正好多出6条小正方体棱长的和,也就是c'-c= 6x.根据题意可知6x=3,解得x=12,所以当x=12时,小明的说法才正确.28.(1) 【答案】通过从正面看到的形状图可知,几何体从左到右共三列,第一列最多2层,第二列最多3层,第三列1层.由从左面看到的形状图可看出,几何体共2排,第一排最多2层,第二排最多3层,所以最少需要6个小正方体,最多需要11个小正方体,即搭成这样的一个几何体需要6个,7个,8个,9个,10个,11个小正方体均可.(2) 【答案】如图所示,本题答案不唯一.29. 【答案】根据两个形状图可知该几何体上面是—个圆柱,下面是—个长方体.根据图中标注的数据可知:圆柱部分的体积为π(202)2×32=3 200π(cm3),长方体部分的体积为30×25×40=30 000(cm3),所以几何体的体积为(30 000+3 200π) cm3.30.(1) 【答案】长方体所有棱长的和为(4+3+5)×4=48(cm).(2) 【答案】长方体的表面积为(4×5+3×5+3×4)×2=94(cm2).31.(1) 【答案】58561067127n+12n n+1(2) 【答案】因为(n+1)+(n+1)-2n=2,所以面数+顶点数-棱数=2.这个结论适合棱柱,理由:因为n棱柱有(n+2)个面,3n条棱,2n个顶点,所以(n+2)+2n-3n=2.(3) 【答案】18六棱柱32. 【答案】如图所示.33. 【答案】长方体:①③⑦⑧;正方体:②⑨;圆柱:⑥⑫;圆锥:⑪;棱锥:④;球:⑤⑩.34. 【答案】(1)正方体(四棱柱); (2)长方体(四棱柱); (3)圆柱; (4)圆锥.35. 【答案】如图所示.。

北师大版七年级上学期 第1章 丰富的图形世界 单元练习卷 含答案解析

北师大版七年级上学期 第1章 丰富的图形世界 单元练习卷  含答案解析

第1章丰富的图形世界一.选择题(共10小题)1.夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,这是因为()A.面对成体B.线动成面C.点动成线D.面面相交成线2.如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个3.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.4.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78B.72C.54D.485.如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.6.如图,下列图形从正面看是三角形的是()A.B.C.D.7.下面四个几何体中,同一几何体从前往后看和从上往下看,看到的图形形状相同的共有()几何体.A.1个B.2个C.3个D.4个8.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.9.如图是某几何体的三视图,那么该几何体是()A.球B.正方体C.圆锥D.圆柱10.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是()A.(1)和(2)B.(3)和(4)C.(1)和(4)D.(2)、(3)、(4)二.填空题(共10小题)11.如图所示图形绕图示的虚线旋转一周,(1)能形成,(2)能形成,(3)能形成.12.用一个平面去截长方体,截面是正五边形(填“可能”或“不可能”).13.三棱柱和四棱柱的三种视图中都会有的图形是.14.将一个正方体的表面沿某些棱剪开,展开成一个平面图形(如图),则下列可能的图形有:.15.如图,正方体的六个面上标着六个连续的整数,若相对的两个面上所标之数的和相等,则这6个数的和为.16.如图是一个正方体的表面展开图,则图中“加”字所在面的对面所标的字是.17.如果把骰子看作是一个正方体,点数1的对面是6,点数5的对面是2,点数4的对面是3,则与点数是3的面垂直的所有的面的点数和是.18.一个几何体由若干大小相同的小立方块搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.若一个小立方块的体积为1,则这个几何体的表面积为.19.如图,在边长为20的大正方形中,剪去四个小正方形,可以折成一个无盖的长方体盒子.如果剪去的小正方形边长按整数值依次变化,即分别取1、2、3、…、9、10时,则小正方形边长为时,所得到的无盖的长方体盒子容积最大.20.十八世纪数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f﹣e=2,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都3条棱,设该多面体外表面三角形个数是x个,八边形的个数是y,则x+y=.三.解答题(共5小题)21.王彭做了一个底面积为72cm2,长、宽、高的比为4:3:1的长方体.(1)求这个长方体的长、宽、高;(2)求这个长方体的体积.22.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)23.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?24.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm,宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的表面积分别是多大?(结果保留π)25.将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b =;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=.参考答案一.选择题(共10小题)1.解:夜里将点燃的蚊香迅速绕一圈,可划出一个曲线是因为点动成线,故选:C.2.解:过棱BB1和平面CD1垂直的平面有CBB1C1,所以只有1个.故选:A.3.解:A是长方形绕虚线旋转一周,得到的几何体,故错误;B是一个圆绕虚线旋转一周,得到的几何体,故正确;C是一个直角梯形图绕长底边旋转一周,得到的几何体,故错误;D是半圆绕直径旋转一周,得到的几何体,故错误.故选:B.4.解:如图所示,周边的六个挖空的正方体每个面增加4个正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.5.解:把展开图折叠后,只有B选项符合图形,故选:B.6.解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.7.解:正方体从前往后看和从上往下看,看到的图形形状都是正方形,①符合题意;球从前往后看和从上往下看,看到的图形形状都是圆,②符合题意;圆锥从前往后看和从上往下看,看到的图形形状分别是三角形和圆,③不合题意;圆柱从前往后看和从上往下看,看到的图形形状分别是矩形和圆,④不合题意,故选:B.8.解:圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故选:D.9.解:A.球的三视图均为圆,不符合题意;B.正方体的三视图均为正方形,不符合题意;C.圆锥的主视图和左视图是等腰三角形,俯视图是圆,不符合题意;D.圆柱的主视图和左视图是矩形,俯视图是圆,符合题意;故选:D.10.解:∵正三棱柱上、下两底面是全等的两正三角形,∴只有(1)和(4)2个图形符合要求,故选:C.二.填空题(共10小题)11.解:长方形绕它的一边旋转一周可形成圆柱;直角三角形绕它的直角边边旋转一周可形成圆锥;半圆绕它的直径旋转一周可形成球.故答案为圆柱;圆锥;球.12.解:用一个平面去截长方体,截面可能是正五边形.故答案为:可能.13.解:三棱柱的主视图是矩形,左视图是有中间线的矩形、俯视图是三角形;四棱柱的主视图和左视图都是矩形,俯视图是正方形,则三棱柱和四棱柱的三种视图中都会有的图形是矩形.故答案为:矩形.14.解:图(1)(8)(9)折叠后有一行两个面无法折起来,不能折成正方体;而(2),(3),(4),(5),(6),(7)都能折成正方体.故答案为(2),(3),(4),(5),(6),(7).15.解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为11,12,13,14,15,16或10,11,12,13,14,15;且每个相对面上的两个数之和相等,11+16=27,10+15=25,故可能为11,12,13,14,15,16或10,11,12,13,14,15,其和为81和75(11和14必须为对面,在本体图片中,11和14为邻面,故不合题意,应舍去)故答案为:81.16.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“加”字相对的字是“京”.17.解:与点数是3的面垂直的所有的面的点数和是1+6+5+2=14.故填14.18.解:该几何体的表面积为2×(4+8+6)=36;故答案为:36.19.解:四个角都剪去一个边长为acm的小正方形,则V=a(20﹣2a)2;填表如下:由表格可知,当a=3时,即小正方形边长为3时,所得到的无盖的长方体盒子容积最大.故答案为:3.20.解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+f﹣36=2,解得f=14,∴x+y=14.故答案为:14.三.解答题(共5小题)21.解:(1)设长方体的高为x,则长为4x,宽为3x,由题意得4x×3x=72解得x=,则4x=4,3x=3.答:这个长方体的长、宽、高分别是4cm、3cm、cm.(2)4×3×=72(cm3)答:体积是72cm3.22.解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.23.解:如图所示:24.解:情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).答:它们的表面积分别是42πcm2或56πcm2.25.解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.。

北师大版数学七年级上册 第一章 丰富的图形世界 解答题训练(解析版)

北师大版数学七年级上册 第一章 丰富的图形世界 解答题训练(解析版)

第1章丰富的图形世界解答题训练1.一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的周长和面积;2.一个几何体的三视图如图所示,主、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积是多少?3.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.4.如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.5.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.6.根据如图视图(单位:mm),求该物体的体积.7.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入,图2是它的平面示意图,请根据图中的信息解答下列问题:(1)填空:AP=cm,PF=cm.(2)求出容器中牛奶的高度CF.8.一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.9.某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.10.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.11.已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?12.如图是一个几何体的三视图.(1)判断这个几何体的形状;(2)根据图中数据(单位:cm),求它的表面积和体积.13.如图是一个用硬纸板制作的长方体包盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)14.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)15.用小立方块搭一几何体,使它的主视图和俯视图如图所示.俯视图中小正方形中的字母表示在该位置小立方块的个数,请问:(1)a表示几?b的最大值是多少?(2)这个几何体最少由几个小正方块搭成?最多呢?16.如图是一个正方体的平面展开图,标注了字母M的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和底面的数字和.17.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题(1)这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?(2)沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少?18.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.19.如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x﹣2,C=1,D=x﹣1,E=2x﹣1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.20.如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?21.某几何体从正面、左面、上面看到的平面图形如图所示,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π)22.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y ﹣x的值.23.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)24.如图是由小正方形组成的图,请你用三种方法分别在下图中添画两个小正方形,使它能成为正方体的表面展开图.第1章丰富的图形世界解答题训练参考答案与试题解析1.【分析】(1)由常见几何体的三视图可得该几何体为圆锥;(2)根据三视图知圆锥的底面圆的直径为12、半径为6,高为8,得出母线长为10,再根据扇形的弧长和面积公式可得答案.【解答】解:(1)由三视图可知,该几何体为圆锥;(2)由三视图数据知圆锥的底面圆的直径为12、半径为6,高为8,则母线长为=10,所以侧面展开图的周长为2π•6+20=20+12π,面积为•(2π•6)•10=60π.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图及扇形的弧长、面积计算.2.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,结合图形可得出母线及底面半径,继而可求出圆锥侧面积.【解答】解:依题意知母线长l=4,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π•1•4=4π.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算,学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.3.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长8mm,宽6mm,高2mm,∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.4.【分析】(1)根据三视图可直接得出这个立体图形是三棱柱;(2)根据直三棱柱的表面积公式进行计算即可.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,同时也考查学生的空间想象能力.5.【分析】根据三视图得到几何体为圆锥,圆锥的母线长为6,圆锥底面圆的半径为2,然后计算侧面积和底面积的和即可.【解答】解:(1)由三视图得几何体为圆锥,(2)圆锥的表面积=π•22+•2π•6•2=16π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.6.【分析】首先判断该几何体的形状由上下两个圆柱组合而成,然后计算体积即可.【解答】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为π(16÷2)2×16+π(8÷2)2×4=1088πmm3.【点评】考查了由三视图判断几何体的知识,解题的关键是能够根据该几何体的三视图得到该几何体的形状.7.【分析】(1)解Rt△ABP,根据含30°角的直角三角形的性质得出AP=AB=5cm,求出EP=,即可求出PF;(2)先由EF∥AB,得出∠BPF=∠ABP=30°,再解Rt△BFP,得出BF=cm,那么CF=BC﹣BF=(12﹣)cm.【解答】解:(1)在Rt△ABP中,∵∠APB=90°,∠ABP=30°,AB=10cm,∴AP=AB=5cm,∠BAP=60°;∴∠EAP=30°,∴EP=AP=cm,∴PF=10﹣=(cm);故答案为:5,;(2)∵EF∥AB,∴∠BPF=∠ABP=30°,又∵∠BFP=90°,∴tan30°=,∴BF=×=(cm).∴CF=BC﹣BF=(12﹣)(cm).即容器中牛奶的高度CF为(12﹣)cm.【点评】此题主要考查了解直角三角形的运用,掌握含30°角的直角三角形的性质是解题的关键.8.【分析】计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.【解答】解:∵俯视图是菱形,∴底面菱形边长为=2.5cm,面积为×3×4=6,则侧面积为2.5×4×8=80cm2,∴直棱柱的表面积为92cm2.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解该几何体的形状,难度不大.9.【分析】分别表示出长方体的各侧面面积,进而得出等式求出答案.【解答】解:设高为x cm,则长为(13﹣2x)cm,宽为(14﹣2x)cm.由题意,得[(13﹣2x)(14﹣2x)+(14﹣2x)x+x(13﹣2x)]×2=146,解得:x1=2,x2=﹣9(舍去),∴长为:9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3,答:这个包装盒的体积为90cm3.【点评】此题主要考查了几何体的展开图以及几何体的表面积,正确表示出长方体的侧面积是解题关键.10.【分析】(1)n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数是条,相减即可求出需要剪开的棱的条数.【解答】解:(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm).故答案为:5,31.【点评】本题主要考查的是认识立体图形,明确n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;能够数出三棱柱没有剪开的棱的条数是解答此题的关键.11.【分析】(1)由n棱柱有3n条棱求解可得;(2)由n棱柱有2n个顶点,有(n+2)个面求解可得;(3)将侧面长方形的面积乘以长方形的个数即可得.【解答】解:(1)∵此直棱柱有21条棱,∴由21÷3=7知,此棱柱是七棱柱;(2)这个七棱柱有9个面,有14个顶点;(3)这个棱柱的所有侧面的面积之和是4×7×20=560.【点评】本题考查了认识立体图形,解题的关键是掌握n棱柱有2n个顶点,有(n+2)个面,有3n条棱.12.【分析】(1)根据三视图即可判断.(2)根据表面积,体积公式计算即可.【解答】解:(1)该几何体是圆柱;(2)圆柱表面积2×π×12+2π×3=8π(cm2).圆柱体积=π×12×3=3π(cm3).【点评】本题考查三视图,几何体的表面积,体积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.14.【分析】(1)根据几何体的三视图可判断其形状;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.【解答】解:(1)这个几何体是圆柱;(2)∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).【点评】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的侧面积的计算方法.15.【分析】(1)由主视图可知,第二列小立方体的个数均为2,第3列小正方体的个数为3,那么b的最大值为2,a=3;(2)第一列小立方体的个数最多为2+2+2,最少为2+1+1,那么加上其他两列小立方体的个数即可;【解答】解:(1)由主视图可知,第二列小立方体的个数均为2,第3列小正方体的个数为3,那么a=3,b的最大值为2;(2)这个几何体最少由6+5=11个小立方块搭成;这个几何体最多由9+4+3=16个小立方块搭成;【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.16.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字﹣2和﹣3,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“M”与“x”是相对面,“﹣2”与“﹣3”是相对面,“4x”与“2x+3”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴4x=2x+3,解得x=1.5;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字﹣2和﹣3,∴﹣2﹣3=﹣5.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【分析】(1)依据六棱柱的几何特征,即可得到面数、棱数以及棱长之和;(2)依据侧面展开图是一个长方形,即可得其面积.【解答】解:(1)这个六棱柱一共有2+6=8个面;一共有6×3=18条棱;这些棱的长度之和是8×6+5×6×2=108厘米;(2)侧面全部展开成一个平面图形,其面积为8×5×6=240厘米2.【点评】本题主要考查了几何体的展开图,解决本题的关键是应理解六棱柱的构造特点.18.【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【解答】解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.19.【分析】(1)依据正方体的左面D与右面B代表的代数式的值相等,即可得到x的值;(2)依据正面字母A代表的代数式与对面F代表的代数式的值相等,即可得到(k﹣1)x=﹣1,再根据x为整数,可得整数k的值为0或2.【解答】解:(1)∵正方体的左面D与右面B代表的代数式的值相等,∴x﹣1=3x﹣2,解得x=;(2)∵正面字母A代表的代数式与对面F代表的代数式的值相等,∴kx+1=x,∴(k﹣1)x=﹣1,∵x为整数,∴x,k﹣1为﹣1的因数,∴k﹣1=±1,∴k=0或k=2,综上所述,整数k的值为0或2.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.20.【分析】(1)先分别求出旋转后得出的圆锥的体积,再比较即可;(2)求出直角△ABC的高CD,再求出圆锥的体积即可.【解答】解:(1)三角形绕着边AC旋转一周,所得几何体的体积是×π×32×4=12π(cm)2;三角形绕着边BC旋转一周,所得几何体的体积是×π×42×3=16π(cm)2;∵12π≠16π,∴三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何的体积不一样;(2)过C作CD⊥AB于D,∵AC=4cm,BC=3cm,AB=5cm,又∵32+42=52,∴△ACB是直角三角形,∠ACB=90°由三角形的面积公式得:,CD=2.4(cm),由勾股定理得:AD===3.2(cm),BD=5cm﹣3.2cm=1.8cm,绕着边AB旋转一周,所得的几何体的体积是:×π×2.42×3.2+×π×(2.4)2×1.8=9.6π(cm3).【点评】本题考查了勾股定理、三角形的面积公式、勾股定理的逆定理、圆锥的体积等知识点,能根据已知条件求出旋转后的圆锥的底面半径和高是解此题的关键.21.【分析】(1)由三视图知该几何体是底面直径为6,高为8的圆柱体,再根据圆柱体的侧面面积=底边周长×高可得答案;(2)根据圆柱体的体积=底面积×高可得.【解答】解:(1)由三视图知该几何体是底面直径为6,高为8的圆柱体,∴该几何体的侧面面积为π•6×8=48π;(2)此圆柱体的体积为π•()2×8=72π.【点评】本题主要考查由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.22.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.23.【分析】绕长旋转得到的圆柱的底面半径为3cm,高为4cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为4cm,高为3cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.【点评】本题考查了点、线、面、体的知识,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键,另外要掌握圆柱的体积计算公式.24.【分析】依据正方体的展开图的特征,即可添画两个小正方形,使它能成为正方体的表面展开图.【解答】解:如图所示:【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,正方体展开图不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况.。

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试卷(含答案解析)(4)

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试卷(含答案解析)(4)

一、选择题1.如图所示的几何体,从左面看到的形状图是()A.B.C.D.2.一个表面标有汉字的正方体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边3.下列图形中,不是正方体平面展开图的是()A.B.C.D.4.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是()A.厉B.害C.了D.国5.如图,是一个正方体的表面展开图,则“2”所对的面是()A.0 B.9 C.快D.乐6.下列说法错误..的是()A.长方体、正方体都是棱柱B.三棱锥的侧面是三角形C.球体的三种视图均为同样大小的图形D.三棱柱有六条棱、六个侧面、侧面为长方形7.如图是正方体的平面展开图,每个面上都标有一个汉字,与“爱”字对应的面上的字为()A.大B.美C.綦D.江8.一个正方体的每个面都写着一个汉字,其平面展开图如图所示,那么在该正方体中,和“曲”相对的汉字是()A.中B.学C.江D.一9.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是()A.低B.碳C.环D.色10.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.正方体B.圆柱C.圆锥D.三棱柱11.如图,将正方体的表面展开,得到的平面图形可能是()A.B.C.D.12.制作无盖正方体盒子,下底面要有标记,如图所示,按照下列所示图案裁剪纸板能折叠成如图所示的无盖盒子的是()A.B.C.D.二、填空题13.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中“国”字所在面相对的面上的汉字是________.14.下列说法:①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,其中正确的有___________个15.下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是______(填写序号)①三棱锥;②圆柱;③球.16.下图是一个立体图形的表面展开图,则该立体图形的名称为______.17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况如下表:颜色红黄蓝白紫绿花朵数123456现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如图所示,那么长方体的下底面共有_____朵花.18.如下图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的侧面积为___________c2m.(注意:计算结果保留 )19.如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要________个小立方块.20.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.三、解答题21.(1)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b91215面数c568(2)观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.22.在图1、图2中的无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.23.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.24.用5块正方体的木块搭出的几何体如图所示.(1)画出它从正面、左面、上面三个方向看到的形状图.(2)在这个图形中,再添加一个小正方体,使得它从正面和左面看到的形状图不变,操作后,请画出从上面看到的所有可能的形状图.25.画出下面图形的三视图:主视图,左视图,俯视图.26.补全如图的三视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。

北师大新版 七年级数学(上)学期 第1章 丰富的图形世界 单元测试卷 含解析

北师大新版 七年级数学(上)学期 第1章 丰富的图形世界 单元测试卷 含解析

第1章丰富的图形世界单元测试卷一.选择题(共10小题)1.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面2.下列图形中,不是立体图形的是()A.圆锥B.圆柱C.圆D.球3.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形4.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.5.下列几何体中从上面看到的图形是三角形的是()A.B.C.D.6.如图是某个几何体的平面展开图,该几何体是()A.B.C.D.7.如图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为()A.B.C.D.8.下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.9.如图是从不同角度看“由相同的小正方体组成的几何体”得到的图形,组成整个几何体的小正方体的个数是()A.7B.6C.5D.410.一个正方体的六个面分别标有六个不同的点数,其展开图如图所示,则该正方体可能是()A.B.C.D.二.填空题(共6小题)11.如图是由六个棱长为1的正方体组成的几何体,则从上面看得到的平面图形的面积是.12.如图是某正方体的表面展开图,则展开前与“我”字相对面上的字是.13.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是.14.正方体切去一个块,可得到如图几何体,这个几何体有条棱.15.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有个.16.琦琦设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,若要将它补上,使其成为一个两面均有盖的正方体盒子,则共有种填补的方式.三.解答题(共8小题)17.用平面截下列几何体,写出下列截面的形状.18.如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.19.如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?20.棱长为2的正方体摆成如图所示的形状.(1)这个几何体共有几个正方体?(2)这个几何体的表面积是多少?21.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不同的花,各面上的颜色与花的朵数情况如下表所示:颜色黄白红紫绿蓝花的朵数123456现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有多少朵花?22.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留)23.如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?24.如图所示,图②是图①的平面展开图(字在内表面上),请根据要求回答问题:(1)面“你”的对面是面;(2)试在图②中画出点P,S的位置;(3)如果面“祝”是左面,面“你”在后面,哪一面会在上面?参考答案一.选择题(共10小题)1.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面【解答】解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.2.下列图形中,不是立体图形的是()A.圆锥B.圆柱C.圆D.球【解答】解:圆是平面图形,不是立体图形,故选:C.3.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B.4.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.【解答】解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.5.下列几何体中从上面看到的图形是三角形的是()A.B.C.D.【解答】解:A.该几何体的俯视图是圆,故本选项不合题意;B.该几何体的俯视图是圆,故本选项不合题意;C.该几何体的俯视图是三角形,故本选项符合题意;D.该几何体的俯视图是矩形,故本选项不合题意;故选:C.6.如图是某个几何体的平面展开图,该几何体是()A.B.C.D.【解答】解:观察图形可知,这个几何体是三棱柱.故选:D.7.如图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为()A.B.C.D.【解答】解:根据俯视图的意义,从上面看,所得到的图形,因此B选项的图形符合题意,故选:B.8.下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.9.如图是从不同角度看“由相同的小正方体组成的几何体”得到的图形,组成整个几何体的小正方体的个数是()A.7B.6C.5D.4【解答】解:根据题中图象可知:该几何体的下层分两排,前面一排有一个小正方体,后面一排有三个小正方体,上面一层有一个小正方体.故一共有5个小正方体,故选:C.10.一个正方体的六个面分别标有六个不同的点数,其展开图如图所示,则该正方体可能是()A.B.C.D.【解答】解:A、“5”的对面是“2”,故本选项错误;B、“6”的对面是“1”,故本选项错误;C、符合,故本选项正确;D、“5”的对面是“2”,故本选项错误.故选:C.二.填空题(共6小题)11.如图是由六个棱长为1的正方体组成的几何体,则从上面看得到的平面图形的面积是5.【解答】解;从上面看第一层是三个小正方形,第二层是中间一个正方形,右边一个小正方形,面积是5,故答案为:5.12.如图是某正方体的表面展开图,则展开前与“我”字相对面上的字是是.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面.故答案为:是.13.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是7.【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.14.正方体切去一个块,可得到如图几何体,这个几何体有12条棱.【解答】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.15.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有6个.【解答】解:在保持主视图、左视图不变的情况下,在俯视图的相应位置上,标出所摆放小立方体的个数,如图所示:因此,构成这个几何体的小正方体有6个,故答案为:6.16.琦琦设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,若要将它补上,使其成为一个两面均有盖的正方体盒子,则共有4种填补的方式.【解答】解:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以有四种弥补方法.故答案为:4三.解答题(共8小题)17.用平面截下列几何体,写出下列截面的形状.【解答】解:如图所示:18.如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:13421531541551922⨯⨯⨯+⨯+⨯+⨯=.19.如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?【解答】解:(1)A得对面是C,所以面C会在下面;(2)F的对面是E,所以面E在前面,B的对面是D,所以面D在右面,面A在上面,面C在下面.20.棱长为2的正方体摆成如图所示的形状.(1)这个几何体共有几个正方体?(2)这个几何体的表面积是多少?【解答】解:(1)上面一层有1个正方体,中间层有3个正方体,底层有6个正方体,共10个正方体;(2)根据以上分析该物体的表面积为2662144⨯⨯=.21.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不同的花,各面上的颜色与花的朵数情况如下表所示: 颜色黄 白 红 紫 绿 蓝 花的朵数 1 2 3 4 5 6现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有多少朵花?【解答】解:由题意可得,题中的长方体涂红色的面与涂蓝、黄、紫、白色的面均相邻, ∴与涂红色的面相对的面是涂绿色的面,Q 涂白色的面与涂红、黄色的面均相邻,∴与涂白色的面相对的面是涂蓝色的面,∴与涂紫色的面相对的面是涂黄色的面,∴长方体下面的四个面分别涂绿、黄、紫、白色,∴长方体的下底面共有花数514212+++=朵.22.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm ,从上面看的圆的直径为4cm ,求这个几何体的侧面积(结果保留)π【解答】解:(1)这个几何体是圆柱;(2)Q 从正面看的高为10cm ,从上面看的圆的直径为4cm ,∴该圆柱的底面直径为4cm ,高为10cm ,∴该几何体的侧面积为22221040()rh cm πππ=⨯⨯=.23.如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?【解答】解:(1)根据从正面看所得视图可得该物体有2层高;(2)根据从左边看的视图可得该物体最长处为3个长方体;(3)如图所示:该物体最高部分位于阴影部分.24.如图所示,图②是图①的平面展开图(字在内表面上),请根据要求回答问题:(1)面“你”的对面是面习;(2)试在图②中画出点P,S的位置;(3)如果面“祝”是左面,面“你”在后面,哪一面会在上面?【解答】解:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“进”是相对面,“学”与“步”是相对面,“你”与“习”是相对面,故答案为:习;(2)如图,(3)如果面“祝”是左面,面“你”在后面,“学”面会在上面.。

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试(有答案解析)

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试(有答案解析)

一、选择题1.如图,从左到右的三个图形是由立体图形展开得到的,则相应的立体图形的顺次是( )A.正方体、圆柱、圆锥B.正方体、圆锥、三棱锥C.正方体、圆柱、三棱柱D.三棱锥、圆柱、正方体2.如图所示的几何体的俯视图是()A.B.C.D.3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是()A.厉B.害C.了D.国4.如图图形不能围成正方体的是()A.B.C.D.5.如图,是一个正方体的表面展开图,则“2”所对的面是()A.0 B.9 C.快D.乐6.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是()A.B.C.D.7.下面四个图形中,经过折叠能围成的几何图形是()A.B.C.D.8.下列图形是正方体展开图的是()A.B.C.D.9.如图是正方体的平面展开图,则与“梅”字相对的字是()A.侨B.香C.牛D.旺10.如图,经过折叠后不能围成正方体的是( )A.B.C.D.11.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个C.2个D.1个12.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有()A.1个B.2个C.3个D.4个二、填空题13.观察下列由长为1,的小正方体摆成的图形,如图①所示共有1.个小立方体,其中1个看得见,0个看不见:如图②所示:共有8.个小立方体,其中7个看得见,1个看不见:如图③所示:共有27个小立方体,其中19个看得见,8个看不见…按照此规律继续摆放:(1)第④个图中,看不见的小立方体有_________个:(2)第n个图中,看不见的小立方体有____________个.14.如图,把一个长方体的礼品盒用丝带打上包装,打蝴蝶结部分需丝带48cm,那么打好整个包装所用丝带总长为________ cm.15.长方形的长是20cm,宽是10cm.以长为轴旋转一周所得的几何体的体积是(___________)cm3.(π≈3.14)16.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:多面体顶点数面数棱数四面体446长方体86正八面体812现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=_____.17.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)18.如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则()--=______________.a b c19.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是_____.20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.22.如图是一个正三棱柱的俯视图:(1)你请作出它的主、左视图;(2)若AC=2,AA'=3,求左视图的面积.23.正方体六个面展开如图所示,六个面分别用字母A、B、C、D、E、F表示,已知:A=x2﹣4xy+3y2,B=12(C﹣A),C=3x2﹣2xy﹣y2,E=B﹣2C,若正方体相对的两个面上的多项式的和相等,求D、F.(用含x,y的多项式表示)24.如图是一个正方形的平面展开图,若要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x、y、z的值.25.如图是由一些大小相同的小正方体组合成的简单几何体.(1)图中有几块小正方体;(2)该几何体的正视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.26.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【详解】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱.故选C.【点睛】根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.2.C解析:C【解析】【分析】根据从上面看得到的图形是俯视图,可得俯视图.【详解】从上面看是三个等长的矩形,符合题意的是C,故选C.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.D解析:D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“历”是相对面,“我”与“国”是相对面;故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.4.B解析:B【分析】依据正方体的展开图的特征,当六个正方形出现“田”字,“凹”字状时,不能围成正方体.【详解】解:依据正方体的展开图的特征,所有选项中只有B选项出现“凹”字状,所以不能组成正方体,而A,C,D选项中,能围成正方体.故选B.【点睛】本题考查了展开图折叠成几何体,解题时注意:当六个正方形组成“田”字,“凹”字状时,不能折成正方体.5.B解析:B【分析】根据正方体的展开图,找到三组对面即可解题.【详解】解:根据正方体的展开图可知,2与9对面,0与快对面,1与乐对面,故选B.【点睛】本题考查了正方体的侧面展开图,属于简单题,熟悉侧面展开图是解题关键.6.B解析:B【解析】【分析】从左面看得到从左往右3列,正方形的个数依次为3,2,1,依此画出图形即可.【详解】从左面看这个几何体得到的平面图形是:故选B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.7.B解析:B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选B.【点睛】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8.B解析:B【分析】正方体的展开图有11种情况:1-4-1型共6种,1-3-2型共3种,2-2-2型一种,3-3型一种,由此判定找出答案即可.【详解】解:A、有田字格,不是正方体展开图,故选项错误;B、1-4-1型,是正方体展开图,故选项正确;C、不是正方体展开图,故选项错误;D、有田字格,不是正方体展开图,故选项错误.故选:B.【点睛】此题考查正方体的展开图,注意识记基本类型,更快解决实际问题.9.A解析:A【分析】根据正方体的平面展开图的特点即可得.【详解】由正方体的平面展开图的特点可知,“梅”字与“侨”字是相对的字,两个“香”字是相对的字,“牛”字与“旺”字是相对的字,故选:A.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.10.D解析:D【分析】由平面图形的折叠及正方体的展开图解题即可.【详解】A选项中,属于“222”型,可以折叠成正方体,故该选项不符合题意;B选项中,属于“132”型,可以折叠成正方体,故该选项不符合题意;C选项中,属于“141”型,可以折叠成正方体,故该选项不符合题意;D选项中,属于“田”字型,不能折叠成正方体,故该选项符合题意故选D【点睛】本题主要考查了正方体的展开图,掌握正方体展开图的特点是解题的关键.11.B解析:B【分析】对几何体逐个分析判断即可得出答案.【详解】圆的截面不可能是三角形;圆柱的截面不可能是三角形;圆锥的截面可能是三角形;三棱柱的截面可能是三角形;长方体的截面可能是三角形;故截面可能是三角形的几何体共有3个故选B【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键. 12.C解析:C【分析】根据棱柱的概念即可得到结论.【详解】棱柱具有下列性质:①侧面是平行四边形;②底面形状相同;③底面平行.故选C.【点睛】本题考查了认识立体图形,棱柱的性质,熟练掌握棱柱的性质是解题的关键.二、填空题n-13.()3114.14615.628016.817.618.-219.建20.4三、解答题21.画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 22.(1)见解析(2)3【解析】【分析】(1)利用左视图和主视图的定义作图即可;(2)先求出AB在右侧面的正投影长度,再根据矩形的面积公式计算可得.【详解】(1)作图如下:(2)如图,过点B作BD⊥AC于点D,∵AC=2,∴AD=1,AB=AD=2,∴BD3则左视图的面积为3【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在侧视图的宽,错成底边的边长.23.D=3x2﹣7xy+4y2;F=9x2﹣11xy+2y2.【解析】【分析】先求出B的表达式,再根据正方体的表面展开图,相对的面之间一定相隔一个正方形,可得B、D是相对面,然后根据相对面上的两个多项式的和相等求出D的多项式;求出E的表达式,再根据E、F是相对面,然后求出F的表达式.【详解】B=12[(3x2﹣2xy﹣y2)﹣(x2﹣4xy+3y2)],=12(2x2+2xy﹣4y2),=x2+xy﹣2y2,D=A+C﹣B,=(3x2﹣2xy﹣y2)+(x2﹣4xy+3y2)﹣(x2+xy﹣2y2),=3x2﹣7xy+4y2,E=B﹣2C,=(x2+xy﹣2y2)﹣2(3x2﹣2xy﹣y2),=﹣5x2+5xy,F=A+C﹣E,=(x2﹣4xy+3y2)+(3x2﹣2xy﹣y2)﹣(﹣5x2+5xy),=9x2﹣11xy+2y2.【点睛】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.z=2,y=7,x=﹣5.【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和为5,列出方程求出x、y、z的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手,分析及解答问题.25.(1)13;(2)图见解析.【解析】【分析】(1)根据几何体的图形进行判断即可得到答案;(2)根据几何体的左视图有3列,每一列的小正方形数目为2,2,1;俯视图有4列,每一列的小正方形的数目为3,2,2,1.【详解】解:(1)图中有13块小正方体;(2)如图:.【点睛】本题考点:简单组合体的三视图.解此题的关键在于平时加强空间想象的能力.26.见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∵三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∴连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.。

北师大版七年级数学上册 第一章丰富的图形世界 单元测试卷(含答案)

北师大版七年级数学上册   第一章丰富的图形世界   单元测试卷(含答案)

第一章丰富的图形世界综合测试卷一、选择题(每题3分,共30分)1.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民2.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.3.下列几何体中,从正面和上面看都为矩形的是()A.B.C.D.4.圆柱是由下列哪一种图形绕虚线旋转一周得到的?()A.B.C.D.5.如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆7.将一个圆围绕它的直径所在的直线旋转180°形成的几何体是()A.圆锥B.半球C.球体D.圆柱8.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.19.下列水平放置的几何体中,从上面看是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱二、填空题(每题3分,共30分)11.假如我们把水滴看成一个点,当水滴向下落时,就能形成水线,说明了____________;钟的时针旋转时,形成一个面,说明了____________;正方形铁丝框架绕它的一边所在的直线旋转一周,形成一个圆柱,说明了____________.12.如果某六棱柱的一条侧棱长为5 cm,那么所有侧棱长之和为__________.13.下列图形中,属于棱柱的有________个.14.如图所示的几何体有______个面、______条棱、______个顶点.15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.16.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是____________________________________.17.用平面去截正方体,在所得的截面中,边数最少的截面形状是__________.18.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).19.如图,这是从不同方向观察由一些相同的小立方块搭成的几何体得到的形状图,则该几何体是由______个小立方块搭成的.20.图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(22题8分,26题12分,其余每题10分,共60分)21.根据如图所示的图形,完成下列各题:(1)将以上图形按平面图形与立体图形分类;(2)把立体图形按柱体、锥体、球分类;(3)指出立体图形中各面都是平面的图形.22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.23.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.24.由7个相同的小立方块搭成的几何体如图所示. (1)请画出该几何体从三个方向看到的形状图; (2)若每个小立方块的棱长为1,请计算它的表面积.25.如图①,把一张长10 cm 、宽6 cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为V 圆锥=13πr 2h ,π取3.14).(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米? (2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?26.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,e,v应满足什么关系式?参考答案一、1.【答案】A【解析】由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选A.2.【答案】A【解析】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B,C,D不符合长方体的展开图的特征,故不是长方体的展开图.故选A.3.【答案】B【解析】A.此几何体从正面是等腰三角形,从上面看是圆,故此选项错误;B.此几何体从正面是矩形,从上面看是矩形,故此选项正确;C.此几何体从正面是矩形,从上面看是圆,故此选项错误;D.此几何体从正面是梯形,从上面看是矩形,故此选项错误;故选B.4.【答案】B【解析】圆柱是由长方形绕它的一条边旋转而成的,故选B.5.【答案】A【解析】根据图2中的展开图可知,底面正方形ABCD的左边一个三角形是独立的,据此可知,需剪开图1中的PA、PB,根据正方形右边三个三角形脱离正方形的上下两边可知,需剪开AD、BC,综上,被剪开的四条边可能是:PA、PB、AD、BC,故选A.6.【答案】D【解析】立体图形是指图形的各个面不都在一个平面上,由此可判断出答案.由题意得:只有D选项符合题意.故选D.7.【答案】C【解析】一个圆围绕它的直径所在的直线旋转180°形成的几何体是球体,故选C.8.【答案】C【解析】根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选C.9.【答案】B【解析】A.圆柱从上面看是圆,故此选项错误;B.长方体从上面看是矩形,故此选项正确;C.三棱柱从上面看是三角形,故此选项错误;D.圆锥从上面看是圆,故此选项错误;故选B.10.【答案】C【解析】埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.二、11. 点动成线,线动成面,面动成体12.30 cm13.314.9;16;915.圆锥;三棱锥;圆柱16.6或717.三角形18.6π19.1020.63π三、21.解:(1)平面图形:②④⑦⑧;立体图形:①③⑤⑥⑨.(2)柱体:①③⑤;锥体:⑨;球:⑥.(3)立体图形中各面都是平面的图形:①⑤.22.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)长方体(2)由题图可知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).24.解:(1)如图所示.(2)从正面看有5个正方形,从后面看有5个正方形,从上面看有5个正方形,从下面看有5个正方形,从左面看有3个正方形,从右面看有3个正方形,中间空处的两边共有2个正方形,所以表面积为(5+5+3)×2+2=26+2=28. 25.解:(1)甲三角形旋转一周可以形成一个圆锥, 它的体积是13×3.14×62×10=376.8(cm 3).(2)乙三角形旋转一周可以形成一个圆柱,里面被挖去一个圆锥,它的体积是3.14×62×10-13×3.14×62×10=753.6(cm 3).26.解:(1)题中图②有7个面、15条棱、10个顶点, 图③有7个面、14条棱、9个顶点, 图④有7个面、13条棱、8个顶点, 图⑤有7个面、12条棱、7个顶点. (2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f ,e ,v 满足的关系式为f +v -e =2.。

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试卷(含答案解析)

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试卷(含答案解析)

一、选择题1.如图是由5个大小相同的正方体组成的几何体,则该几何体从正面看得到的平面图形是()A.B.C.D.2.如图,是一个正方体的表面展开图,则“2”所对的面是()A.0 B.9 C.快D.乐3.如图,从上向下看几何体,得到的图形是()A.B.C.D.4.下列图是由一些相同的小正方体搭成的几何体的三视图,则组成该几何体的小正方体的个数为( )A.7 B.8 C.9 D.105.如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6.在一个有盖的正方体玻璃容器内装了一些水(约占一半),把容器按不同方式倾斜,容器内水面的形状不可能是()A.B.C.D.7.下列四个立体图形中,从正面和左面看到的形状图有可能不同的是()A.B.C.D.8.下列哪个选项的图形经过折叠能围成一个正方体()A.B.C.D.9.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2 B.3 C.4 D.510.如图,经过折叠后不能围成正方体的是( )A .B .C .D . 11.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )A . 35,,2π--B .3,5,2π- C .35,,2π-D .352π-,, 12.下列语句中错误的是( ) A .正方体的截面可能是三角形、四边形、五边形、六边形B .正方体的截面可能是长方形,长方体的截面不可能是正方形C .正方体的截面不可能出现七边形D .正方体的截面可能是梯形二、填空题13.如图是一个正方体的表面展开图,则折成正方体后,与点M 重合的点是点______.14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)15.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.++ 16.若要使图中的平面展开图折叠成正方体后,相对面上的两个数之和为6,则x y z 的值为_____.17.从上面看圆柱和从上面看圆锥,其形状是一样的,都是圆,但是它们的俯视图是有区别的,其区别是________________.18.一个几何体的三种视图如图所示,这个几何体的表面积是__.(结果保留π)19.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .20.如图是一个由若干个小正方体组合而成的几何体的三视图,请问组成该组合体的小正方体个数是______.三、解答题21.如图所示是一个几何体的表面展开图.(1)该几何体的名称是.(2)根据图中所给信息,求该几何体的体积(结果保留π)22.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体,请在图中的方格子中分别画出从几何体正面看、左面看、上面看得到的图形。

北师大版七年级上册第一单元 丰富的图形世界(含答案解析)

北师大版七年级上册第一单元   丰富的图形世界(含答案解析)

七年级上册第一单元丰富的图形世界(北师大版含答案解析)一、选择题(本大题共14小题,共42.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是正方体的展开图。

( )A. B.C. D.2.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么如图是以下四个图中的哪一个绕着直线旋转一周得到的( )A.B.C.D.3.如图所示的正方体的展开图是( )A.B.C.D.4.如图所示的图形,是下面哪个正方体的展开图( )A. B. C. D.5.骰子是一种特别的数字立方体见下图,它符合规则:相对两面的点数之和总是,下面四幅图中可以折成符合规则的骰子的是( )A. B. C. D.6.用一个平面去截正方体如图,下列关于截面截出的面的形状的结论:可能是锐角三角形;可能是直角三角形;可能是钝角三角形;可能是平行四边形.其中所有正确结论的序号是( )A. B. C. D.7.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是( )A. B. C. D.8.如图所示,用一个平面去截一个圆柱体,截面不可能是.( )A.B.C.D.9.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B.C. D.10.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A. B.C. D.11.一个几何体的展开图如图所示,这个几何体是.( )A. 圆锥B. 圆柱C. 四棱柱D. 四棱锥12.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A.B.C.D.13.如图,是一个正方体纸盒的展开图,若在其中三个正方形,,中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形,,中的三个数依次是( )A. ,,B. ,,C. ,,D. ,,14.如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是.( )A.B.C.D.二、填空题(本大题共6小题,共18.0分)15.图和图中所有的正方形都全等.将图的正方形放在图中的___________从中选填位置,所组成的图形能够围成正方体.16.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说______.17.如图,正三棱柱的底面周长为,截去一个底面周长为的正三棱柱,从上面看所得几何体的形状图的周长是.18.已知某直棱柱共有个顶点,且该棱柱的所有侧棱长之和为,则每条侧棱长为______.19.如图所示的几何体都是由棱长为个单位的正方体摆成的,经计算可得第个几何体的表面积为个平方单位,第个几何体的表面积为个平方单位,第个几何体的表面积是个平方单位,,依此规律,则第个几何体的表面积是______个平方单位.20.如图是一个正方体纸盒的展开图,当折成纸盒时,与数重合的数是.三、解答题(本大题共6小题,共40.0分。

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试(包含答案解析)(5)

(常考题)北师大版初中数学七年级数学上册第一单元《丰富的图形世界》测试(包含答案解析)(5)

一、选择题1.如图所示正方体,相邻三个面上分别标有数字4,6,8,它的展开图可能是下面四个展开图中的()A.B.C.D.2.下列立体图形中,俯视图与主视图不同的是()A.B.C.D.3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.无法确定4.下列各图形是正方体展开图的是()A.B.C.D.5.下列图形为正方体展开图的是()A.B.C.D.6.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A.B.C.D.7.下面四个图形中,经过折叠能围成的几何图形是()A.B.C.D.8.2020年,两安市为创建全国文明城市,在街头制作了正方体宣传板进行宣传,它的展开图如图示,请你来找一找“创”字所在面的对面是哪个字()A.明B.文C.北D.城9.一个正方体的每个面都写着一个汉字,其平面展开图如图所示,那么在该正方体中,和“曲”相对的汉字是()A.中B.学C.江D.一10.用一个平面去截一个正方体,所得截面不可能为()A.圆B.五边形C.梯形D.三角形11.将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是()A.B.C.D.12.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个C.2个D.1个二、填空题13.如图:把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体纸盒容积变______(填大或小)了________2cm.14.一个直棱柱有21条棱,那么这个棱柱的底面的形状是_______.15.如图,把一个长方体的礼品盒用丝带打上包装,打蝴蝶结部分需丝带48cm,那么打好整个包装所用丝带总长为________ cm.16.如图是一个小正方体的展开图,把展开图叠成小正方体后,相对的面上的数互为相反数,那么x+y=________.17.如图,用一张边长为10cm的正方形纸片剪成“七巧板”,并将这拼成七巧板拼成了一柄宝剑,那么这柄宝剑图形的面积是______.18.如图所示,水平放置的长方体的底面是边长为2和4的长方形,从左面看它得到的图形的面积为6,则长方体的体积等于__________.19.下图是一个无盖的长方体盒子的展开图(重叠部分不计),根据图中数据,则该无盖长方体盒子的容积为__.20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可....);(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开条棱,需剪开棱的棱长的和的最大值为cm.22.如图,是小红用八块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面看所得到的几何体的形状图.(在答题卡上画完图后请用黑色笔描图)23.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)24.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)画出图中几何体的主视图、左视图.(2)如果移走图中的一个小正方体,使新几何体的主视图、左视图一样,应该移走哪一个?(在相应小正方体上标上字母M).(3)在原图的基础上添加一些小正方体,使新几何体的主视图、左视图与原几何体的主视图、左视图分别相同,则最多添加多少个小正方体?25.补全如图的三视图.26.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由原正方体的特征可知,含有数字4,6,8的三个面一定相交于一点且均互为邻面,4,6,8所在的平面不可能是对面,据此逐一判断,可得结论.【详解】A选项,折叠后4,8互为对面,故A错误;B选项,折叠后6,8互为对面,故B错误;C选项,折叠后和原正方体相符,故C正确;D选项,折叠后6,8互为对面,故D错误;故选C.【点睛】本题考查的是正方体的展开图,主要考查学生的识图能力和空间想象能力,属于基础题目. 2.C解析:C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A.俯视图与主视图都是正方形,故该选项不合题意;B.俯视图与主视图都是矩形,故该选项不合题意;C.俯视图是圆,左视图是三角形;故该选项符合题意;D.俯视图与主视图都是圆,故该选项不合题意;故选C.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.C解析:C【解析】【分析】如图可知该几何体的正视图由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,易得解.【详解】解:根据三视图可以得到如下主视图、左视图、俯视图:该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为:C【点睛】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.4.D解析:D【解析】【分析】根据正方体展开图的11种形式对各选项分析判断即可得解.【详解】A、不是正方体展开图,故选项错误;B、有田字格,不是正方体展开图,故选项错误;C、是凹字形,不是正方体展开图,故选项错误;D、1﹣4﹣1型,是正方体展开图,故选项正确.故选D.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.5.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.【点睛】考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.6.A解析:A【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】该几何体的左视图为故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7.B解析:B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选B.【点睛】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8.D解析:D【分析】根据正方体相对的面的特点作答.【详解】解:相对的面的中间要相隔一个面,所以“创”字的对面是“城”.故选:D.【点睛】本题考查了正方体相对面上的文字,属于基础题,注意培养自己的空间想象能力.9.A解析:A【分析】由正方体的平面展开图中,相对面之间必定相隔一个正方形进行判断即可.【详解】由正方体的平面展开图中,相对面之间必定相隔一个正方形可得:“曲”相对的汉字是“中”.故选:A.【点睛】本题主要考查正方体的平面展开图,熟记正方体的平面展开图相对面的特点是解题关键.10.A解析:A【分析】根据题意,用一个面截一个正方体,可进行不同角度的截取,得到正确结论.【详解】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,所以截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形,而不可能是圆.故选:A.【点睛】此题考查了截一个几何体,要知道截面的形状既与被截的几何体有关,还与截面的角度和方向有关.要利用本题中截面的特殊性求解.对空间思维能力有较高的要求.11.A解析:A【分析】根据面动成体结合常见立体图形的形状解答即可.【详解】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选A.【点睛】本题考查了点、线、面、体的知识,是基础题,掌握常见几何体的形成是解题的关键. 12.B解析:B【分析】对几何体逐个分析判断即可得出答案.【详解】圆的截面不可能是三角形;圆柱的截面不可能是三角形;圆锥的截面可能是三角形;三棱柱的截面可能是三角形;长方体的截面可能是三角形;故截面可能是三角形的几何体共有3个故选B【点睛】本题考查用一个面截几何体,熟练掌握各个几何体的截面的形状是解题关键.二、填空题13.小142解析:小 14214.七边形15.14616.-117.100cm解析:100cm2.18.2419.6000cm320.4三、解答题21.(1)9,5;(2)见解析;(3)5,34【分析】(1) n棱柱有n个侧面,2个庭面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数星条,相减即可求出需要剪开的棱的条数;【详解】(1)这个三棱柱有条9棱,有个5面;故答家为:9,5;(2)(3)由图形可知:没有剪开的棱的条数是4条则至少需要剪开的棱的条数是:9﹣4=5(余)故至少需要开的楼的条数是5条,需开棱的棱长的和的最大值为:8×3+5×2=34(cm)故答案为:5,34【点睛】本题主要考查的是认识立体图形,明确m棱柱有n个面,2个底面,3n条棱,2n个顶点;能够数出三棱柱没有开的棱的条数是解答此的关量22.见解析;【解析】【分析】根据三视图的定义,画出图形即可.【详解】解:三个视图如下:【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.23.(1)360;(2)1.8元【分析】(1)根据图形得到底面正方形边长,然后根据表面积=2个底面面积+4个侧面面积计算即可;(2)先算出10个包装盒的面积,再乘以单价即可.注意单位要统一.【详解】(1)由图形可知:底面正方形的边长=18-12=6.包装盒的表面积=6×6×2+4×6×12=72+288=360(平方厘米).答:制作一个这样的包装盒需要360平方厘米的硬纸板.(2)10×360÷10000×5=1.8(元)制作10个这的包装盒需花1.8元.【点睛】本题考查了几何体的展开图,从实物出发,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.24.见解析;【解析】【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,1,左视图有,2列,每列小正方形数目分别为2,1;据此可画出图形.(2)可在最底层第2列第1行移走一个;(3)可在最底层第1列第1行加一个,第3列第2行加1个,共2个.【详解】(1)如图所示:(2)如图所示:(3)最底层第1列第1行加一个,第3列第2行加1个,共1+1=2个.故最多添加2个小正方体.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.25.见解析.【解析】【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.26.见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.。

(北师大版)青岛市七年级数学上册第一单元《丰富的图形世界》测试(有答案解析)

(北师大版)青岛市七年级数学上册第一单元《丰富的图形世界》测试(有答案解析)

一、选择题1.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3 B.3C.2D.82.如图是由5个大小相同的正方体组成的几何体,则该几何体从正面看得到的平面图形是()A.B.C.D.3.下列各图形是正方体展开图的是()A.B.C.D.4.如图所示的正方体表面有三条线段,下列图形中,不是该正方体的表面展开图的是()A.B.C.D.5.如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6.正三棱锥的截面中,边数最多的多边形是()A.三角形B.四边形C.五边形D.六边形7.下列四个立体图形中,从正面和左面看到的形状图有可能不同的是()A.B.C.D.8.下列哪个选项的图形经过折叠能围成一个正方体()A.B.C.D.9.用一个平面去截一个正方体,所得截面不可能为()A.圆B.五边形C.梯形D.三角形10.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转11.图1、图2中的正方形的大小相同,将图1的正方形放在图2中的①、②、③、④的某个位置,与实线中的正方形所组成的图形能围成正方体的位置是()A.①B.②C.③D.④12.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有()A.1个B.2个C.3个D.4个二、填空题13.如图:把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体纸盒容积变______(填大或小)了________2cm.14.长方形的长是20cm,宽是10cm.以长为轴旋转一周所得的几何体的体积是(___________)cm3.(π≈3.14)15.如图,是一个正方体的表面展开图,则原正方体中“大”字所在的面相对的面上标的字是________.16.一个无盖长方体的包装盒展开图如图所示,则该长方体的体积为_______cm3.17.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.18.如图是一个正方体的展开图,则“数”字的对面的字是______.19.用一个平面去截下列几何体,截面可能是圆的是________(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体20.一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____.三、解答题21.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.22.作图题:(1)如图1,已知点A,点B,点C,直线l及l上一点M,请你按照下列要求画出图形.①画射线BM;②画线段AC,并取线段AC的中点N;③请在直线l上确定一点O,使点O到点A与点B的距离之和(OA+OB)最小;(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,(只需添加一个符合要求的正方形即可,并用阴影表示).23.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图...画在如下的画图区中.24.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是;(2)请在边长为1的网格图里画出这个零件的主视图和俯视图.25.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题(1)这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?(2)沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少? 26.如图是由若干个边长为1的立方块搭成的几何体从上面看到的平面图形,小正方形中的数字表示该位置立方块的个数.(1)请画出该几何体从正面和从左面看到的平面图形;(2)求该几何体的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征. 2.A解析:A【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】从正面看,主视图有三列,正方体的数量分别是2、1、1.故选A.【点睛】本题考查了三种视图中的主视图,比较简单.3.D解析:D【解析】【分析】根据正方体展开图的11种形式对各选项分析判断即可得解.【详解】A、不是正方体展开图,故选项错误;B、有田字格,不是正方体展开图,故选项错误;C、是凹字形,不是正方体展开图,故选项错误;D、1﹣4﹣1型,是正方体展开图,故选项正确.故选D.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.4.D解析:D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】不是该正方体的展开图的是选项D,故选D.【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“的”是相对面,“奇”与“学”是相对面,“☆”与“数”是相对面.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.B解析:B【分析】正三棱锥的截面中,当截面经过三个面时截面为三角形,当截面经过四个面时截面为四边形.【详解】解:用平面去截一个三棱锥,截面可能为三角形或四边形,边数最多的是四边形.故选B.【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面;一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.7.A解析:A【分析】根据立体图形的特点逐项判断即可求解.【详解】解:A.从正面看是一个长方形,从左面看是一个长方形,但这两个长方形有可能不同,符合题意;B.从正面和左面看都是一个等腰三角形,并且形状相同,不合题意;C.从正面和左面看都是一个圆,并且形状相同,不合题意;D.从正面和左面看都是一个长方形,并且形状相同,不合题意.故选:A【点睛】本题考查对立体图形的理解及空间想象能力.根据立体图形的特点能正确想象出从正面和左面看到的图形是解题关键.8.B解析:B【分析】由平面图形的折叠及正方体的展开图解答.【详解】A、折叠后有两个小正方形重合,缺少一个侧面,故不能折叠围成一个正方体;B、可以折叠围成一个正方体;C、折叠后有两个小正方形重合,缺少一个侧面,故不能折叠围成一个正方体;D、有四个小正方形在同一平面上,不能折叠,故不能折叠围成一个正方体;故选:B.【点睛】此题考查展开图折叠成几何体,每一个面都有唯一的一个对面的展开图才能折叠成正方体. 9.A解析:A【分析】根据题意,用一个面截一个正方体,可进行不同角度的截取,得到正确结论.【详解】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,所以截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形,而不可能是圆.故选:A.【点睛】此题考查了截一个几何体,要知道截面的形状既与被截的几何体有关,还与截面的角度和方向有关.要利用本题中截面的特殊性求解.对空间思维能力有较高的要求.10.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是:【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.11.C解析:C【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①②④的位置出现重叠的面,所以不能围成正方体,将图1的正方形放在图2中的③的位置均能围成正方体,故选:C.【点睛】此题考查展开图折叠成几何体,解题关键在于勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.12.C解析:C【分析】根据棱柱的概念即可得到结论.【详解】棱柱具有下列性质:①侧面是平行四边形;②底面形状相同;③底面平行.故选C.【点睛】本题考查了认识立体图形,棱柱的性质,熟练掌握棱柱的性质是解题的关键.二、填空题13.小142解析:小 14214.628015.中16.8017.或118.养19.②③⑤20.1三、解答题21.见解析本题涉及的知识点是正方体的平面展开图;要想组成正方体,其平面展开图应是“一,四,一”、“三,三”、“二,二,二”、“一,三,二”中的一种,结合题目已给图形,进行发散思维,即可得出对正方体展开图的补图.【详解】解:如图所示:新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.【点睛】本题主要考查了正方体的展开图,掌握正方体展开图的特点是解题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据直线、射线、线段的定义按要求作图、测量即可;(2)结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【详解】(1)如图1所示,(2)如图2所示(答案不唯一):【点睛】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背,并掌握直线、射线、线段的定义.23.图形见解析.【分析】根据从左面看得到的图形是左视图,可得答案.【详解】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:【点睛】本题考查简单组合体的三视图,关键是把握好三视图所看的方向,从左面看得到的图形是左视图.24.(1)24;(2)见解析【解析】【分析】(1)几何体的表面积与原来相同,根据正方体的表面积公式计算即可求解;(2)根据几何体画出从左面、上面看所得到的图形即可.【详解】(1)2×2×6=24.故这个零件的表面积是24.(2)如图所示【点睛】本题考查了三视图,以及求几何体的表面积,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.(1)8个;18条;108厘米;(2)240厘米2 .【分析】(1)n棱柱有n+2个面,3n条棱,据此求解;(2)侧面展开图为长方形,求出长为5×6=30厘米,宽是6厘米,即可求出面积.【详解】(1)这个六棱柱一共有6+2=8个面,一共有6×3=18条棱;其中侧棱的长度都是8厘米,其他棱长都为底面边长5厘米;这些棱的长度之和为:6×8+(18-6)×5=108厘米;(2)将其侧面沿一条棱展开,展开图是一个长方形,长为5×6=30厘米,宽是6厘米,因而面积是30×8=240(平方厘米).【点睛】解决本题的关键是应理解棱柱的构造特点.26.(1)如图所示见解析; (2) 26.【解析】分析:(1)由已知条件可知,主视图有2列,每列小正方形数目分别为2,3,左视图有2列,每列小正方数形数目分别为3,2.据此可画出图形;(2)由(1)还原几何体即可求解.详解:(1)如图所示.(2)几何体的表面积为2×(5+5+3)=26.点睛:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。

(北师大版)深圳市七年级数学上册第一单元《丰富的图形世界》测试(含答案解析)

(北师大版)深圳市七年级数学上册第一单元《丰富的图形世界》测试(含答案解析)

一、选择题1.如图所示的几何体,从左面看到的形状图是()A.B.C.D.2.下图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式 a-b+c的值是()A.-4 B.0 C.2 D.43.如图所示是由一些相同的小正方体构成的立体图形从正面、左面、上面看到的形状图,那么构成这个立体图形的小正方体的个数是()A.5个B.6个C.7个D.8个4.如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的左视图是()A.B. C.D.5.如图,这是一个正方体侧面展开图,如果E在上面那么在下面的字母是( )A.C B.D C.F D.B 6.如图,是一个正方体的表面展开图,则“2”所对的面是()A.0 B.9 C.快D.乐7.如图,从上向下看几何体,得到的图形是()A.B.C.D.8.如图是正方体的平面展开图,则与“梅”字相对的字是()A.侨B.香C.牛D.旺9.下列图形中,不是正方体平面展开图的是()A.B.C.D .10.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是( )A .抗B .疫C .长D .城 11.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是( )A .伦B .奥C .运D .会12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“我”字所在面相对的面上的汉字是___.14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)15.下列说法:①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,其中正确的有___________个16.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是_____.17.如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是______(填汉字)18.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是______.++ 19.若要使图中的平面展开图折叠成正方体后,相对面上的两个数之和为6,则x y z 的值为_____.20.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有_______种.三、解答题21.如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a = ,b = ;(2)先化简,再求值:22(25)3()a b a b ---.22.如图,是由9个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从正面、上面看到的形状图;(2)在不改变几何体中小立方块个数的前提下,从中移动一个小立方块,使所得新几何体与原几何体相比,从正面、上面看到的形状图保持不变,但从左面看到的形状图改变了.请在指定位置画出一种新几何体从左面看到的形状图.23.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.24.如图,是小红用八块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面看所得到的几何体的形状图.(在答题卡上画完图后请用黑色笔描图)25.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是;(2)请在边长为1的网格图里画出这个零件的主视图和俯视图.26.如图所示,一个无盖纸盒的长、宽、高都是8cm.(1)画出纸盒的平面展开图;(2)计算纸盒所用材料的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】观察图形可知,从左面看到的图形是2列分别为2,1个正方形;据此即可画图.【详解】如图所示的几何体,从左面看到的形状图是。

(北师大版)南京市七年级数学上册第一单元《丰富的图形世界》测试题(包含答案解析)

(北师大版)南京市七年级数学上册第一单元《丰富的图形世界》测试题(包含答案解析)

一、选择题1.如图是由5个大小相同的正方体组成的几何体,则该几何体从正面看得到的平面图形是()A.B.C.D.2.如图是一个几何体的表面展开图,这个几何体是()A.B.C.D.3.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.4.如图,从左到右的三个图形是由立体图形展开得到的,则相应的立体图形的顺次是( )A.正方体、圆柱、圆锥B.正方体、圆锥、三棱锥C.正方体、圆柱、三棱柱D.三棱锥、圆柱、正方体5.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.如图所示的正方体的展开图是()A.B.C.D.7.如图是平面图形绕虚线l旋转一周得到的,则该旋转图形的是…()A.B.C.D.8.若一个几何体的表面展开图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥9.把图中的硬纸片沿虚线折起来,便可成为一个正方体,这个正方体的2号平面的对面是()A.3号面B.4号面C.5号面D.6号面10.用平面去截一几何体,不可能出现三角形截面的是()A.长方体B.棱柱C.圆柱D.圆锥11.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A、B、C表示的数依次是()A.35,,2π--B.3,5,2π-C.35,,2π-D.352π-,,12.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数相等,则a﹣b﹣c的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题13.若圆柱的底面半径是3,将该圆柱的侧面展开后,得到长方形,该长方形的面积为18π.则圆柱高为__________.14.如图,把一个长方体的礼品盒用丝带打上包装,打蝴蝶结部分需丝带48cm,那么打好整个包装所用丝带总长为________ cm.15.长方形的长是20cm,宽是10cm.以长为轴旋转一周所得的几何体的体积是(___________)cm3.(π≈3.14)16.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料,(单位:mm).则此长方体包装盒的体积是___________.17.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)18.如图,是正方体的一种平面展开图,六个面上分别写有一个字,如果把它折成正方体,则“创”字对面的字是__________.19.如图是一个正方体的展开图,请问1号面的对面是_____号面.20.如图中有两个图,左图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是右图六种图形A、B、C、D、E、F中的_________.(填写字母,多填错填得0分,每对一个,得1分)三、解答题21.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.22.如图,是小红用八块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面看所得到的几何体的形状图.(在答题卡上画完图后请用黑色笔描图)23.如图是一个由棱长 1cm 的正方体组成的几何体的俯视图,小正方形中的表示叠在该位置的正方体的个数.(1)请画出这个正方体的主视图和侧视图;(2)求这个几何体的表面积.24.如图是一个几何体的三视图:(1)请写出这个几何体的名称.(2)求这个几何体的侧面积.25.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F 表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.26.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】从正面看,主视图有三列,正方体的数量分别是2、1、1.故选A.【点睛】本题考查了三种视图中的主视图,比较简单.2.C解析:C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.D解析:D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.4.C解析:C【解析】【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【详解】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱.故选C.【点睛】根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.5.A解析:A【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】该几何体的左视图为故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.C解析:C【分析】根据题干,三个图案交于一点,五角星和正方形的顶点正对,依此即可求解.【详解】解:根据正方体展开图的特点分析,选项C是它的展开图.故选C.【点睛】此题考查了几何体的展开图,关键是熟练掌握正方体展开图的特征(正方体的侧面展开图是长方形).7.D解析:D【分析】根据面动成体,所得图形是两个圆锥体的组合体确定答案即可.【详解】解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形,故选:D.【点睛】本题考查了点、线、面、体,熟悉常见图形旋转得到的立体图形是解题的关键.8.A解析:A【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【详解】解:由图得,这个几何体为三棱柱.故选:A.【点睛】本题考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.9.C解析:C【分析】折成正方体,分析相对面,再作答.【详解】解:折成正方体后1和3相对,4和6相对,2和5相对.故选:C.【点睛】本题考查了正方体的空间图形,熟练掌握是解题的关键.10.C解析:C【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【详解】用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱,球.故选C.【点睛】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.11.A解析:A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,确定出相对面,再根据相反数的定义求出A、B、C即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“5”是相对面,“B”与“π”是相对面,“C”与“32”是相对面,∵相对面上的两数互为相反数,∴A、B、C表示的数依次是-5,-π,32.故选A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.A解析:A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字相等,求出a、b、c,然后代入代数式进行计算即可得解.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“﹣1”是相对面,“b”与“﹣5”是相对面,“c”与“2”是相对面,∵相对面上的两个数相等,∴a=﹣1,b=﹣5,c=2,∴a﹣b﹣c=﹣1+5﹣2=2.故选A.【点睛】本题考查了正方体的表面展开图,熟知正方体的表面展开图中相对的面之间一定相隔一个正方形式解决问题的关键.二、填空题13.314.14615.628016.3182000mm17.618.城19.520.ABE三、解答题21.(1)1;(2)4【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x-2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.22.见解析;【解析】【分析】根据三视图的定义,画出图形即可.【详解】解:三个视图如下:【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.23.(1)见解析;(2)42cm²【解析】【分析】(1)主视图有3列,每列小正方数形数目分别为3,1,3;左视图有3列,每列小正方形数目分别为3,2,1.据此可画出图形;(2)依据几何体的三视图,即可得到这个几何体的表面积.【详解】(1)主视图和侧视图如下:(2)几何体的表面积为 2(6+7+6)+2+2=42(cm2).【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.(1)圆柱体;(2)6π(cm2).【解析】【分析】易得此几何体为圆柱,底面直径为2cm,高为3cm.圆柱侧面积=底面周长×高,代入相应数值求解即可.【详解】主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm 2.【点睛】掌握通过观察三视图来判断几何体类型和相关线段关系是解答本题的关键.25.A面表示的数值是2.【解析】【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,可得E面和F面是相对面,然后根据相对面上的两个的数互为相反数,得出方程求出a的值,再把a的值代入C=﹣a2﹣2a+1求出C,再根据A面与C面是相对面,求出A面表示的数值.【详解】解:根据题意∵E面和F面的数互为相反数,∴3a+4+2﹣a=0,∴a=﹣3,把a=﹣3代入C=﹣a2﹣2a+1,解得:C=﹣2,∵A面与C面表示的数互为相反数,∴A面表示的数值是2.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.26.见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∵三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∴连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章丰富的图形世界填空题训练1.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.2.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)3.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).5.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)6.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.7.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是.9.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是.10.在一个高与底面直径相等的圆柱内放置一个体积最大的球.已知球的表面积公式为S n =4πr2,其中r为球的半径.那么该球与它的外切圆柱的表面积的比为.11.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.12.一个几何体的三视图如图,根据图示的数据计算该几何体的体积为.(结果保留π)13.用一张边长是10cm的正方形铁皮围成一个圆柱体,这个圆柱的侧面积是cm 2.14.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.15.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.16.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是cm 2.17.如图是某几何体的三视图及相关数据(单位:cm ),则该几何体的侧面积为cm 2.18.如图为某几何体的展开图,该几何体的名称是.19.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为个.20.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为.21.如图,该正方体的主视图是形.22.已知一个几何体的三视图如图所示,这个几何体是.23.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.24.如图,在边长为12cm的正方形纸片ABCD中,EF∥AD,M、N是线段EF的六等分点,若把该正方形纸片折成一个正六棱柱,使AB与点DC重合,则M、N两点间的距离是cm.25.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.26.一个几何体的三视图如图所示,这个几何体的侧面积为.27.如图是一个包装盒的三视图,则这个包装盒的体积是.28.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.29.如图所示是一种棱长分别为3cm,4cm,5cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用3块来搭,那么搭成的大长方体表面积最小是cm,如果用4块来搭,那么搭成的大长方体表面积最小是cm,如果用12块来搭,那么搭成的大长方体表面积最小是cm.30.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.31.如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为.32.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.33.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.34.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是.35.如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于.36.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.37.一个油桶靠在墙边(其俯视图如图所示),量得AC=0.65米,并且AC⊥BC,这个油桶的底面半径是米.38.一个长方体的主视图和左视图如图所示,则这个长方体的俯视图的面积是.第1章丰富的图形世界填空题训练参考答案与试题解析1.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16【点评】本题主要考查了几何体的表面积.2.【分析】由面F在前面,从左面看是面B知上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C.【解答】解:由题意知,上面是E,左侧面是B,前面是F,后面是A,右侧面是D,下面是C,故答案为:E.【点评】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.5.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.6.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.7.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.8.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”对面的字是顺.故答案为:顺.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故答案为:200πcm2【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.10.【分析】设球的半径为r,根据球的表面积=4πr 2,圆柱的表面积=2×πr2+2πr×2r=6πr2,即可得到该球与它的外切圆柱的表面积的比.【解答】解:设球的半径为r,依题意得球的表面积=4πr2,圆柱的表面积=2×πr2+2πr×2r=6πr2,∴该球与它的外切圆柱的表面积的比为2:3,故答案为:2:3.【点评】本题主要考查了几何体的表面积,几何体的表面积=侧面积+底面积(上、下底的面积和).11.【分析】由圆柱的侧面展开图的特点可知:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高,长方形的长已知,从而可以求出底面积半径,进一步求得该圆柱的体积.【解答】解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.【点评】本题主要考查了立体图形,解答此题的关键是明白:圆柱的侧面展开后,是一个长方形,长方形的长等于底面周长,宽等于圆柱的高.12.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的体积为π×32×4=12π,故答案为:12π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.13.【分析】易得此几何体为圆柱,那么侧面积=底面周长×高,依此即可求解.【解答】解:10×10=100(cm2).答:这个圆柱的侧面积是100cm2.故答案:100.【点评】考查了展开图折叠成几何体,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.14.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.15.【分析】根据主视图是从正面看到的图形直接回答即可.【解答】解:主视图是正方形的几何体可以是正方体,故答案为:正方体(答案不唯一).【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.16.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=(底面周长×母线长)÷2 可计算出结果.【解答】解:由题意得底面直径为10cm,母线长为=13cm,∴几何体的侧面积为×10π×13=65πcm2.故答案为65π.【点评】此题主要考查了由三视图判断几何体,以及圆锥的侧面积公式的应用,关键是找到等量关系里相应的量.18.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故答案为:圆柱.【点评】此题主要考查了由展开图得几何体,关键是考查同学们的空间想象能力.19.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.【点评】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.20.【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.【解答】解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位,故答案为:250π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.21.【分析】根据主视图为正面所看到的图形进而得出答案.【解答】解:正方形的主视图为正方形,故答案为:正方.【点评】本题考查了三视图的知识,主视图即为从正面所看到的图形.22.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由该几何体的三视图知,这个几何体是正三棱柱,故答案为:正三棱柱.【点评】考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.23.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.24.【分析】根据正六边形的性质解答即可.【解答】解:如图所示:∵正六边形的周长为12cm,∴MQ=QN=2cm,∠MQN=120°,连接MN,过Q作QP⊥MN,在Rt△MQP中,MP=,同理可得PN=,∴MN=2,故答案为:2【点评】此题考查几何体的展开图,关键是根据正六边形的性质解答.25.【分析】若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.【解答】解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.【点评】本题主要考查由三视图判断几何体,根据题意正确掌握三视图的观察角度是解题关键.26.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵直径为2cm,母线长为4cm,∴侧面积=2π×4÷2=4π(cm2).故答案为4πcm2.【点评】本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键;本题体现了数形结合的数学思想,熟记圆锥的侧面积公式是解题的关键.27.【分析】根据三视图,易判断出该几何体是圆柱.已知底面半径和高,根据圆柱的体积公式可求.【解答】解:综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10,高为20.因此它的体积应该是:π×10×10×20=2000π.故答案为2000π.【点评】本题主要考查了由三视图确定几何体的形状以及圆柱的体积的求法.28.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.29.【分析】如果用3块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用4块来搭,那么搭成的大长方体表面积最小是长4×2=8cm,宽3×2=6cm,高5cm的长方体的表面积,根据长方体的表面积公式即可求解;如果用12块来搭,那么搭成的大长方体表面积最小是长3×3=9cm,宽4×2=8cm,高5×2=10cm的长方体的表面积,根据长方体的表面积公式即可求解.【解答】解:长3×3=9cm,宽4cm,高5cm,(9×4+9×5+4×5)×2=(36+45+20)×2=101×2=202(cm2).答:如果用3块来搭,那么搭成的大长方体表面积最小是202cm2.长4×2=8cm,宽3×2=6cm,高5cm,(8×6+8×5+6×5)×2=(48+40+30)×2=118×2=236(cm2).答:如果用4块来搭,那么搭成的大长方体表面积最小是236cm2.长3×3=9cm,宽4×2=8cm,高5×2=10cm,(9×8+9×10+8×10)×2=(72+90+80)×2=242×2=484(cm2).答:如果用12块来搭,那么搭成的大长方体表面积最小是484cm2.故答案为:202;258;484.【点评】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.30.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.【点评】此题考查了由三视图判断几何体,本题要先判断出几何体的形状,然后根据其表面积公式进行计算即可.31.【分析】易得此几何体为圆柱,圆柱的侧面积=底面周长×高.【解答】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得此几何体为圆柱;易得圆柱的底面直径为2,高为1,∴侧面积=2π×1=2π,故答案为:2π.【点评】本题考查圆柱的侧面积计算公式,关键是得到该几何体的形状.32.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.【分析】首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.【解答】解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是 6故答案为: 6【点评】此题主要考查了由三视图判断几何体,考查了空间想象能力,解答此题的关键是要明确:由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状.34.【分析】根据三视图的定义求解即可.【解答】解:主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,俯视图是三个小正方形,俯视图的面积是3,左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,几何体的三视图的面积之和是4+3+2=9,故答案为:9.【点评】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.35.【分析】由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,再根据侧面积公式可得.【解答】解:由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18,故答案为:18.【点评】本题考查了由三视图求几何体的侧面积,根据三视图判断几何体的形状是关键.36.【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.【点评】解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.37.【分析】圆的圆心为O,连接OA、OB,可得四边形OBCA为正方形,从而求得这个油桶的底面半径.【解答】解:连接OA、OB,如图,∵BC⊥AC,OA⊥AC,OB⊥BC,OB=OA,∴四边形OBCA为正方形,∴OB=AC,∵AC=0.65m,∴这个油桶的底面半径是0.65m.故答案为:0.65【点评】本题考查了切线的性质,是基础知识比较简单.38.【分析】通过观察长方体的主视图和左视图可以得到,这个长方体的高4厘米,长3厘米,宽2厘米,因此俯视图是长3厘米,宽2厘米的长方形,因此得解.【解答】解:3×2=6(平方厘米);答:则其俯视图的面积是6平方厘米.故答案为:6.【点评】此题考查了从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.。

相关文档
最新文档