人教版九年级上册数学公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 二次根式
1、一个正数有两个平方根;在实数范围内,负数没有平方根。
2、一般地,我们把形如 (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
3、a (a ≥0)是一个非负数.当a 为带分数是,要把a 改写成假分数,即5322要写成53
8 4、二次根式的性质:(a )2=a (a ≥0), 2a =a (a ≥0)
5、用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。
6、二次根式的乘法规定:a ×b =ab (a ≥0,b ≥0)
7、二次根式的除法规定:b a =b
a (a ≥0,
b >0) 8、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。
9、二次根式加减法法则:先将二次根式化成最简二次根式,再合并同类二次根式
10、同类二次根式即指被开方数相同的最简二次根式
11、平方差公式:a 2-b 2=(a+b)(a-b) 完全平方公式:(a ±b )2=a 2±2ab+b 2
12、二次根式除法没有分配率,任何非零数的零次幂都是1,(ab )m =a m b m
第二十二章 一元二次方程
1、 等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
2、 一元二次方程的一般形式:ax 2+bx+c=0(a ≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
3、 使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根。
4、 解一元二次方程的方法:
(1) 直接开方法:如果方程能化成x 2=p 或(mx+n )2=p(p ≥0)的形式,那么可得x=p ±或mx+n=p ±
(2) 配方法:步骤:第一步,把方程化成一般形式(二次项系数是1);第二步,把常数项移到方程的右边;第三步,配方,方程的左右两边同时加上一次项系数一半的平方;第四步,把方程左边写成含有未知数的代数式的平方的形式,即(x-k )2=h(h ≥0);第五步,用直接开平方法解方程。
(3)
公式法:Δ=b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)根的判别式。当Δ>0时,方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根;当Δ=0时,方程ax 2+bx+c=0(a ≠0)有两个相
等的实数根;当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根。当Δ≥0时,式子
x=
a ac
b b
2
4 2-
±
-
叫做一元二次根式 ax2+bx+c=0(a≠0) 的求根公式。
(4)因式分解法:左端能够因式分解成(a
1x+b
1
)(a
2
x+b
2
)=0,根据乘法中一个数同
零相乘积是零的性质,可得(a
1x+b
1
)=0或(a
2
x+b
2
)=0,进而求出方程的解。
5、一元二次方程的根与系数的关系:方程的两个根x
1,x
2
和系数a,b,c有如下关系:
x 1+ x
2
=-
a
b
, x
1
x
2
=
a
c
6、一元二次方程解实际应用题的步骤:(1)审题;(2)设未知数;(3)列代数式;(4)列方程;(5)解方程;(6)检验;(7)写出答案。
①平均增长率方面:平均增长率公式:a(x+1)2=b;降低率公式:a(x-1)2=b(a为起始
量,b为终止量,n为增长的次数及降低的次数,x为平均增长率及平均降低率)
②利润方面:总利润=总销售额-总成本;总利润=单个利润×总销售量
③与几何图形有关的:涉及三角形的三边关系,三角形全等,面积的计算,体积的计算,勾股定理等
④行程方面:路程=速度×时间
第二十三章旋转
1、平移是指在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。性质:对应线段平行且相等;对应角相等;对应点所连接的线段平行且相等。
轴对称图形是指如果一个图形沿着一条直线对折后两部分完全重合。
旋转是指在平面内,把一个图形绕着某一点转动一个角度的图形变换;在旋转过程中始终保持固定不动的定点叫旋转中心;图形绕一个定点沿某个方向转动的角叫旋转角。
2、旋转性质:(1)只改变位置,不改变图形的大小及形状;(2)任意一对对应点与旋转中心所连线段的夹角都相等;(3)对应点到旋转中心的距离相等;(4)图形上的每一个点都沿相同的方向旋转相同都角度。
3、旋转作图的步骤:第一步,确定旋转角的大小和方向;第二步,确定每对对应点;第三步,确定旋转后的图形。一般情况下,旋转角小于360度。
4、把一个图形绕着某一点旋转180度,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,
5、全等的图形不一定是中心对称,而中心对称的两个图形一定全等。中心对称有一个对称中心,绕中心旋转180度,旋转后与另一个图形重合;轴对称有一条对称轴,图形对称折叠,折叠后与另一个图形重合。
6、中心对称性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形。
7、把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。线段、平行四边形是中心对称图形。(1)既是轴对称又是中心对称图形的有:长方形、正方形、圆、菱形等(2)只是轴对称的有:角、五角星、等腰