AO生物脱氮工艺设计计算
工艺计算A2O-AO-MBBR
设计处理水量Q= 15000 m3/d=
625.00 m3/h=
0.17 m3/s
总变化系数Kz=
1.53
进水水质:
出水水质:
进水CODCr=
300 mg/L
CODCr=
30 mg/L
BOD5=S0=
145 mg/L
BOD5=Sz=
6 mg/L
TN=
58 mg/L
(5)最大需氧量 AORmax=KzAOR=
去除1kgBOD的需氧 量=
1812.36 kgO2/d
4936.53 kgO2/d=
7558.43 kgO2/d=
2.37
kgO2/kgB OD5
205.69
kgO2/ h
314.93
kgO2/ h
(6)标准需氧量
SOR
AOR Cs(20) (Csb(T ) C) 1.024(t20)
0.8 ms/ 0.217 m2
出水管管径d4= 4 Q 4
v
校核管道流速v= 9、设计需氧量 AOR=碳化需氧量+ 硝化需氧量-反硝 化脱氮产氧量= (去除BOD需氧量剩余污泥中BOD氧 当量)+(氨氮硝化 需氧量-剩余污泥 中氨氮的氧当量)
反硝化 - 脱氮产
氧量
0.526 m 0.451 m/s
(1)估算出水溶 解性BOD5(Se)
S
Sz
1.42
VSS TSS(1 TSS
ekt )
(2)设计污泥龄
-8.56 mg/L
计算
硝化速率
N
0.47e0.098(T 15)
N
N 10(0.05T
AO脱氮工艺计算公式|汇总
AO脱氮⼯艺计算公式|汇总1、设计⽔量的计算由于硝化和反硝化的污泥龄和⽔⼒停留时间都较长,设计⽔量应按照最⾼⽇流量计算。
式中:2、确定设计污泥龄需反硝化的硝态氮浓度为式中:反硝化速率计算计算出值后查下表选取相应的值,再查下表取得值。
3、计算污泥产率系数Y式中:然后按下式进⾏污泥负荷核算:式中:Ls——污泥负荷,我国规范推荐取值范围为0.2~0.4kgBOD/(kgMLSSd)。
活性污泥⼯艺的最⼩污泥龄和建议污泥龄表(T=10℃)单位:d处理⽬标污⽔处理⼚规模BOD≤1200kg/d BOD≥6000kg/d最⼩泥龄建议泥龄最⼩泥龄建议泥龄有硝化5645⽆硝化101189有硝化反硝化12.513.81011.314.315.711.412.916.718.313.31520221618有硝化、反硝化,污泥稳定25254、确定MLSS(X)MLSS(X)取值通过查下表可得。
反应池MLSS取值范围处理⽬标MLSS(kg/m3)有初沉池⽆初沉池⽆硝化 2.0~3.0 3.0~4.0有硝化(反硝化) 2.5~3.5 3.5~4.5污泥稳定 4.5取定MLSS(X)值后,应⽤污泥回流⽐反复核算式中:浓缩时间取值范围⼯艺选择⽆硝化有硝化有硝化反硝化有深度反硝化浓缩时间<1.5~2h<1.0~1.5h<2h<2.5h5、计算反应池容积计算出反应池容积后,即可根据的⽐值分别计算出缺氧反应池和好氧反应池的容积。
6、曝⽓量的计算1、实际需氧量的计算式中:其中,去除含碳有机物单位耗氧量按下式计算:按该式计算出不同泥龄和不同⽔温下的值列于表5,设计时可直接查下表。
降解含碳有机物单位耗氧量表单位:kgO2/kgBODT(℃)泥龄(d)4810152025100.850.99 1.04 1.13 1.18 1.22120.87 1.02 1.07 1.15 1.21 1.24150.92 1.07 1.12 1.19 1.24 1.27180.96 1.11 1.16 1.23 1.27 1.30200.99 1.14 1.18 1.25 1.29 1.3225 1.07 1.21 1.24 1.30 1.33 1.3530 1.14 1.26 1.29 1.34 1.36 1.38BOD去除量按下式计算:式中:fc——BOD负荷波动系数,按下表选⽤。
AO生化池计算
合成总氮 Nw
=
被氧化氨氮
=
所需脱硝 量
=
NT
=
反硝化速
2 率qdn,T
=
3
缺氧区容 积
容积 V2
=
225.3 mg/L -193.3 mg/L
-200.3 mg/L
NW
0.124
Y(S0 S) (1 K dc )
-10.0 kg/d 0.076
kgNO3-N/kgMLVSS
-47.3 m3
停留时间 t
=
-22.7 h
4 5 (四)供气管道 1
2
(三)曝气池总容积
1 总容积 V
=
2 总泥龄 θ
=
346.0 m3 10.66 d
(四)碱度校核
1 剩余碱度 SALK1
=
1431.4 mg/L >100mg/L(以CaCO3计)
(五)回流比
1 污泥回流R
回流污泥浓度XR =
R
=
2
混合液回 流比R内
脱氮率 ηN
-46.9 kgO2/d
-28.6 kgO2/d 8.4 kgO2/h 0.8 kgO2/kgBOD 11.8 kgO2/h
3.8 m 138.54 kPa
9.12 mg/L 12.6 kg/h 17.6 kg/h 3.5 m3/min 4.9 m3/min
0.002 Mpa 0.038 Mpa
即0.2m, 据实际情 况
(七)回流污泥渠、管道
1
回流污泥 量Q
=
2.083333 m3/h
流道面积 A
管径 D
2
回流混合 液量Q
流道面积 A
管径 D
生物脱氮除磷AO工艺设计计算
(一)设计条件:设计处理水量Q=30000m 3/d=1250.00m 3/h=0.35m 3/s总变化系数Kz= 1.42进水水质:出水水质:进水COD Cr =350mg/L COD Cr =100mg/L BOD 5=S 0=160mg/L BOD 5=S z =20mg/L TN=40mg/L TN=15mg/L NH 4+-N=30mg/L NH 4+-N=8mg/L 碱度S ALK =280mg/L pH=7.2SS=180mg/L SS=C e =20mg/LVSS=126mg/L f=VSS/SS=0.7曝气池出水溶解氧2mg/L 夏季平均温度T1=25℃硝化反应安全系数3冬季平均温度T2=14℃活性污泥自身氧化系数Kd=0.05活性污泥产率系数Y=0.6混合液浓度X=4000mgMLSS/LSVI=15020℃时反硝化速率常数q dn,20=0.12kgNO 3--N/kgMLVSS曝气池池数n=2 若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、好氧区容积V1计算(1)估算出水溶解性BOD 5(Se)6.41mg/L(2)设计污泥龄计算硝化速率低温时μN(14)=0.247d -1一、生物脱氮工艺设计计算=-⨯⨯-=-)1TSS TSSVSS42.1kt z e S S ([][])2.7(833.011047.022)158.105.0()15(098.02pH O k O N N e O T T N --⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=--μ硝化反应所需的最小泥龄θc m = 4.041d 设计污泥龄θc =12.122d(3)好氧区容积V 1=7451.9m 3好氧区水力停留时间t 1=5.96h2、缺氧区容积V 2(1)需还原的硝酸盐氮量计算微生物同化作用去除的总氮=7.11mg/L被氧化的氨氮=进水总氮量-出水氨氮量-用于合成的总氮量=24.89mg/L所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量=17.89mg/L需还原的硝酸盐氮量N T =536.56kg/d(2)反硝化速率q dn,T =q dn,20θT-20=(θ为温度系数,取1.08)0.076kgNO 3--N/kgMLVSS(3)缺氧区容积V 2=2534.1m 3缺氧区水力停留时间t 2=V 2/Q= 2.03h 3、曝气池总容积V =V 1+V 2=9986.0m 3系统总污泥龄=好氧污泥龄+缺氧池泥龄=16.24d4、碱度校核每氧化1mgNH 4+-N需消耗7.14mg碱度;去除1mgBOD 5产生0.1mg碱度;)1()(01c d V c K X S S Q Y V θθ+-=VT dn T X q N V ,21000⨯=)1()(124.00c d W K S S Y N θ+-=每还原1mgNO 3--N产生3.57mg碱度;剩余碱度S ALK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD 5产生碱度=181.53mg/L>100mg/L(以 CaCO 3计)5、污泥回流比及混合液回流比(1)污泥回流比R 计算=80001.2混合液悬浮固体浓度X(MLSS)=4000mg/L 污泥回流比R=X/(X R -X)=100%(一般取50~100%)(2)混合液回流比R 内计算总氮率ηN =(进水TN-出水TN)/进水TN=62.50%混合液回流比R 内=η/(1-η)=167%6、剩余污泥量(1)生物污泥产量1525.5kg/d(2)非生物污泥量P S P S =Q(X 1-X e )=1020kg/d (3)剩余污泥量ΔX ΔX=P X +P S =2545.5kg/d设剩余污泥含水率按99.20%计算7、反应池主要尺寸计算(1)好氧反应池mg/L (r为考虑污泥在沉淀池中停留时间、池深、污泥厚度等因素的系数,取r SVIX R 610==+-=c d X K S S YQ P θ1)(0设2座曝气池,每座容积V单=V/n=3725.96m3曝气池有效水深h=4m 曝气池单座有效面积A单=V单/h=931.49m2采用3廊道,廊道宽b=6m曝气池长度L=A单/B=51.7m 校核宽深比b/h= 1.50校核长宽比L/b=8.62曝气池超高取1m,曝气池总高度H=5m(2)缺氧池尺寸设2座缺氧池,每座容积V单=V/n=1267.05m3缺氧池有效水深h= 4.1m 缺氧池单座有效面积A单=V单/h=309.04m2缺氧池长度L=好氧池宽度=18.0m 缺氧池宽度B=A/L=17.2m8、进出水口设计(1)进水管。
AO工艺设计计算公式
AO工艺设计计算公式
A/O 工艺设计参数
①水力停留时间:硝化不小于5〜6h;反硝化不大于2h, A段:0段=1:3
②污泥回流比:50〜100%
③混合液回流比:300〜400%
④反硝化段碳/氮比:BOD/TN>4,理论BOD肖耗量为
1.72gBOD/gNOx--N
⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS d
⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBODgMLSS d
⑦混合液浓度x=3000〜4000mg/L (MLSS)
⑧溶解氧:A段DOv0.A 0.5mg/L
O 段DO>〜4mg/L
⑨pH值:A段pH =6.5 〜7.5
O 段pH =7.0 〜8.0
⑩水温:硝化20〜30 r
反硝化20〜30 r
(11)碱度:硝化反应氧化1gNH+-N需氧4.57g,消耗碱度7.1g (以CaCO 计)。
反硝化反应还原1gNO3--N 将放出 2.6g 氧, 生成3.75g碱度(以CaCO计)
(12)需氧量Ro单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需肖耗溶解氧,而微生物自身代谢也需肖耗溶解氧,所以Ro应包括这三部分。
Ro=a'QSr+b'VX+4.6Nr
a'—平均转化
1Kg 的BOM需氧量KgQ/KgBOD
上一页下一页。
AO工艺
A/O工艺(1)A池(缺氧池)容积,可按以下公式计算:V n={0.001Q(N k-N te)-0.12△X v}/(K de×X)(△X v=y×Y t×Q(S0-S e)/1000)式中:V n-缺氧池容积Q-生物反映池的设计流量(m3 /d)Q=80X-混合液悬浮固体平均浓度(gMLSS/L)X=12 N k-进水总凯氏氮浓度(mg/L)N k=1000N te- 出水总氮浓度(mg/L)N te=30△X v-排出生物反应池出水微生物量(kgMLVSS/d) K de-脱氮速率,取0.03kgNO3-N/(kgMLSS×d)Y t-污泥总产率系数(kgMLSS/kgBOD5) Y t=0.5y-MLSS中MLVSS所占比例y=0.6S0-进水BOD5 S0=6000S e-出水BOD5 S e=300将上面数值代入公式可得V n=170 m3有效水深取4 m,则面积A=170/4=42.5 m2(2)碳氧化池容积,可按下式计算:V= Q(S0-S e)/(1000×N S×X)式中:V-碳氧化池容积Q-进水流量N S-污泥有机负荷(kgBOD5/kgMLSS d),取N S=0.1X-悬浮固体浓度(gMLSS/L)代入上式有:V=380 m3有效水深度取4 m,则面积A=380/4=95 m2(3)强化消化池面积V=Q(S0(NH3-N)-S e(NH3-N))/(1000×N S(NH3-N)×X)Q-进水流量(m3 /d)S0(NH3-N)-NH3-N进水浓度S e(NH3-N)- NH3-N出水浓度N S(NH3-N)-污泥氨氮负荷(kgNH3-N/kgMLSS d),(取0.05)X-悬浮固体浓度(gMLSS/L),(取12)代入上式有:V=130 m3有效水深度取4.0 m,则该池面积A=130/4=32.5 m2(4)碳氧化-消化反应的需气量按下列公式计算:O2= 0.001aQ(S0-S e)-c△X v+b[0.001Q(N k-N ke)-0.12△X v]-0.626[0.001Q(N t-N ke-N oe)-0.12△X v]式中: Q-进水流量(m3 /d)O2-废水需氧量(m3 /d)N K-进水总凯氏氮浓度(mg/L)N ke-出水总凯氏氮浓度(mg/L)N oe-出水硝态氮浓度(mg/L)a-碳的氧当量,取1.47b- 氨氮的氧当量,取4.57c- 常数,细菌细胞的氧当量,取1.42代入上式有: O 2=813.97kg O 2/d查表可知:水中的溶解氧饱和度为:C S(20)=9.17(mg/L ); C S(30)=7.63(mg/L ).本项目采用微孔曝气头曝气,淹没水深为4m,计算温度定为30℃, 曝气头出口处的绝对压力(P b )为: P b =1.013×105+9.8×103×4=1.405×105 P a 空气离开曝气池池面时,氧的百分比为:O t =21(1-E A )×60%/[79+21(1-E A )]=17.54% (氧转化效率E A 20%) 最不利温度条件下(取30℃) 曝气池混合液中平均饱和度: C sb(30)=C s(30)( P b /202600+O t /42)=8.474 mg/L换算为20℃条件下,脱氧清水的充氧量:R 0= RC s(20)/{C βρα[sb(T)-]C 1.024T-20}取,0.1,0.2,9.0,8.0====ρβαC 代入得R 0=1309.7kgO 2/d曝气池的平均供气量为:G S =R 0×100/(0.3×E A )=21828.3 m 3空气 /d=909.5 m 3空气/h =15.16 m 3空气/min若微孔曝气头单盘气量2 m 3 /h ,面积0.25 m 2/个,氧转移效率E A 为20%,则所需曝气头的个数为909.5/2=455个。
AO工艺标准规范标准设计计算参考材料
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO(脱氮)设计计算书
惰性物质及沉淀池固体流失 去除1kgBOD产生干污泥量
625 m3/h
流道面积 A
管径 D
2
回流混合 液量Q
流道面积 A
管径 D
=
0.25 m2
按v=0.7m/s设计
=
562 mm
=
1042 m3/h
=
0.36 m2
按v=0.8m/s设计
=
679 mm
(一)设计需氧量 碳化需氧 量 D1 硝化需氧 量 D2 反硝化脱 氮产生的 氧量 D3 总需氧量 AOR 单位BOD 需氧量 最大需氧 量
生物除氮工艺P120
(一)设计需氧量 1
2
3 4
8 进水氨氮 NH3-N =
9 出水氨氮 NH3-N =
10 VSS/TSS
=
11 进水碱度 SALK
=
12 pH
=
13 水温
=
14 混合液 MLSS =
30 mg/L 8 mg/L 0.7 280 mg/L 7.2 14 ℃
4000 mg/L
(二)标准需氧量 1
A/O工艺设计计算(动力学计算法) 原始条件:(生物除氮)
1 设计流量 Q
=
15000 m3/d
2 进水BOD S0
=
160 mg/L
3 出水BOD Se
=
20 mg/L
4 进水TSS X0
=
180 mg/L
5 出水TSS Xe
=
20 mg/L
6 进水总氮 TN
=
7 出水总氮 TN
=
40 mg/L 15 mg/L
2
计算结果:
(一)好氧区容积计算
1 出水溶解性BOD
AO脱氮设计计算
21.1.1.5 A1/O工艺设计举例 例:Q=25×104m3/d,K d=1.3,初沉池出水BOD5=150mg/L, SS=126 mg/L,TN=25 mg/L。
要求曝气系统出水达到BOD5≤20 mg/L,SS≤30 mg/L, NH+4—N≈0,No-x—N<5 mg/L 设计A1/O生物反应池 解:一、设计参数 1、F s=0.13 KgBOD5/KgMLSS·d 2、SVI=150 3、回流污泥浓度 4、污泥回流比R=100% 5、曝气池混合液污泥浓度 6、TN去降率 7、混合液回流比 二、A1/O主要工艺尺寸 按BOD污泥负荷率F s计算: 1、A1/O池总有效容积V 2、有效水深H1=6m 3、曝气池总有效面积: 4、分四组,每组有效面积S=S总/4=19000/4=4750 m2 5、取廊道宽b=10.0m,设5廊道,则单组曝气池有效宽度为50m 单组曝气池长度: 6、污水在A1/O反应地内停留时间t 7、A1:O段=1:4 则A1段停留时间t1 = 1.7h O段停留时间t2 = 6.7h 三、剩余污泥量W(kg/d)的计算W=W1—W3+W2 (1)生成的污泥量W1=a(S o—S e)0.55(150—20)×250000=17875kg/d (2)因内源呼吸作用而分解的污泥量W2W2=bVX V=0.05×114000× 0.7×3300=13167kg/d (3)W3不可生物降解和惰性的悬浮物量(NVSS),该部分占TSS的50%W3=(126—30)×50%×114000=5472kg/d。
(4)剩余污泥量W=W1 + W3—W2=17875 + 5472—13167=10180kg/d。
(5)剩余污泥体积量q(m3) (6)污泥龄 四、曝气系统计算 1、需氧量计算。
O2=aKQ(So-Se)+b[KQ(Nki-NKe)-0.12X W]-CX w-b[KQ(Nki-Nke-NOe)-0.12X W]×56%=35221(kgO2/d) 2、曝气系统其它部分计算与普通活性污泥法相同。
【干货】AO生物脱氮工艺设计计算
【干货】AO生物脱氮工艺设计计算AO生物脱氮工艺缺氧池容积计算《室外排水设计规范》6.6.18条规定:当仅需脱氮时,宜采用缺氧/好氧法(ANO工艺)。
1.生物反应池的容积,按本规范第6.6.11条所列公式计算时,反应池中缺氧区(池)的水力停留时间宜为0.5~3h。
2.生物反应池的容积,采用硝化、反硝化动力学计算时,按下列规定计算。
(1)缺氧区(池)容积,可按下列公式计算:公式6.6.18-1•Q——设计流量,m3/d;•0.12——微生物中氮的质量分数,由表示微生物细胞中个组分质量比的分子式C5H7NO2计算得出;•X——缺氧池(区)内混合液悬浮固体平均浓度,gMLSS/L;•Nk——缺氧池(区)进水总凯氏氮浓度,mg/L;•Nte——生物反应池出水总氮浓度,mg/L;•Kde——缺氧池(区)反硝化脱氮速率,kgNO3-N/(kgMLSS▪d).其值宜根据试验资料确定。
无试验资料时,20℃的Kde值可取0.03~0.06kgNO3-N/(kgMLSS▪d)。
Kde与混合液回流比、进水水质、温度和污泥中反硝化菌的比例等因素有关。
混合液回流量大,带入缺氧池的溶解氧多,Kde取低值;进水有机物浓度高且较易生物降解时,Kde取高值。
Kde按公式6.6.18-2修正。
公式6.6.18-2•Kde(t)——T℃时的脱氮速率,T为设计温度,℃;•Kde(20)——20℃时的脱氮速率;•△Xv——微生物的净增量,即排出系统的微生物量,kgMLVSS/d,可按公式6.6.18-3计算:公式6.6.18-3•y——MLSS中MLVSS所占比例。
对于这一条规定,需要注意的问题是在公式6.6.18-1中,计算缺氧池容积用总凯氏氮而不是进水总氮减出水总氮?这主要是原污水中硝态氮的含量很低,几乎不可测,所以在数值上进水总凯氏氮基本等于总氮,因此在计算时就用进水总凯氏氮减去出水总氮。
AO生物脱氮工艺好氧池容积计算《室外排水设计规范》6.6.18条规定:当仅需脱氮时,宜采用缺氧/好氧法(ANO工艺)。
AO工艺生物脱氮工艺原理、设计与计算
A/O工艺生物脱氮工艺原理、设计与计算(一)工艺流程A/O工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下因数影响:溶解氧 (0.5~1.5mg/L)、污泥负荷[0.1~ 0.15kgBOD5/(kgMLVSS•d)]、C/N比(6~7)、pH值(7.5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NO3-N还原成N2,不需外加碳源。
反硝化池还原1gNOx-N产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7.14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH值,反硝化池残留的有机物可在好氧硝化池中进一步去除。
一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。
图2 分建式缺氧一好氧活性污泥脱氮系统图3 合建式缺氧好氧活性污泥脱氮系统(二)A/O工艺生物脱氮工艺的特点1.优点①同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。
②反硝化缺氧池不需外加有机碳源,降低了运行费用。
③好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质。
④缺氧池中污水的有机物被反硝化菌所利用,减轻了好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。
AO生化池计算
8000 mg/L 100% 62.5% 167%
取SVI=150 一般取50%-100%
取200%,求除磷系统R内同理
= = = =
762.7 510 1272.7 0.61
kg/d kg/d kg/d kg/d
惰性物质及沉淀池固体流失 去除1kgBOD产生干污泥量
= = = = = =
625 0.25 562 1042 0.36 679
A1O工艺主要计算(动力学计算法) 原始条件:(生物除氮) 1 设计流量 Q = 15000 m3/d 2 进水BOD S0 = 160 mg/L 3 出水BOD Se = 20 mg/L 4 进水TSS X0 = 180 mg/L 5 出水TSS Xe = 20 mg/L 6 进水总氮 TN = 40 mg/L 7 出水总氮 TN = 15 mg/L 8 9 10 11 12 13 14 进水氨氮 出水氨氮 VSS/TSS 进水碱度 pH 水温 混合液 NH3-N NH3-N SALK = = = = = = = 30 8 0.7 280 7.2 14 4000 mg/L mg/L mg/L ℃ mg/L
N W 0.124
Y (S 0 S ) (1 K d c )
4 5 (四)供气管道 1
kgNO3-N/kgMLVSS 2
(三)曝气池总容积 1 总容积 V 2 总泥龄 θ (四)碱度校核
= =
4993.0 m3 16.24 d
1
剩余碱度 SALK1
=
181.5 mg/L
>100mg/L(以CaCO3计)
(五)回流比 1 污泥回流R 回流污泥浓度XR R 2 混合液回流比R内 脱氮率 η N R内 (六)剩余污泥量 1 生物污泥 Px Ps 2 剩余污泥 Δ X 3 单位BOD产干污泥 (七)回流污泥渠、管道 1 回流污泥量Q 流道面积 A 管径 D 2 回流混合液量Q 流道面积 A 管径 D
AO脱氮工艺计算公式|
AO脱氮工艺计算公式|AO脱氮工艺计算公式是指利用氨氧化工艺(AO工艺)进行水体中氨氮的脱除过程中相关参数的计算公式。
AO工艺是一种采用生物脱氮法将水体中的氨氮转化为氮气的处理工艺,一般分为两个阶段,即氨化阶段(Anoxic)和硝化阶段(Oxic)。
在AO脱氮工艺的计算中,主要需要计算的参数有氨氮的质量浓度、氨氮转化率和污泥的回流比率。
首先,计算氨氮的质量浓度。
在氨化阶段,氨氮的转化过程为:NH4+->NO2-+H2O->NO3-其中,NH4+为水体中的氨氮,NO2-为亚硝酸盐氮,NO3-为硝酸盐氮。
氨氮质量浓度(NH4-N)的计算公式为:NH4-N = NH4+浓度(mg/L)* 14 / 17其中,14为NH4+中氮原子的相对分子质量,17为氨态氮(NH4-N)的相对分子质量。
其次,计算氨氮的转化率。
氨氮转化率(η)是指在氨化阶段中,氨氮转化为亚硝酸盐氮和硝酸盐氮的比例。
氨氮转化率的计算公式为:η=(NO2-N+NO3-N)/NH4-N*100%其中,NO2-N为亚硝酸盐氮的质量浓度(mg/L),NO3-N为硝酸盐氮的质量浓度(mg/L)。
最后,计算污泥的回流比率。
污泥的回流比率(RAS)是指将污泥从污泥浓化系统回流至脱氮系统的比例。
污泥回流比率的计算公式为:RAS=Qr/Qa*100%其中,Qr为回流污泥流量(m3/h),Qa为总进水流量(m3/h)。
以上是AO脱氮工艺的主要计算公式,通过计算这些参数可以评估和优化脱氮工艺的效果,从而实现高效的氮污染控制和处理。
这些公式提供了对AO脱氮工艺运行情况的定量分析和控制,并可作为工程设计和运营管理的依据。
AO脱氮工艺参数设计计算
AO脱氮工艺参数设计计算AO脱氮工艺是目前常用的一种脱氮工艺,其主要原理是将含氨废水通过厌氧混合池和好氧生物脱氮池进行脱氮处理。
在设计AO脱氮工艺时,需要考虑以下参数:COD/N比、HRT和PRV。
本文将详细介绍AO脱氮工艺参数设计的计算方法。
首先,需要计算COD/N比。
COD/N比是指进入系统的化学需氧量(COD)与氨氮负荷比值。
通常情况下,COD/N比应控制在8-12之间,以保证好氧脱氮效果良好。
计算COD/N比的公式如下:COD/N比=进水COD浓度/进水氨氮浓度接下来,需要计算水力停留时间(HRT)。
HRT是指水在反应器内停留的时间,它决定了废水在反应器内进行的反应时间。
HRT的计算公式如下:HRT=反应器体积/进水流量最后,需要计算通气比(PRV)。
PRV是指通气量与进水流量的比值,用于调节废水中氧气和氨氮的反应比例。
通常情况下,PRV应控制在0.15-0.3之间,以保证好氧脱氮效果稳定。
计算PRV的公式如下:PRV=通气量/进水流量综上所述,对于AO脱氮工艺参数设计,首先需要计算COD/N比,将其控制在8-12之间;然后计算HRT,以确定反应器内废水的停留时间;最后计算PRV,以控制好氧脱氮过程中的通气量。
需要特别注意的是,以上参数设计仅为一般性的参考值,实际设计时需根据具体情况进行调整。
另外,参数设计时还需考虑废水水质变化、温度变化等因素的影响,结合工程实际进行综合评估和调整。
在参数设计完成后,还需要进行反应器的选型和系统的运行参数设计。
反应器的选型需考虑反应器的容积、反应器的材质和反应器的操作方式等因素。
系统的运行参数设计需考虑进水流量、进水浓度、通气量等因素。
总的来说,AO脱氮工艺参数设计计算是一个综合考虑水质特性、处理效果和经济效益等因素的过程。
通过合理设计和计算,可以有效提高脱氮效果,降低废水处理成本。
AO工艺设计计算参考
A1/O 生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH 值7.0~7.5 水温14~25 °C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996 中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30%的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Ano xic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO生物脱氮工艺设计计算
A1/O生物脱氮工艺设计计算1.已知条件(1)设计流量Q=40000m3/d(2)设计进水水质BOD5浓度S0=130mg/L; TSS浓度X0=180mg/L;TN0=40mg/L; NH3-N=25 mg/L; TP=3.5 mg/L; COD cr=220 mg/L(3)设计出水水质BOD5浓度S e<=20mg/L; TSS浓度X e<=20mg/L;TN e<=20mg/L; NH3-N<=8 mg/L; TP<=1mg/L; COD cr<=60 mg/L PH=6.0~7.02.设计计算(按BOD5负荷计算)(1)设计参数计算根据手册知道:(1)设计参数计算①假设BOD5污泥负荷: N S=0.13kg BOD5/(kgMLSS·d)②污泥指数: SVI=150③回流污泥浓度X R=106*r/SVIr——考虑污泥在沉淀池中停留时间,池深,污泥厚度等因素的系数取r=1.2则X R=106*1.2/150=8000(mg/L)④根据手册回流污泥比R=50%~100% 取R=100%⑤曝气池混合液污泥浓度{X}kg/m3=R*X R/(R+1)=1*8000/2=4000mg/L=4⑥TN去除率{ηN}%=( TN0- TN e)/ TN0=(40-20)/40=50⑦内回流比{R内}%=η/(1-η)=0.5/(1-0.5)=100(2) A1/O池主要尺寸计算①曝气池总有效容积{V}m3=Q设L0/ N S X=40000×130/(0.13×4000)=10000m3又生化反应池中好氧段容积与缺氧段容积之比V1/V2=3~4 取V1/V2=4则V1=8000 m3V2=2000 m3②有效水深h=5.0m③好氧反应池的尺寸总容积V1=8000m3, 设反应池两组。
单组池容V1单= V1/2=4000 m3单组有效面积S1单=V1单/h=4000/5.0=800m2采用5廊道式, 廊道宽b1=5.0m反应池长度L1=S1单/5 b1=800/(5×5.0)=32m校核b/h=5.0/5.0=1 (满足b/h=1~2)L/b=32/5.0=6.4(满足L/b=5~10)超高取1.0,则反应池总高H=5.0+1.0=6 m④缺氧反应池的尺寸总容积V2=2000 m3, 设反应池两组。
AO工艺设计计算参考
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7。
5 水温14~25℃BOD5=160mg/L VSS=126mg/L (VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3—N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978—1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH —N〈20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%.废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO脱氮工艺参数设计计算
O1=aQ(Co-Ce)
a--去除1kgCOD需氧量
a=0.45kgO2/kgCOD
O1=0.45×2400×(10-1)=9720 kg/d
硝化反应需氧量O2
O2=bENQ(NH3-NJ进- NH3-N出)
b—硝化1kg氨氮需氧量
b=4.57 kgO2/kgNH3-N
O2=4.57×0.97×(500-15)×2400×10-3=5160 kg/d
已知参数
Q=100m3/h=2400m3/d COD=10000mg/l ss=000mg/l NH3-NJ进=500 mg/l
经A/O工艺处理后的水质达到:COD<1400(本工程按平均1000算) NH3-N出<25 mg/l(本工程按平均15 mg/l算)
容积负荷
本工艺按2.0公斤计算
Nv=2.0 kgCOD/(m3.d)
反应池所需氧量Oa包括有机物COD氧化需氧量O1,硝化反应需氧量O2,微生物自身氧化需氧量O3,保持好氧池一定的溶解氧所需氧量O4四部分
Oa=O1+O2+O3+O4=9720+5160+5832+130=20842kg/d
A/O脱氮工艺参数设计计算
RC=EN/(1-EN)
0.97/ (1-0.97)
3200%
消化液回流量
Qc= RCQ
32×2400
76800 m3/d
A/O池尺寸主要计算
反应池的有效容积V1
V1=Q(Co-Ce)/ Nv
Q-进水流量
Co-进水COD浓度kg/m3
Ce-出水COD浓度kg/m3
Nv-容积负荷
V1=2400×(10-1)/2污泥指数源自SVI=120回流污泥浓度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 1/O 生物脱氮工艺设计计算1. 已知条件(1) 设计流量 Q=40000m 3/d(2) 设计进水水质 BOD 5浓度S 0=130mg/L; TSS 浓度X 0=180mg/L; TN 0=40mg/L; NH 3-N=25 mg/L; TP=3.5 mg/L; COD cr =220 mg/L(3) 设计出水水质 BOD 5浓度S e <=20mg/L; TSS 浓度X e <=20mg/L; TN e <=20mg/L; NH 3-N<=8 mg/L; TP<=1mg/L; COD cr <=60 mg/L PH=6.0~7.02. 设计计算(按BOD 5负荷计算)(1) 设计参数计算根据手册知道:(1)设计参数计算①假设BOD5污泥负荷: NS=0.13kg BOD5/(kgMLSS〃d)②污泥指数: SVI=150③回流污泥浓度XR=106*r/SVIr——考虑污泥在沉淀池中停留时间,池深,污泥厚度等因素的系数取r=1.2则XR=106*1.2/150=8000(mg/L)④根据手册回流污泥比R=50%~100% 取R=100%⑤曝气池混合液污泥浓度{X}kg/m 3=R*X R /(R+1)=1*8000/2=4000mg/L=4⑥TN 去除率{ηN }%=( TN 0- TN e )/ TN 0=(40-20)/40=50⑦内回流比{R 内}%=η/(1-η)=0.5/(1-0.5)=100(2) A 1/O 池主要尺寸计算①曝气池总有效容积{V}m 3=Q 设L 0/ N S X=40000×130/(0.13×4000)=10000m 3又生化反应池中好氧段容积与缺氧段容积之比 V 1/V 2=3~4取V 1/V 2=4则V 1=8000 m 3 V 2=2000 m 3②有效水深 h=5.0m③好氧反应池的尺寸总容积V 1=8000m 3, 设反应池两组。
单组池容V 1单= V 1/2=4000 m 3单组有效面积S 1单=V 1单/h=4000/5.0=800m 2采用5廊道式, 廊道宽b 1=5.0m反应池长度L 1=S 1单/5 b 1=800/(5×5.0)=32m校核 b/h=5.0/5.0=1 (满足b/h=1~2)L/b=32/5.0=6.4(满足L/b=5~10)超高取1.0,则反应池总高H=5.0+1.0=6 m④缺氧反应池的尺寸总容积V2=2000 m3, 设反应池两组。
单组池容V2单= V1/2=1000 m3单组有效面积S2单=V2单/h=1000/5.0=200m2长度与好氧池宽度相等, 为L=25m, 池宽=S2单/L=200/25=8m采用3廊道式,则廊道宽b2=8/3=2.7m⑤污水在A1/O池内停留时间t=V/Q=10000/40000=0.25d=6h水力停留时间A1:O=1:(3~4) 取A:O=1:4则A1停留时间为t1=1.2h; O段停留时间t2=4.8h⑥进水管两组反应池合建,进水与回流污泥进入进水竖井,经混合后经配水渠、进水潜孔进入缺氧池反应池进水管设计流量Q1=Q=40000/86400=0.463m3/s 管道流速采用V=1.0m/s则管道过水断面A=Q1/V=0.463/1.0=0.463 m2管径d=(4A/π)1/2=(4×0.463/π)1/2=0.77m取进水管径为DN800mm较核管道流速v=Q/A=0.463/[(0.8/2)2×π]=0.9m/s⑦回流污泥渠道反应池回流污泥渠道设计流量QRQR=R×Q=1×40000/86400=0.463 m3/s渠道流速v=0.8m/s则渠道断面积A=QR/v=0.463/0.8=0.578m2取渠道断面b×h=1.0m×0.6m较核流速v=0.463/(1.0×0.6)=0.77 m/s渠道超高取0.3m渠道总高为0.6+0.3=0.9 m污泥回流管道Q=0.463 m3/sR=0.8 m/s若管道流速R那么管径d=(4A/π)1/2=(4×0.463/π)1/2=0.77m取回流污泥管径为DN800mm较核管道流速v=Q/A=0.463/[(0.8/2)2×π]=0.9m/s ⑧进水竖井反应池进水孔尺寸:=(1+R)×Q/2=0.463 m3/s 进水孔过流量: Q2孔口流速v=0.7 m/s/ v=0.463/0.7=0.66 m/s 孔口过断面积A=Q2孔口尺寸取1.2 m×0.6 m进水竖井平面尺寸2.2 m×1.6 m⑨出水堰及出水竖井=0.463 m3/s出水流量Q3孔口流速v=0.7 m/s/ v=0.463/0.7=0.66 m/s 孔口过断面积A=Q3孔口尺寸取1.2 m×0.6 m出水竖井平面尺寸2.0 m×1.6 m按矩形堰流量公式:Q3=mb√2gH3/2 m3/s式中:孔口当做堰宽的话即b=1.2m ,流量系数m取0.45, 已知流量Q3=0.463 m3/s 所以堰上水头H= 0.38m⑩出水管管道流速采用V=0.8m/s则管道过水断面A=Q1/V=0.463/0.8=0579 m2管径d=(4A/π)1/2=(4×0.579/π)1/2=0.86m取出水管径为DN800mm较核管道流速v=Q/A=0.463/[(0.8/2)2×π]=0.9m/s(3)剩余污泥量①水溶解性BOD5S= Se-1.42×f×TSS(1-е-kt)=130-1.42×0.7×20×(1-е-0.23×5)=6.41mg/L K为BOD的分解速率常数②好氧池设计污泥龄首先确定硝化速率μN(取设计PH=7.2),硝化速率μN =[0.47е0.098(T-15)][N/(N+10(0.05T-1.158)) ][O2/(ko2+O2)][1-0.833(7.2-PH)]=0.47е0.098(10-15)×8×2/(8+10(0.05×10-1.158))/(1.3+2)=0.17d-1式中:N——NH3-NA的浓度,mg/LK02——氧的半速常数,mg/L2——反应池中的溶解氧浓度,mg/L硝化反应所需的最小泥龄θm =1/μN =1/0.17=5.88d选用安全系数K=3设计污泥龄θ=K θm =3×5.88=17.64d则系统总设计泥龄=好氧池泥龄+缺氧池泥龄=17.64+17.64×2000/8000=22.05d③生物污泥产量P X =YQ(S e -S)/(1+K d θc )对于生活污水, 污泥产率系数Y 值一般位于0.5~0.65之间, K d 值在0.05~0.1之间则取Y=0.6 内源代谢系数K d =0.05P X =0.6×40000(0.13-0.00641)/(1+0.05×22.05)=1410.78(kg/d)对存在的惰性物质和沉淀池的固体流失量可采用下式计算P S =Q(X 1-X e )=40000×(0.180-0.180×0.7-0.020)=1360(kg/d)X 1为进水悬浮固体中惰性部分(进水TSS-进水VSS)的含量因为0.7=VSS/TSS剩余污泥量△X= P X + P S =1410.78+1360=2770.78(kg/d)去除每1kgBOD 5产生的污泥量=ΔX/[Q(S 0-S e )]=2770.78/[40000× (0.13-0.02)]=0.63(kgD S /kgBOD 5)(4)曝气系统设计计算① 设计需氧量AOR 需氧量包括碳化需氧量和硝化需氧量,并扣除剩余活性污泥排放所减少的BOD u 及NH 3-N 的氧当量(此部分用于细胞合成,并未好氧),同时还应考虑反硝化脱氮产生的氧量。
AOR=碳化需氧量+硝化需氧量-反硝化脱氮产氧量=(去除BOD 5需氧量-剩余污泥中BOD u 氧当量)+(NH 3-N 硝化需氧量-剩余污泥中NH 3-N 氧当量)-反硝化脱氮产氧量(或者用式AOR=a ′Q (S 0-S e )+b ′VX v )计算A 、 碳化需氧量D 1D 1=Q(S 0-S)/(1-е-kt )-1.42 P X =40000×(0.13-0.00641)/(1-е-0.23×5)-1.42×1410.78 =5230.91(kgO 2/d)式中:k ——BOD 的分解速率常数,d -1,去k=0.23t ——BOD 5的试验时间,取t=5天B 、 硝化需氧量D 2D 2=4.6Q(N o -N e )-4.6×12.4%×P X=4.6×40000×(0.04-0.008)- 4.6×12.4%×5230.91=2904.29(kgO 2/d) 式中:N ——进水总氮浓度,kg/m 3N 0——出水NH 3-N 浓度,kg/m 3,其余意义同前C 、反硝化脱氮产生的氧量D 3D 3=2.86N tN t 为反硝化脱氮产生的氧量需还原的硝酸盐氮量N t =Q N ot /1000N ot 为所需脱硝量微生物同化作用去除的总氮N WN W =0.124Y(S o -S)/(1+ K d θ)=0.124×0.6×(0.13-0.00641)/ (1+0.05×17.64)=4.8(mg/L)被氧化的NH 3-N=进水总氮量-出水氨氮量-用于合成的总氮量=40-8-4.8=27.2(mg/L)所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量=40-20-4.8=15.2(mg/L)需还原的硝酸盐氮量N t =40000×15.2/1000=608(kg/d)则D 3=2.86×608=1738.88(kgO 2/d)故总需氧量:AOR= D 1+ D 2-D 3=5230.91+2904.29-1738.88=6396.32(kgO 2/d)=266.51(kgO 2/h)最大需氧量与平均需氧量之比为1.4,则AOR max =1.4AOR=1.4×6396.32=8954.85(kgO 2/d)=373.11(kgO 2/h) 去除每1kgBOD 5的需氧量=AOR/Q(S 0-S e )=6396.32/(40000×(0.13-0.02))=1.45(kgO 2/kgBOD 5) ② 标准需氧量采用鼓风曝气,微孔曝气器敷设于池底,距池底0.2m,淹没深度3.8m,氧转移效率E A =20%,将设计需氧量AOR 换算成标准状态下的需氧量SOR SOR=AOR ×C S(20)/(α(βρC Sm(T)-C L ) ×1.024(T-20))式中:T 为设计污水温度, T=25℃C L 为好氧反应池中溶解氧浓度,取2mg/Lρ为压力修正系数, ρ=工程所在地区大气压/1.013×105,本例工程所在地区大气压为1.013×105,故此ρ=1α为污水传氧速率与清水传氧速率之比,取0.85β为污水饱和溶解氧与清水饱和溶解氧之比,取0.9查表得水中溶解氧饱和度:C S(20)=9.17 mg/L C Sm(25)=8.38 mg/L空气扩散器出口处绝对压力:P b =P+9.8×103H式中:H 为空气扩散器的安装深度P 为大气压力P b =1.013×105+9.8×103×3.8=1.385×105(P A )空气离开好氧反应池时氧的百分比O t :O t =21(1-E A )/(79+21(1-E A ))= 21(1-20%)/(79+21(1-20%))=17.54%好氧反应池中平均溶解氧饱和度:C Sm(25)= C S(25)( P b /(2.066×105)+17.54/42)=8.38×(1.385/2.066+17.54/42)=9.12 mg/L标准需氧量为:SOR=6396.32×9.17/[0.85×(0.9×1×9.12-2)×1.024(25-20)]=9872.54(kg/d)=411.36(kg/h)相应最大时标准需氧量为:SOR max =1.4SOR=1.4×9872.54(kg/d)=13821.56(kg/d)=575.90(kg/h) 好氧反应池平均时供气量为:GS =100SOR/0.3EA=411.36×100/(0.3×20)=6856(m3/h)0.3表示标准状态(0.1Mpa,20 C)下每立方米空气中含氧量(kgO2/m3)最大时供气量: Gmax = 1.4GS=1.4×6856=9601.2(m3/h)③曝气器数量计算(以单组反应池计算)a、按供氧能力计算曝气器数量N=SOR/qcq c 为充氧能力,kgO2/(h〃个)采用刚玉钟罩式微孔曝气器,参照鼓风曝气系统设计规程,工作水深4.0m,在供风量q=1~3m3/(h〃个)时,曝气器氧利用率EA=20%,服务面积0.25~0.8m2,充氧能力qc =0.14kgO2/(h〃个),则:N=575.90/2/0.14=2056(个)b 以微孔曝气器服务面积进行较核f=F/N=5×5×40/2056=0.486(m2)<0.8(m选用GYZZ178-2的曝气器④供风管道计算. 供风管道系指风机出口至曝气器的管道。