氧化锆式氧传感器的性能与应用

合集下载

氧化锆说明书1

氧化锆说明书1
E (millivolts) = loge
其中E是氧电势, R是气体常数,T是绝对温度值, PO2 INSIDE是氧在氧化锆管里部的气压值
,PO2 OUTSIDE是氧在氧化锆管外部的气压值.根据公式当氧化锆管里部和外部的氧浓度不同时,就会产生相应的氧电势.
从计算公式可知道当氧化锆管里部和外部的氧浓度相同时,氧电势应该是0毫伏.
220V的灯泡来替代加热器进行测试,当加热电压输出时(发光二极管闪亮时,电灯泡也应该同时闪亮.当一切测试正常后再把加热器接入.这样测试比较保险,不易损坏加热器
仪器有7键,每键有两种功能。一种是运行时的功能,一种是设定时的功能。当仪器在运行状态RUN时,按Display键,仪器的下行显示仪器的有关信息,比如探头的温度TEMP,探头氧的电信号EMF,探头的阻抗IMP等各种有用的参数。如报警指示灯闪亮,按ALARM键,可在下行显示报警指示的信息。CAL1键在运行状态时,可执行校正功能。CAL2键是校正功能第二键,该仪器可用2种标准气体进行自动和手动的校正(一般用于精度高的测量,可按低值和高值氧的标准气自动进行校验,详细情况请查阅使用手册)。PURGE键是清尘键。另外Autocal键在设定状态时按此键,可对仪器自动校正,运行时可手动检查探头的阻抗值。当按Setup键时,该指示灯亮进入设定状态,此时按△Function键和▽Function功能键,可显示要设定的状态,在显示屏的上行会出现1,2,3,4……76等,按△Option和▽Option选择键时,可设定有关的值。每次改变有关的设定后,必须按ENTER确认键,以便仪器记住要改变的值,这时在显示屏的右下角会出现*星号,如无此*星号出现,改变值无效。
5.528.615Βιβλιοθήκη 030.654.532.90
4.035.42

氧化锆氧传感器

氧化锆氧传感器

氧化锆探头是利用氧化锆浓差电势来测定氧含量的传感器,其核心的氧化锆管安置在一个微型电炉内,位于整个探头的顶端,其结构原理图如下图所示。

氧化锆管是由氧化锆材料掺以必然量的氧化钇或氧化钙经高温烧结后形成的稳固的氧化锆陶瓷烧结体。

由于它的立方晶格中含有氧离子空穴,因此在高温下它是良好的氧离子导体。

因其这一特性,在必然高温下,当锆管两边的氧含量不同时,它即是一个典型的氧浓差电池,在此电池中,空气是参比气,它与烟气别离位于内外电极。

在实际的氧探头中,空气流经外电极,烟气流经内电极,当烟气氧含量P小于空气氧含量P0(%O2)时,空气中的氧分子从外电极上夺取4个电子形成2个氧离子,发生如下电极反映:O(P0)+4e-→2O-2氧离子在氧化锆管中迅速迁移到烟气边,在内电极上发生相反的电极反映:2O-2 →O(P0)+4e-由于氧浓差致使氧离子从空气边迁移到烟气边,因此产生的电势又致使氧离子从烟气边反向迁移到空气边,当这两种迁移达到平衡后,便在两电极间产生一个与氧浓差有关的电势信号E,该电势信号符合"能斯特"方程:E=(RT/4F)Ln(P0 /P) (1)式中R、F别离是气体常数和法拉第常数,T是锆管绝对温度(K), P0是空气氧含量(%O2), P 是烟气含量。

由(1)式可见,在必然的高温条件下(一般)600℃),必然的烟气氧含量便会有一对应的电势输出,在理想状态下,其电势值在高温区域内对应氧含量见下表。

附表被测气体温度、氧浓差电势与氧浓度对照表注:参比气为大气,在理想状况下(本底为零时),热电偶为K分度号。

0 0 0 0 0 0 0 0 0在理想状态下,当被测烟气与参比气浓度一样时,其输出电势E值为0 mV, 但在实际应用中,锆管实际条件和现场情形均不是理想状态。

故事实上的锆管是偏离此值的。

实际上,必然氧含量锆管输出的电势为理论值和本底电势的和,咱们称为无浓差条件下锆管输出的电势值为本底电势或称为零位电势,此值的大小又在不同温度下呈不同的值,而且随锆管利用期延长而转变。

氧化锆原理——精选推荐

氧化锆原理——精选推荐

氧化锆氧传感器原理及应用摘要:氧探头是利用氧化锆陶瓷敏感元件来测量各类应用环境下的氧含量的,通过它以求实现工业加热炉燃烧过程自动控制,以及热处理可控气氛炉对零件的质量控制。

关键词:氧化锆氧传感器,氧传感器,测氧原理,传感器一、序言人们早就知道,某些固体氧化物、卤化物、硫化物等具有离子导电性能,其中最著名的是1989年Nernst发现的稳定氧化锆在高温下呈现的离子导电现象。

在此后的一段时期内,尽管人们对这种具有离子导电性能的物质——固体电解质进行了种种研究,但始终进展不大。

直到1957年,K.kiukkala和C.Wagner首次用固体电解质组装原电池并从理论上阐明其原理以后,这方面的研究和应用才得以迅速发展。

在所有固体电解质,氧化锆是目前研究和开发应用得最普遍的一种。

它不仅用来作高温化学平衡,热力学和动力学研究,而且已在高温技术,特别是高温测试技术上得到广泛应用。

氧探头这种以氧化锆固体电解质为敏感元件,用以测定氧浓度的装置就是一个典型的例子。

1961年,J.Weissbart和R.Ruka研制成功的第一个氧化锆浓差电池测氧仪。

七十年代初出现商业用氧化锆氧探头以后,引起科学界和工业界的普遍重视,特别是西德、日本、美国等国都进行了深入的研究和产品开发工作。

到七十年代中期,氧探头的理论和实践已趋成熟,开发出了多种结构形式的氧探头。

由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1-0.2秒),测量范围宽(从ppm到百分含量),使用温度高(600~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

二、氧传感器测氧原理氧探头是利用氧化锆陶瓷敏感元件来测量各类应用环境下的氧含量的,通过它以求实现工业加热炉燃烧过程自动控制,以及热处理可控气氛炉对零件的质量控制。

下面介绍氧化锆陶瓷是如何来完成测氧功能的。

氧传感器使用说明书(详细版)

氧传感器使用说明书(详细版)
润滑油进入传感器内部将导致电器特性的变化
应该:以正、反时针方向来回旋转传感器
使润滑油更容易沿螺纹深度旋向渗透以便拆卸
应该:用硬丝刷清理安装孔及附近区域
避免可能导致的再次拆装困难程度
应该:重新安装氧传感器应换用新的密封垫圈及涂抹专用螺纹防烧结剂
可有效防止废气泄漏并保证易于再次拆卸
表2氧传感器拆装注意事项
将100克钢珠从规定高度自由降落至传感器四个不同部位,试验后,氧传感器性能符合规定要求。
热振动试验
对氧传感器进行特定条件的随机振动和正弦振动,同时环境温度循环最高至900℃。试验后,氧传感器性能符合规定要求。
抗化学腐蚀性试验
氧传感器能满足汽油、刹车液、动力转向液、机油、发动机冷却液等环境下的暴露试验(不包括插接件和感应头/下护罩)。试验后,氧传感器符合产品性能要求。
防烧结剂:新传感器螺纹表面涂有防烧结剂,氧传感器在拆下后重新安装前,必须补涂防烧结剂。
7.6传感器拆装及其它注意事项(见下表):
操作注意事项
原因
氧传感器总成
禁止:氧传感器跌落或与坚硬硬物表面撞击
剧烈的振动可损坏陶瓷元件或加热元件,如果氧传感器被跌落过,不应再继续使用。
禁止:装上氧传感器后,给发动机施加大的敲击力(例如在发动机缸体上打印发动机号或爆震氧传感器试验)
浸没试验
对氧传感器进行特定条件的水浸泡循环试验(不包括插接件和感应头/下护罩),试验后,氧传感器性能符合规定要求。
线束抗拉力抗疲劳试验
氧传感器线束能够分别承受至少1分钟的三个方向最小100牛顿拉力试验,试验后性能符合产品要求。氧传感器线束经过特定条件循环疲劳试验,试验后,氧传感器性能符合规定要求。
机械冲击试验
11.其它

氧化锆氧传感器工作原理

氧化锆氧传感器工作原理

氧化锆氧传感器工作原理
氧化锆氧传感器是一种使用氧化锆材料作为传感元件的气体传感器。

其工作原理基于氧化锆对氧气敏感的特性。

氧化锆是一种具有高离子电导率的固体材料,当氧分子与氧化锆接触时,氧分子会从气相中被电子从氧化锆表面弹出,生成氧化锆表面上的氧空缺。

这些氧空缺会导致氧化锆晶体形成正电静电场。

当氧气含量较高时,氧分子与氧化锆的接触频率较高,氧空缺较少,正电静电场较小。

而当氧气含量较低时,氧分子与氧化锆的接触频率较低,氧空缺较多,正电静电场较大。

氧化锆氧传感器利用这种特性来测量氧气含量。

传感器的结构中包含两个氧化锆电极,其中一个电极暴露在待测气体中,另一个电极则绝缘不被气体接触。

这两个电极之间的空间中装填着一种离子传导液体,该液体允许氧离子在两个电极之间传递。

当氧气含量较高时,氧化锆电极上的氧分子被电子弹出,产生氧空缺,形成正电静电场。

这个正电静电场会促使氧离子从暴露在气体中的电极传导到绝缘电极,引起电流流动。

而当氧气含量较低时,氧化锆电极上的氧空缺增加,正电静电场增大,导致更多的氧离子传导。

因此,氧化锆氧传感器的输出电流与氧气含量呈线性关系。

通过测量传感器的输出电流,可以确定待测气体中的氧气含量。

这种氧化锆氧传感器具有高灵敏度、快速响应、稳定可靠等优
点,因此广泛应用于空气质量监测、工业过程控制、环境监测等领域。

氧化锆氧量分析仪讲义

氧化锆氧量分析仪讲义

氧化锆氧量分析仪讲义摘要:氧化锆作为一种耐火原料,以其熔融温度高达2900℃的独特的热稳定性,被广泛应用在工业测量设备——氧量分析仪的制造上。

氧化锆氧量分析仪又被称为氧化锆氧量计,通常用来测量燃烧过程中烟气的含氧浓度以及非燃烧气体氧浓度测量。

该分析仪氧传感器的关键部件由氧化锆制成,内外两侧涂上多孔性铂电极制成氧浓度差电池,传感器内温度恒定的电化学电池产生一个毫伏电势,直接反应出烟气中含氧浓度值。

本文主要讲述氧化锆氧量分析仪的原理、应用及故障处理。

关键词:氧化锆氧量分析仪原理、应用、故障处理。

一、概述:1、参比概念:reference 为仪器仪表性能试验或保证测量结果能有效比对而规定的一组带有允差的影响量的值或范围。

2、原理:氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。

此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。

若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。

设 P0>P1,在高温下(650~850℃)氧就会从分压大的P0侧向分压小的P1侧扩散,这种扩散,不是氧分子透过氧化锆从P0侧到P1侧,而是氧分子离解成氧离子后通过氧化锆的过程。

在750℃左右的高温中,在铂电极的催化作用下,在电池的P0侧发生还原反应,一个氧分子从铂电极取得4个电子,变成两个氧离子进入电解质,即O2(P0)+4e 2O^2-;P0侧的铂电极由于大量给出电子而带正电,成为氧浓差电池的正极或阳极。

反之,在电池P1侧发生的是氧化反应,氧离子在铂电极上释放电子并结合成氧分子析出。

氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。

在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。

氧化锆式氧传感器的性能与应用

氧化锆式氧传感器的性能与应用

氧化锆式氧传感器的性能与应用摘要:氧传感器安装在排气管上,将检测到的废气中氧浓度的电信号传递给ECU,ECU根据此信号对喷油和废气再循环量进行反馈控制,为尾气净化装置(如三元催化转换器、存储式NOx净化器等)提供良好的外部环境,从而降低尾气排放,以满足严格的排放法规。

氧传感器性能的优劣对于尾气净化的效果起着关键作用。

本文通过简述氧化锆式氧传感器的工作原理,重点论述了氧化锆式氧传感器的类型、性能特点、应用及发展情况,并阐述了其使用方法和注意事项。

关键词:氧化锆式氧传感器;性能;应用;发展1 氧化锆式氧传感工作原理1.1 氧传感器类型根据检测电信号不同:可分为氧化锆式氧传感器和二氧化钛(Ti02)式氧传感器,前者为电压型,后者为电阻型。

发动机电控系统常用氧化锆式氧传感器(下文氧传感器均为氧化锆式氧传感器)。

1.2 氧传感器的工作原理当气缸内混合气空燃比较浓时,排放气体中的氧气比较少,大气中的氧通过二氧化锆管在两电极(通常为Pt电极)间通过氧的渗透产生较大的电压(1V)左右;反之,当空燃比较低时,排气管中氧气浓度较高,大气中的氧通过二氧化锆管在两电极(Pt电极)间氧通过氧的渗透产生较小的电压(0V)左右。

因此,氧传感器是一个反应排气管氧含量浓稀的一个开关,形象地称为是一个随时向ECU反馈空燃比信息的“通信员”。

ECU则根据反馈来的氧传感器信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之,如信号反映较稀,则延长喷油时间。

从而使混合气的空燃比始终保持在理论空燃比(14.7:1)附近,这就是氧传感器闭环控制或氧传感器反馈控制。

2 氧化锆式氧传感器的应用与发展2.1 普通型氧化锆传感器氧化锆式传感器的基本元件是氧化锆管。

氧化锆管固定在带有安装螺纹的固定套内,在氧化锆管的内、外表面均覆盖着一薄层铂(Pt)作为电极,传感器内侧通大气,外侧直接与排气管中的废气接触。

在氧化锆管外表面的铂层上,还覆盖着一层多孔的陶瓷涂层,并加有带槽的防护套管,用来防止废气对铂电极产生腐蚀;在传感器的线束连接器端有金属护套,其上设有小孔,以便使氧化锆管内侧通大气。

氧化锆氧传感器工作原理

氧化锆氧传感器工作原理

氧化锆氧传感器工作原理
氧化锆氧传感器是一种常用的气体传感器,用于测量气体中氧气的浓度。

它的工作原理基于氧气和锆液相互作用的化学反应。

下面将详细介绍氧化锆氧传感器的工作原理。

首先,氧化锆氧传感器由几个关键部分组成,包括加热器、锆液晶体、固态电解质和电极。

其中,加热器用于提高传感器的工作温度,使锆液更加活跃。

锆液晶体是氧化锆的一种导电材料,它有很高的氧离子传导性能。

固态电解质用于分隔锆液晶体和电极,以防止氧离子的扩散。

电极则用于测量氧气浓度并产生相应的电信号。

在传感器工作时,加热器将传感器加热至高温状态,使锆液晶体和电解质都处于活跃的状态。

此时,氧气会与锆液晶体发生化学反应。

具体地说,氧气与锆液晶体中的氧离子结合,形成氧化锆。

这个反应是一个可逆反应,当氧气浓度高时,反应趋向向右进行,产生更多的氧化锆;当氧气浓度低时,反应趋向向左进行,产生更多的氧离子。

产生的氧化锆和氧离子会改变锆液晶体的导电性能,进而影响到电极的电位。

电极会感知这个电位的变化,并将其转化为对应的电信号。

通过测量这个电信号的大小,就可以确定气体中氧气的浓度。

需要注意的是,在传感器中,锆液晶体的导电性能和氧离子的扩散速率都与温度密切相关。

因此,为了保证传感器的准确性,需要将传感器加热至一个稳定的工作温度。

加热器的功率和温
度需要根据具体应用来调节。

总结起来,氧化锆氧传感器的工作原理是利用氧气和锆液晶体之间的化学反应,通过测量电位的变化来确定气体中氧气的浓度。

通过控制传感器的温度和加热功率,可以提高传感器的准确性和灵敏度。

氧化锆式氧传感器工作原理

氧化锆式氧传感器工作原理

氧化锆式氧传感器工作原理
氧化锆式氧传感器是利用氧化锆陶瓷片作为敏感元件的一种传感器,它是目前在汽车上使用最多的一种氧传感器。

氧化锆式氧传感器由两部分组成:一个是敏感元件(陶瓷片);另一个是补偿元件(电桥)。

在电桥中,补偿元件主要起到限制输出电流的作用,而敏感元件则起到控制输出电压的作用。

当发动机处于工作状态时,燃烧状况不均匀,燃料和空气的混合气过浓或过稀时,会引起进气歧管内的空燃比过浓或过稀,导致混合气燃烧不完全,使发动机废气排出量增加,导致发动机尾气中含氧量下降。

此时应检测进气歧管内的空燃比并及时调整混合气浓度。

氧传感器是测量排气中氧气含量的器件。

其基本结构是:一根长为20~25mm的陶瓷管(或叫传感器芯)与一根长为6~8mm的铂丝(或铂丝绕成螺旋状)组成。

传感器芯与铂丝之间是绝缘介质。

当发动机处于工作状态时,传感器芯产生的信号电压经电桥转换成与发动机工作状况有关的信号电压;当发动机停止工作时,则输出与发动机工况无关的信号电压。

—— 1 —1 —。

氧化锆芯体氧传感器结构

氧化锆芯体氧传感器结构

氧化锆芯体氧传感器结构
氧化锆芯体氧传感器结构是一种常用于测量氧气浓度的装置。

它主要由氧化锆管、搭桥电路、外壳等组成。

氧化锆芯体氧传感器中的关键组件是氧化锆管。

氧化锆管是一个管状结构,内部涂有钇稳定的氧化锆陶瓷。

氧气通过氧化锆管的外部表面渗透进入管内,并在管内与氧化锆发生反应。

这种反应将氧气与电子转化为二氧化锆和电子。

当氧气浓度增加时,氧化锆管内的电子导体的电导率增加,这种变化可以通过搭桥电路检测和测量。

搭桥电路是氧化锆芯体氧传感器中另一个重要的组件。

它负责测量氧化锆管内电导率的变化,并将这些变化转化为电信号输出。

搭桥电路一般由几个电阻和运算放大器组成,其中一个电阻与氧化锆管的电极连接,另一个电阻则用来调节电桥的灵敏度。

外壳是氧化锆芯体氧传感器的保护性外壳。

它通常由不锈钢或其他耐腐蚀材料制成,以保护传感器内部的组件免受外界环境的干扰和损坏。

外壳还有助于将氧气引导到氧化锆管的表面,并防止杂质进入传感器内部。

氧化锆芯体氧传感器结构由氧化锆管、搭桥电路和外壳等组成。

它的工作原理是通过测量氧化锆管内的电导率变化来测量氧气浓度。

这种传感器结构的特点是精度高、稳定性好,并且在工业、医疗和燃料监测等领域有广泛应用。

简述氧化锆式氧传感器工作原理

简述氧化锆式氧传感器工作原理

氧化锆式氧传感器是一种常用的氧气浓度检测器,它能够准确地检测出氧气在特定环境下的浓度。

其工作原理主要是通过氧离子在氧化锆电解质中的传输来实现的。

当氧气在传感器的两侧形成氧分压差时,就会在电极上产生电压差,通过测量这个电压差来确定氧气的浓度。

让我们简单了解一下氧化锆式氧传感器的结构。

它主要由氧离子导电的固体氧化物电解质、金属氧化物电极和参比电极组成。

电解质是传感器的核心部分,常用的有氧化锆和氧化钇稀土材料。

金属氧化物电极和参比电极则分别位于电解质的两侧,用来测量氧气的分压差。

在传感器工作过程中,氧气分子首先通过传感器的外部保护层,然后渗透进入传感器的氧离子导电固体氧化物电解质中。

在电解质中,氧气分子会与固体氧化物发生化学反应,产生氧离子并且导致电解质中产生氧分压差。

这时,氧离子会向金属氧化物电极和参比电极迁移,形成电势差。

通过测量这个电势差,就可以计算出氧气在传感器周围的浓度。

当氧分压增加时,电势差也会随之增加,反之则下降。

这样通过测量电势差的变化,就可以准确地得到氧气浓度的变化情况。

在实际应用中,氧化锆式氧传感器被广泛应用于各种工业领域,例如汽车尾气排放监测、工业燃烧设备的氧气浓度控制等。

它的高精度、快速响应和稳定性使得它成为了很多领域不可或缺的检测设备。

总结来说,氧化锆式氧传感器的工作原理是基于氧离子在氧化锆电解质中的传输来实现的。

通过测量氧离子在电极上形成的电势差,可以准确地得到氧气在特定环境下的浓度。

其结构简单,但在工业应用中有着重要的作用。

氧化锆式氧传感器作为一种普遍使用的氧气浓度检测器,其在各个领域都发挥着重要的作用。

在汽车尾气排放监测中,氧化锆式氧传感器能够准确地检测出汽车尾气中氧气的浓度,帮助监测和控制车辆的排放水平,保护环境减少空气污染。

在工业领域中,氧化锆式氧传感器也被广泛应用于工业燃烧设备的氧气浓度控制。

在燃烧过程中,通过实时监测氧气浓度,可以控制燃烧的效率和安全性,提高工业生产的效率和质量,降低环境污染和能源消耗。

氧传感器的功能及使用

氧传感器的功能及使用



内部电阻: 外接电压: 装配螺纹孔尺寸规格 装配扭紧力矩: 常规工作温度范围: 传感器信号传输线束线径 传感器接线端子定义:
<5千欧姆 13.5∨ M18X1.5 38~48N m 260 ℃~850 ℃ 0.35平方毫米

传感器的传送反馈信号电路和加热控制电路特殊 要求 OSP+型氧传感器引入了由ECM持续为探测元件 提供氧气作为参照气体的特殊设计结构。因此,这 种氧传感器需要电子控制系统电路能够向氧传感器 的信号端输出7~10毫安的泵电流,以便将感应元件 废气一侧的氧气输到参考气体一侧。泵电流可以由 集成到发动机电子控制模块(ECM)的控制输出电 路提供。这样就可以取消传感器之废气一侧与参考 气体一侧之间的密封处理元件。
氧传感器感应元件内部断路或短路 氧传感器热敏电阻对外壳短路 氧传感器加热元件电路对外壳短路 7、保养维修 (1)调整和检修: 发动机氧传感器无须进行任何调整和修理。 (2)互换性: 通常只允许更换零部件号码完全相同的氧传感器。 在相关专业技术人员的指导之下,可以选用相同 型号但零部件号码不同的氧传感器。
4、安装要求 (1)安装位置要求 控制用传感器(前级氧传感器)设计布置 原则上讲,用以进行空燃比控制用的前级氧 传感器应安装布置于排气歧管的各个气缸排气气流 汇集及混合均匀、可以代表所有气缸排出废气状态 的位置附近,以便确保所感应出的信号能够表征所 有气缸排出废气状态,避免只探测到发动机某单一 气缸的废气中氧离子浓度信息反馈而影响整个系统 对发动机实时燃烧状态的正确判断。同时,为了保 证传感器在冷启动时尽快实现闭环控制,传感器应安 装在离发动机排气歧管出口较近、气流温度较高的 位置 三元催化器功能监测用氧传感器(后级氧传感器) 安装设计布置:

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理氧化锆式氧传感器作为现代化工生产中广泛应用的控制元件,在化学、石化、冶金、电子等领域都有广泛应用。

其主要作用是用来测量氧气浓度,并将氧气浓度的信号转化为电信号输出,从而辅助控制生产过程。

本文将介绍氧化锆式氧传感器的工作原理。

什么是氧化锆式氧传感器氧化锆式氧传感器是一种基于氧化锆和其它材料的纯氧传感器,能够在高温、高压、潮湿和腐蚀性环境下稳定地测量氧气浓度。

这种传感器的主要部件是氧化锆气敏元件,通常有两个部分:一个是镀有白金的外电极,另一个是氧离子传递膜和钨势垒电极。

氧化锆式氧传感器的工作原理氧化锆式氧传感器是基于氧离子在氧穿透膜中的摩尔扩散,差分电流措施以及准离子电流设备检测氧气浓度的。

在氧离子灰化的过程中,氧气在膜上分解成氧阴离子和电子。

当每个氧阴离子通过氧穿透膜到达内部的阳极,就和内部的电子结合,形成一个氧分子。

在阳极内出现一定的准离子电流,这个电流的大小和浓度成正比。

通常电子流量的极化反应是通过外部电路中的电源控制的。

当把一个比例氧气/氮气混合物(模拟氧气浓度)带到氧化锆气敏元件的膜上,氧离子通过膜,氧气浓度和可以进入膜的氧气浓度成正比。

准离子电流因为有氧离子的流量而变化,终端的检测电路可以将该差分电流数改动为OX/QUOT(氧气浓度)的比值。

传感器利用这个信号输出氧气浓度测量值。

氧化锆式氧传感器的优点1.精度高:氧化锆式氧传感器的精度非常高,可以达到±1%以下的误差范围。

2.使用寿命长:氧化锆式传感器的材料寿命很长,可以经历长时间的高温高压,同时抵御常见的腐蚀。

3.响应速度快:氧化锆式氧传感器响应速度非常快,大致在秒级别以内。

4.维护成本低:氧化锆式氧传感器维护成本非常低,通常只需要在使用后定期清洗即可,不需要常年更换。

总之,氧化锆式氧传感器是一种非常优秀的传感器,其工作原理简单、精度高、维护成本低,使用寿命长等特点,使其广泛应用于各种工业控制领域,为工业持续发展提供了重要的技术支持。

氧化锆氧传感器的工作原理

氧化锆氧传感器的工作原理

氧化锆氧传感器的工作原理氧化锆氧传感器是一种常用的氧气浓度检测器,它利用氧化锆的半导体特性来测量气体中的氧气浓度,具有高灵敏度、良好的可靠性和快速响应等优点,被广泛应用于工业领域和医疗行业中。

下面就详细介绍一下氧化锆氧传感器的工作原理。

首先,我们需要了解氧化锆的性质。

氧化锆是一种具有高氧化物活性的陶瓷材料,它具有一定的导电性,但在氧气存在时,氧化锆的导电性会明显增强。

这是因为氧气可以与氧化锆发生反应,生成带正电荷的离子空位和带负电荷的电子,从而使氧化锆的导电性增加。

氧化锆氧传感器的核心部件是氧化锆薄膜,通常是由氧化锆和稀土元素掺杂而成。

当氧化锆薄膜受到氧气的作用时,其导电性发生变化,这种变化可以通过测量氧化锆薄膜电阻率的方式来反映氧气浓度。

具体来说,氧化锆氧传感器是通过测量氧化锆薄膜电阻率的变化来检测氧气浓度的。

传感器的工作原理可以简化为以下三个步骤:1.氧气与氧化锆反应,使得氧化锆薄膜表面出现电荷分布不均的情况,导致氧化锆薄膜的导电性发生变化;2.在传感器中加入恒定的电流激励,通过测量氧化锆薄膜的电阻率来反映氧气的浓度变化;3.传感器通过将测量值与标准曲线进行比较,来得出氧气浓度的具体数值。

在实际应用中,氧化锆氧传感器通常需要与温度传感器一起使用,以消除温度变化对氧化锆薄膜电阻率的影响。

此外,氧化锆薄膜的厚度和掺杂元素的选择也会影响传感器的响应时间和准确度等性能指标。

因此,在制造氧化锆氧传感器时需要进行严格的工艺控制和材料选择,以确保传感器的性能和稳定性。

总之,氧化锆氧传感器是一种基于氧化锆半导体特性的传感器,可以快速、准确地检测气体中的氧气浓度。

其具有高灵敏度、良好的可靠性和快速响应等优点,被广泛应用于工业领域和医疗行业中。

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理

氧化锆式氧传感器传感器的工作原理氧化锆式氧传感器是一种常见的气体传感器,广泛用于氧气浓度检测、燃烧控制以及空气质量检测等领域。

本文将介绍氧化锆式氧传感器的工作原理。

氧化锆式氧传感器的基本结构氧化锆式氧传感器的主要结构包括探头、氧离子传输管和阴、阳极。

其中,探头由氧化锆陶瓷和铂电极构成,氧离子传输管则是由硅酸盐陶瓷制成,阴、阳极则分别由金属银和金属铂构成。

工作原理首先,氧化锆作为氧离子的传输介质,其极性与氧离子一致,即氧离子在氧化锆中呈现出负电荷。

而在探头上,铂电极对氧气与氧化锆之间的氧离子的输送过程进行检测,通过检测,可以了解氧气的浓度。

简单来说,氧化锆式氧传感器的工作原理使用氧化锆陶瓷充当离子传输介质,通过氧离子在氧化锆中的传输,等效于对氧气进行浓度检测。

在实际应用中,氧化锆式氧传感器需要使用电源进行驱动,并通过接收电极上的反馈信号来计算氧气的浓度,然后再输出结果。

同时,为了保证氧化锆的稳定性和使用寿命,氧化锆式氧传感器还需要进行定期的校准和维护。

氧化锆式氧传感器的优点相较于其他氧气传感器,氧化锆式氧传感器具有许多优点,包括:•灵敏度高:氧化锆式氧传感器对氧气的检测灵敏度非常高,可以检测非常低的氧气浓度。

•反应快:氧化锆式氧传感器的反应速度快,可以在数秒内输出准确的检测结果。

•稳定可靠:氧化锆式氧传感器具有良好的稳定性和可靠性,可以在长时间内稳定地工作。

•体积小:相较于其他氧气传感器,氧化锆式氧传感器体积更小,易于集成和使用。

结论氧化锆式氧传感器是一种常见的气体传感器,具有高灵敏度、快速反应、稳定可靠以及小体积等优点。

其工作原理基于氧离子在氧化锆中的传输过程,通过对氧气浓度的检测,可以在氧气浓度检测、燃烧控制以及空气质量检测等领域中发挥重要的作用。

汽车氮氧传感器原理和应用详解.

汽车氮氧传感器原理和应用详解.

汽车氮氧传感器原理和应用详解.汽车氮氧传感器(也称为氧气传感器或O2传感器)是一种重要的汽车排放控制设备,它用于监测和控制发动机排放气体中的氧气含量,以确保引擎的燃烧效率并减少有害排放物。

以下是汽车氮氧传感器的原理和应用的详细解释:原理:汽车氮氧传感器的工作原理基于电化学反应。

它包括一个氧气感知器(通常是氧化锆或氧化二氧化硅陶瓷元件),其两侧暴露在不同的气氛下。

1.气氛差异:传感器的两侧分别暴露在排气气流和大气气流中。

由于燃烧产生的排气中含有未燃烧的燃油和氧气,排气气流中的氧气含量通常较低。

2.离子传导:当排气气流中的氧气与氧化锆传感器的热表面接触时,氧气分子会通过离子传导机制引发电化学反应。

这个反应会导致在传感器两侧产生电势差。

3.电势差测量:传感器的电子控制单元(ECU)测量传感器两侧的电势差,并将其转化为氧气浓度的信号。

应用:汽车氮氧传感器在现代发动机控制系统中扮演着至关重要的角色,具体应用如下:1.排放控制:氮氧传感器的主要作用是监测排气中氧气含量。

这个信息允许发动机控制单元精确调整燃油-空气混合物的比例,以确保最佳燃烧效率。

这有助于减少有害气体排放,如一氧化碳(CO)和氮氧化物(NOx)。

2.节能:通过在燃烧室中提供准确的氧气浓度反馈,氮氧传感器有助于减少不必要的燃油消耗,提高燃油效率,从而降低燃油消耗和碳排放。

3.故障诊断:氮氧传感器还用于检测发动机故障,如点火故障或感应系统问题。

ECU可以根据传感器的信号来检测这些问题,并通过故障码来提供警告或诊断信息。

总之,汽车氮氧传感器在现代汽车的排放控制和燃烧效率优化方面起着关键作用。

它们通过监测氧气含量,帮助确保引擎在最佳条件下运行,减少有害气体排放,提高燃油效率,并提供故障诊断信息。

这有助于实现更清洁、高效和环保的汽车运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化锆式氧传感器的性能与应用
摘要:氧传感器安装在排气管上,将检测到的废气中氧浓度的电信号传递给ECU,ECU根据此信号对喷油和废气再循环量进行反馈控制,为尾气净化装置(如三元催化转换器、存储式NOx净化器等)提供良好的外部环境,从而降低尾气排放,以满足严格的排放法规。

氧传感器性能的优劣对于尾气净化的效果起着关键作用。

本文通过简述氧化锆式氧传感器的工作原理,重点论述了氧化锆式氧传感器的类型、性能特点、应用及发展情况,并阐述了其使用方法和注意事项。

关键词:氧化锆式氧传感器;性能;应用;发展
1 氧化锆式氧传感工作原理
1.1 氧传感器类型
根据检测电信号不同:可分为氧化锆式氧传感器和二氧化钛(Ti02)式氧传感器,前者为电压型,后者为电阻型。

发动机电控系统常用氧化锆式氧传感器(下文氧传感器均为氧化锆式氧传感器)。

1.2 氧传感器的工作原理
当气缸内混合气空燃比较浓时,排放气体中的氧气比较少,大气中的氧通过二氧化锆管在两电极(通常为Pt电极)间通过氧的渗透产生较大的电压(1V)左右;反之,当空燃比较低时,排气管中氧气浓度较高,大气中的氧通过二氧化锆管在两电极(Pt电极)间氧通过氧的渗透产生较小的电压(0V)左右。

因此,氧传感器是一个反应排气管氧含量浓稀的一个开关,形象地称为是一个随时向ECU反馈空燃比信息的“通信员”。

ECU则根据反馈来的氧传感器信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之,如信号反映较稀,则延长喷油时间。

从而使混合气的空燃比始终保持在理论空燃比(14.7:1)附近,这就是氧传感器闭环控制或氧传感器反馈控制。

2 氧化锆式氧传感器的应用与发展
2.1 普通型氧化锆传感器
氧化锆式传感器的基本元件是氧化锆管。

氧化锆管固定在带有安装螺纹的固定套内,在氧化锆管的内、外表面均覆盖着一薄层铂(Pt)作为电极,传感器内侧通大气,外侧直接与排气管中的废气接触。

在氧化锆管外表面的铂层上,还覆盖着一层多孔的陶瓷涂层,并加有带槽的防护套管,用来防止废气对铂电极产生腐蚀;在传感器的线束连接器端有金属护套,其上设有小孔,以便使氧化锆管内侧通大气。

二氧化锆管的外表面处于氧气浓度较低的汽车所排放的气体中,而管
的内表面则导入周围空气,两表面氧气浓度之差就会产生电动势——电压信号。

2.2 双氧化锆式氧传感器
对于安装OBD(车载诊断系统)的电控汽油发动机,为了实时检测三元催化转换器性能的好坏,必须采用双氧传感器结构:一个布置在三元催化转换器的前方称为上游氧传感器,一个布置在三元催化转换器的后方称为下游氧传感器。

上游氧传感器为电控系统采集排气管中氧的含量信号,作为空然比反馈控制的基本信号,上游氧传感器的正常电信号的电压值是在0.1V~1.0V之间变化的,用于空然比闭环控制,向发动机电脑反馈排放废气中氧含量,发动机电脑根据此信号修正喷油量;下游氧传感器正常的电信号电压值基本不变的,经净化等的尾气信号转换器后方的氧含量反馈给发动机电脑。

发动机ECU将两个氧传感器的信号进行对比,正常情况下前氧传感器的信号高于后氧传感器,当下游的氧传感器电压信号输出象上游氧传感器一样的电压变化的信号时,说明:
(1)三元催化转换器失效,需要进行更换。

(2)上游氧传感器故障,需要更换。

2.3 宽量程氧化锆氧传感器
2.3.1 普通氧传感器的缺陷
从氧传感器的输出特性不难看出,当混合气浓度为理论空燃比时,其输出的信号电压由低(约0.1V)到高(约0.9V)或由高到低发生突变。

当混合气浓度大于或小于理论空燃比时,输出的信号电压变化微弱,ECU也难以识别。

因此,采用普通的氧化锆式氧传感器ECU无法定量确定混合气浓度。

2.3.2 宽量程氧化锆氧传感器的应用
在废气中氧浓度较高的柴油机和电控汽油直喷系统,如大众公司的FSI燃油分层喷射汽油机、三菱公司GDI燃油缸内直喷汽油机,其空燃比最高可以达到40以上,发动机的尾气中氧气含量非常高,称为稀薄燃烧。

采用普通氧传感器难以精确检测氧的含量。

因此,需要一种能够检测稀混合气的新的氧传感器,即宽量程氧传感器。

宽量程氧化锆氧传感器不仅在直喷汽油机在得到应用,而且在柴油机上也得到了广泛的应用。

宽量程氧化锆氧传感器能精确检测柴油机排气管中氧的含量,为柴油机尾气净化NOx(如SCR选择性催化净化器)提供精确的氧含量信号。

3 氧化锆式氧传感器的使用与维护
氧传感器一旦出现故障,将使电子燃油喷射系统的ECU不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增
加,出现发动机出现怠速不稳、缺火、喘振;废气排放超标;空燃比不正确;油耗上升等故障现象。

因此,应及时检测和维护氧传感器,并及时排除故障或更换。

3.1 避免使用劣质燃油
劣质燃油特别是燃油中含有超标准的铅、磷、硫时,会造成铂电极“中毒”失效,使氧传感器失去活性,不能进行氧含量的正确检测。

3.2 注意氧传感器工作环境
过低的排气温度(低于3000℃)或过高的工作环境温度(超过9000℃)会造成氧传感器早期失效。

3.3 避免在氧传感器上加高电压
氧传感器是无源主动式传感器,依靠固体二氧化锆陶瓷产生的低压电压信号。

对于加热型氧传感器,不能反复地对传感器加电加热;检测时不要用模拟(指针)式电压表,因其内阻小,通过的检测电流足以烧坏传感器。

不要使用电阻表,以防输入检测电流烧坏。

不要短接二线式氧传感器两接柱,或将单线式的输出导线接地,以免造成损坏。

3.4 观察氧传感器外观及颜色
从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。

如有破损,则应更换氧传感器。

通过观察氧传感器顶尖部位的颜色也可以判断故障:
(1)淡灰色:这是氧传感器的正常颜色。

(2)白色:由硅污染造成的,此时必须更换氧传感器。

(3)棕色:由铅污染造成的,如果严重,也必须更换氧传感器。

(4)黑色:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。

相关文档
最新文档