三角函数教材分析

合集下载

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

人教版高中数学必修4《三角函数》教材分析与教学建议

人教版高中数学必修4《三角函数》教材分析与教学建议

区别
利用单位圆, 重视数形结合. 重视让学生 参与三角函数概 念、公式、图象 和性质等知识的 产生和推导的全 过程. 只定义三个三 角函数 同角关系三个 减为两个. 删去已知三角 函数值求角、反 三角函数. 降低“给角 求值”,“化简 与证明三角恒等 式”的难度要求. 现代教学技 术支持教学
三 角 函 数

纲标对比:
内 容
教学大纲
课程标准
会用三角函数解决一 些简单实际问题,体会三 角函数是描述周期变化现 象的重要函数模型.
区别
新增数 学应用及数 学建模的教 学要求.
三 角 函 数

加强: 三角函数作为刻画现实世界的数学模型; 借助单位圆理解三角函数的概念、性质; 新增利用现代教学技术辅助教学的安排; 通过建立三角函数模型解决实际问题等。 削弱: 删减任意角的余切、正割、余割,三角函数的奇偶性, 已知三角函数求角,反三角函数符号等。 降低同角三角函数的基本关系式、诱导公式等的教学 要求等。(获得必要的基础知识,运算的技巧难度降低要求)
1. 定义1弧度的大小 2.在坐标系中定义三角函数 (1)突出三角函数概念的本质; (2)简化定义形式,体现数学的从简精神; (3)加强与几何的联系,便于应用。 任意角α → 点P的纵坐标——正弦 任意角α → 点P的横坐标——余弦 3. 画三角函数图象(同原教学) 4.导出三角函数的图象、基本性质、同角三角函数关 系式、诱导公式(同原教学)
中的作用.通过本章的学习,学生将进一步加
深对函数概念的理解,提高用函数概念解决问
题的能力.
二、教材特点
1、加强几何直观,强调数形结合思想. 2、突出三角函数在刻画周期变化现象 中的地位和作用、过程和方法. 3、利用知识的发生发展过程提出问题,引 导思考,训练思维,提高能力. 4、突出信息技术的工具性.

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

第1章三角函数教材分析

第1章三角函数教材分析

第一章 三角函数教材分析三角函数是中学数学的重要内容之一,它的基础主要是几何中的相似形和圆,研究方法主要是代数变形和图象分析,因此三角函数的研究已经初步把几何与代数联系起来了,本章所介绍的知识,既是解决生产实际问题的工具,又是学习中学后继内容和高等数学的基础本章教学时间约用16课时,具体分配如下(仅供参考):1.1任意角和弧度制 约2课时1.2 任意角的三角函数 约3课时1.3 三角函数的诱导公式 约2课时1.4 三角函数的图象和性质约4课时1.5 函数y=Asin(ωx+φ) 的图象 约2课时1.6 三角函数模型的简单应用 约2课时小结与复习 约1课时一、 内容与要求(一)本章主要内容是任意角的概念、弧度制、任意角的三角函数、同角三角函数间的关系、诱导公式、以及三角函数的图象和性质和三角函数模型的简单应用(二)章头引言安排了一个天体运动问题——地球与月亮、月亮的圆缺和农历日期的周期对应的规律 第一大节是“任意角和弧度制”教科书首先推广了角的概念,介绍了弧度制,和换算关系等;第二大节是“任意角的三角函数”,由锐角三角函数直接推广到任意角(都用坐标定义),然后导出同角三角函数的两个基本关系式 第三大节是“三角函数的诱导公式” 能够通过诱导公式化简和计算. 第四大节是“三角函数的图象和性质”x y sin = ,x ∈[0,π2]的图象,并根据“终边相同的角有相同的三角函数值”,把这一图象向左、右平行移动,得到正弦曲线;在此基础上,利用诱导公式,把正弦曲线向左平行移动2π个单位长度,得到余弦曲线接着根据这两种曲线的形状和特点,研究了正弦、余弦函数的性质,然后又研究了正弦函数的简图的画法,简要地介绍了利用正切线画出正切函数的图象以及正切函数的性质第五大节是“函数y=Asin(ωx+φ) 的图象” 通过图像研究性质. 第六大节是“三角函数模型的简单应用” 三角函数是描述现实世界中周期现象的一种数学模型.(三)本章的教学要求是:1.使学生理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算2.使学生掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式3.使学生掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力4.三角函数是描述现实世界中周期现象的一种数学模型,初步掌握其实际应用方法二、 考点要求1.理解弧度的定义,并能正确地进行弧度和角度的换算2.掌握任意角的三角函数的定义、三角函数的符号、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义,会求)sin(ϕω+=x A y 的周期,或者经过简单的能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式3.了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数)sin(ϕω+=x A y 的简图,并能解决正弦、曲线有关的实际问题,初步掌握三角函数模型的实际应用方法三、考点分析三角函数是一种重要的初等函数,由于其特殊的性质以及与其他代数、几何知识的密切联系,它既是研究其他各部分知识的重要工具,又是高考考查双基的重要内容之一本章分两部分,第一部分是三角函数部分的基础,不要求引入难度过高,计算过繁,技巧性过强的题目,重点应放在结知识理解的准确性、熟练性和灵活性上 试题以选择题、填空题形式居多,试题难度不高,常与其他知识结合考查教学过程中应把握好以下几点:1.理解弧度制表示角的优点在于把角的集合与实数集一一对应起来,二是就可把三角函数看成以实数为自变量的函数2.要区别正角、负角、零角、锐角、钝角、区间角、象限角、终边相同角的概念3.在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并对不同的象限分别求出相应的值在应用诱导公式进行三角式的化简、求值时,应注意公式中符号的选取4.单位圆中的三角函数线,是三角函数的一种几何表示,用三角函数线的数值来代替三角函数值,比由三角函数定义所规定的比值所得出三角函数值优越得多,因此,三角函数是讨论三角函数性质的一个强有力的工具5.要善于将三角函数式尽可能化为只含一个三角函数的“标准式”,进而可求得某些复合三角函数的最值、最小正周期、单调性等对函数式作恒等变形时需特别注意保持定义域的不变性6.函数的单调性是在给定的区间上考虑的,只有属于同一单调敬意的同一函数的两个函数值才能由它的单调性来比较大小7.对于具有周期性的函数,在作图时只要先作它在一个周期中的图象,然后利用周期性就可作出整个函数的图象四、三角函数中应注意的问题(一)本章内容的重点是:任意角三角函数的概念,同角三角函数间的关系式、诱导公式难点是:弧度制的慨念,综合运用本章公式进行简单三角函数式的化简及恒等式的证明,周期函数的概念,函数)sin(ϕω+=x A y 的图象与正弦曲线的关系由于课时较紧,教学中应遵循大纲所规定的内容和要求,不要随意补充知识点 例如,三角函数基本上只讲正弦、余弦、正切三种;同角三角函数的基本关系式只讲1cos sin 22=+αα,αααtan cos sin =,1cot tan =⋅αα三个;除απαtan )2tan(=+k (k ∈Z )外,其余诱导公式中,要求学生记住并能灵活运用的,只是用正弦、余弦表示那几个,以后求tan 0120可通过用科学计算器或者转化为 00120cos 120sin 来求;在推导正切的和角公式以及画正切函数的图象时,出现了正切的诱导公式,但这只作为推导的中间步骤,不要求学生记忆;积化和差与和差化积公式、半角公式也只是作为和(差)角公式的应用出现一下,结果不要求记忆,更不要求运用;此外,也不要补充“把ααcos sin b a +化成一个角的三角函数的形式”这样的例习题(二)在讲述弧度制的优点、角度制的不足时,要注意科学性事实上,角的概念推广后,无论用弧度制还用角度制,都能在角的集合与实数集R 及之间建立起一种一一对应的关系说“每个角都有唯一的实数与它对应”时,这个实数可以取这个角的弧度数,或度数,或角度制下的分数,或角度制下的秒数,所以对应法则不是唯一的,但每一种对应法则下对应的实数是唯一的所以不要认为只有弧度制才能将角与实数一一对应有的教师认为角度制的计量单位太小,而弧度制的计量单位大,而且可以省略不写,这种说法虽有一定道理,但在科学上并不具有充足的理由,因为小有小的好处,何况坐标系中两条数轴上的单位长度可以不一致关键在于用角度制表示角的时候,我们总是十进制、六十进制并用的,例如角'''0122161其中61、21、12都是十进数,而度、分、秒之间的关系是六十进(退)位的,这样,为了找出与角对应的实数(我们学的实数都是十进数),要经过一番计算,这就不太方便了(三)定义了任意角的三角函数以后,严格地说,例如,只有 x y sin =,R x ∈才可以说是正弦函数;六种函数统称三角函数,说明不是这六种函数的函数,都不能说是三角函数,例如R x x y ∈=,2sin 可以说是2x 的正弦函数(这时可说它是三角函数),也可以说是正弦函数R t t y ∈=,sin 与正比例函数 R x x t ∈=,2的复合函数,但不能说是x 的正弦函数另一点是函数的定义域,三角函数或与其相关的函数总是附带定义域的,所以教学中不宜随便说(或写)“正弦函数y=sinx ”,需知“函数x y sin =,]2,0[π∈x ”只是正弦函数的一个周期,不要把部分当作整体。

4三角函数教材分析

4三角函数教材分析

《三角函数教材分析》北京市第一0一中学 方明一、课标要求与说明(2017版)三角函数的内容是幂函数、指数函数、对数函数之后又一种函数类型,2017版课标中要求如下:三角函数是一类最典型的周期函数。

本单元的学习,可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性;用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;利用三角函数构建数学模型,解决实际问题。

内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。

(1)角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性(参见案例3)。

(2)三角函数概念和性质①借助单位圆理解三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值。

(注:新教材侧重于先有性质再画图像)。

借助单位圆的对称性,利用定义推导出诱导公式(2,πααπ±±的正弦、余弦、正切)。

②借助图象理解正弦函数、余弦函数在[0,2]π上,正切函数在(,)22ππ-上的性质。

③结合具体实例,了解sin()ωϕ=+y A x 的实际意义;能借助图象理解参数,,ωϕA 的意义,了解参数的变化对函数图象的影响。

(3)同角三角函数的基本关系式理解同角三角函数的基本关系式: 22sin cos 1+=x x ;sin tan cos =xx x。

(4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。

②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。

数学必修4 第一章三角函数教材分析

数学必修4 第一章三角函数教材分析

为今后学习打好基础应让学生熟练掌握。
(2) 分层落实不搞一步到位 三角函数中关于求值、化简、证明的问题, 是重要知识点,也是高考重点,是对同角三角 函数关系,诱导公式,三角恒等变形后逐步深 化的。 要使学生体会解决这类问题的一般方法, 提高对数学知识内部联系的认识。
第三章教材分析
一、教学目标
三角恒等变换的教学目标
数学必修4
第一章三角函数 第三章三角恒等变换
教材分析
一、教学目标
三角函数的教学目标
(1)三角函数的教学目标是: 应使学生理解三角函数的定义以及图 象和性质;通过三角函数在简单实际问题 中的应用,使学生体会三角函数是描述周 期变化现象的重要函数模型,感受它在解 决具有周期变化规律的问题中的重要作用. (2)强调三角函数描述周期现象的数学 模型的作用.
人教A版
函数作为描述客观世界变化 规律的数学模型
强 调:
用函数的观点认识“三角函数”, 用函数的思维理解“三角函 数”. 《课程标准》对“三角函数”的定位 是“三角函数是基本初等函数,它是描 述周期现象的重要数学模型,在数学和 其它领域中具有重要的作用”,我们也可 以看到:教科书在编写“三角函数”是自 始至终贯彻《课程标准》这一理念.
(1)目标:运用向量的方法推导基本的三 角恒等变换公式,由此出发导出其他的三 角恒等变换公式,并能运用这些公式进行 简单的恒等变换.
(2)变化:要求运用向量的方法推导基本 的三角恒等变换公式,不在三角变换的技 巧上提过高要求.
把三角恒等变换 从三角函数中独立出 来,其目的也是为了 在三角函数一章中突 出“函数作为描述客 观世界变化规律的数 学模型”这条主线.
代数法: 依据 ① 周期函数的定义
从等式 f x T f x 来看, 应强调是自变量x本身加的常量才是

三角函数教案

三角函数教案

三角函数教案三角函数教案(通用5篇)在教学工作者实际的教学活动中,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

快来参考教案是怎么写的吧!下面是店铺帮大家整理的三角函数教案,仅供参考,希望能够帮助到大家。

三角函数教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。

本节是第一课时,教学内容为公式(二)、(三)、(四)。

教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。

同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析学情分析第三章主要介绍三角函数的相关概念和性质,是高中数学研究的重要内容之一。

通过分析学生的学情,可以更好地理解学生对三角函数的掌握程度和研究动力,从而有针对性地进行教学。

学生掌握程度通过对学生进行测验和作业的分析,可以发现学生在掌握三角函数的基本概念和性质方面存在一些困难。

很多学生对三角函数的定义、正弦定理和余弦定理等知识点掌握不够扎实,容易混淆和搞混不同的公式和概念。

研究动力通过与学生进行交流和观察研究情况,可以发现对于三角函数的研究,部分学生存在着研究动力不高的问题。

一方面,学生觉得三角函数比较抽象和难理解,缺乏对其在现实生活中的应用的认识和兴趣。

另一方面,有些学生缺乏研究三角函数的目标和动力,认为这部分内容与他们的研究需求和兴趣不符。

教材分析教材在教学过程中发挥着重要的作用。

通过分析教材的内容和设计,可以了解教材在三角函数研究中的优点和不足,为教学提供参考和改进的方向。

优点教材对三角函数的基本概念和性质进行了清晰的解释和举例,帮助学生理解相关知识点。

教材中提供了一些生动的实例和实际应用,有助于激发学生的研究兴趣和动力。

此外,教材中的练题和题集数量适中,覆盖了基础和拓展的内容,有助于学生巩固和扩展所学知识。

不足教材在三角函数的难点和易错点的强化上有所不足。

对于学生常犯的错误和容易混淆的概念,教材中的讲解和练题没有给予充分的重视和解答。

此外,教材中的应用题数量有限,无法满足学生对三角函数实际应用的需求。

改进建议针对学情分析和教材分析,可以提出以下改进建议,以提高学生对三角函数的研究效果和动力。

1. 增加练题的难度和进阶内容,帮助学生深入理解三角函数的性质和应用。

2. 强化教材中易错点和难点的讲解和练,让学生能够更好地消化和掌握这些知识点。

3. 增加实际应用题的数量和难度,让学生能够将所学知识应用到实际问题解决中。

4. 鼓励学生参加数学竞赛或实践活动,提高对三角函数研究的兴趣和动力。

高中数学 三角函数

高中数学 三角函数

高中数学三角函数一、教学分析三角函数是数学中常见的一类关于角度的函数。

也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

三角函数是基本初等函数之一,它是中学数学的重要内容之一,它的认知基础主要是几何中圆的性质、相似形的有关知识,在必修ⅰ中建立的函数概念以及指数函数、对数函数的研究方法。

主要的学习内容是三角函数是概念、图像和性质,以及三角函数模型的简单应用;研究方法主要是代数变形和图像分析。

因此,三角函数的研究已经初步把几何与代数联系起来了。

本章所介绍的知识,既是解决生产实际问题的工具,又是学习后继内容和高等数学的基础,三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。

三角函数作为描述周期现象的重要数学模型,与其他学科联系紧密。

二、目标建议1.总体要求三角函数就是基本初等函数,它就是叙述周期现象的关键数学模型,在数学和其他领域有著关键促进作用。

在本模块中,学生将通过实例,自学三角函数及其基本性质,体会三角函数在化解具备周期变化规律的问题中的促进作用。

2.具体要求(1)任一角、弧度制:介绍任一角的概念和弧度制,能够展开弧度与角度的互化。

①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②利用单位圆中的三角函数线推论出来诱导公式(正弦、余弦、正弦),能画出来y=sinx,y=cosx,y=tanx的图像,介绍三角函数的周期性。

③借助图像理解正弦函数、余弦函数在[0,2],正切函数在上的性质(如单调性、最大和最小值、图像与x轴的交点等)。

④认知同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图像,观察参数对函数图像变化的影响。

第二十八章《锐角三角函数》教材分析(教案)

第二十八章《锐角三角函数》教材分析(教案)
三、教学难点与重点
1.教学重点
(1)锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用是本节课的核心内容。重点讲解三个函数的概念,使学生理解并掌握其在直角三角形中的表示方法。
举例:在直角三角形中,当锐角A的对边为a,邻边为b,斜边为c时,正弦(sin)为a/c,余弦(cos)为b/c,正切(tan)为a/b。
针对以上教学难点,教师应采取以下措施:
1.通过直观的图形演示,帮助学生理解锐角三角函数的互化关系。
2.结合实际案例,引导学生学会将现实问题抽象为数学模型,并运用锐角三角函数求解。
3.开展跨学科教学活动,让学生在实际情境中体会数学知识的应用,提高跨学科综合应用能力。
四、教学流程
(一)导入新课(用时5分钟)
第二十八章《锐角三角函数》教材分析(教案)
一、教学内容
第二十八章《锐角三角函数》教材分析(教案):
本章节内容依据人教版八年级数学教材,主要包括以下部分:
1.锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用。
2.锐角三角函数的图像与性质:正弦、余弦、正切函数的图像及其性质。
3.锐角三角函数的简单应用:利用锐角三角函数解决直角三角形中的实际问题,如测量物体的高度等。
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
(二)新课讲授(用时10分钟)
五、教学反思
在本次《锐角三角函数》的教学过程中,我注意到了几个值得反思的方面。首先,学生在理解锐角三角函数定义时,普遍感到概念较为抽象。为此,我通过引入生活实例,如测量物体高度等,帮助学生将抽象的数学概念与具体实际相结合,降低理解难度。但在这一过程中,我也发现部分学生对实际问题的提炼和数学化处理能力较弱,需要在今后的教学中加强这方面的训练。

人教A版必修4三角函数部分的教材分析与教学建议1

人教A版必修4三角函数部分的教材分析与教学建议1

人教A版必修4三角函数部分的教材分析与教学建议徐天顺高中数学必修4的内容是:三角函数、平面向量、三角恒等变换。

其中三角函数与三角恒等变换是高中数学课程的传统内容,平面向量是九十年代进入高中数学课程的内容,因此,本模块的内容属于“传统内容”。

与以往的教科书相比较,新课标教材把三角恒等变换从三角函数中独立出来,在必修4先安排三角函数,再安排平面向量,然后用向量方法推导了两角差的余弦公式,把三角恒等变换作为平面向量的一个应用,安排在第3章,紧接着再安排解三角形的内容(放在数学5的第1章)。

一、《标准》与《大纲》关于必修4三角函数内容目标的表述比较二、课时安排必修4共需36课时,具体分配是:第一章《三角函数》16课时;第二章《平面向量》12课时;第三章《三角恒等变换》8课时。

在教师教学用书中有每一章的课时安排,这里进行汇总并细化,供各位老师安排下学期教学进度时参考。

三、几点教学建议1、合理引导学生用类比的方法进行学习类比推理是由两个对象的某些属性相类似推出它们在别的属性上也类似的思维形式,是利用已有的知识与经验发现和猜想新知识的思维方法,因此在教学中要充分发挥学生头脑中已有的知识与经验的指导作用。

在三角函数的学习中,可以类比长度、重量的不同度量单位引入弧度制;类比研究函数的方法研究三角函数的性质。

2、在教学过程中要让学生明白研究的基本思路三角函数是学生在高中阶段系统学习的又一个基本初等函数,教学中应当注意引导学生以数学l中学到的研究函数的方法为指导来学习本章知识。

用研究函数的一般模式来理解三角函数的学习进程,即:这样可以使学生学习在高观点指导下进行数学学习与研究的思想方法,对进一步理解三角函数概念,理解函数思想方法,提高学生在学习过程中的数学思维水平都是非常有帮助的。

3、关于任意角的三角函数定义任意角的三角函数的定义一般有“单位圆定义法”与“终边定义法”两种,在传统教材和现行的人教B版、苏教版都是采用“终边定义法”,而人教A版和北师大版则采用“单位圆定义法”。

高中数学说课稿(共5篇)

高中数学说课稿(共5篇)

⾼中数学说课稿(共5篇)篇⼀:⾼中数学说课稿:《三⾓函数》说课稿范⽂⾼中数学说课稿:《三⾓函数》⼀、教材分析 (⼀)内容说明函数是中学数学的重要内容,中学数学对函数的研究⼤致分成了三个阶段。

三⾓函数是最具代表性的⼀种基本初等函数。

4.8节是第⼆章《函数》学习的延伸,也是第四章《三⾓函数》的核⼼内容,是在前⾯已经学习过正、余弦函数的图象、三⾓函数的有关概念和公式基础上进⾏的,其知识和⽅法将为后续内容的学习打下基础,有承上启下的作⽤。

本节课是数形结合思想⽅法的良好素材。

数形结合是数学研究中的重要思想⽅法和解题⽅法。

著名数学家华罗庚先⽣的诗句:......数缺形时少直观,形少数时难⼊微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

本节通过对数形结合的进⼀步认识,可以改进学习⽅法,增强学习数学的⾃信⼼和兴趣。

另外,三⾓函数的曲线性质也体现了数学的对称之美、和谐之美。

因此,本节课在教材中的知识作⽤和思想地位是相当重要的。

(⼆)课时安排4.8节教材安排为4课时,我计划⽤5课时(三)⽬标和重、难点1.教学⽬标教学⽬标的确定,考虑了以下⼏点:(1)⾼⼀学⽣有⼀定的抽象思维能⼒,⽽形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合⽅法进⾏探索;(2)本班学⽣对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

(3)学会⽅法⽐获得知识更重要,本节课着眼于新知识的探索过程与⽅法,巩固应⽤主要放在后⾯的三节课进⾏。

由此,我确定了以下三个层⾯的教学⽬标:(1)知识层⾯:结合正弦曲线、余弦曲线,师⽣共同探索发现正(余)弦函数的性质,让学⽣学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究⽅法;好学教育:(2)能⼒层⾯:通过在教师引导下探索新知的过程,培养学⽣观察、分析、归纳的⾃学能⼒,为学⽣学习的可持续发展打下基础;(3)情感层⾯:通过运⽤数形结合思想⽅法,让学⽣体会(数学)问题从抽象到形象的转化过程,体会数学之美,从⽽激发学习数学的信⼼和兴趣。

高中数学_三角函数的概念教学设计学情分析教材分析课后反思

高中数学_三角函数的概念教学设计学情分析教材分析课后反思

5.2.1三角函数的概念学校: 授课教师:班级: 姓名: 学习目标:1. 会利用单位圆上点的坐标定义三角函数,理解三角函数的定义,把握三角函数的本质。

2. 通过动笔求解、合作学习,体会数形结合、由特殊到一般的研究问题的思想方法.3. 经历三角函数定义的形成过程,能抽象出数学模型,发展数学抽象、直观想象等素养.学习重点:任意角的正弦、余弦、正切的定义学习难点:影响单位圆上点的坐标变化的因素分析,三角函数的定义方式的理解,三角函数内在联系性的认识.学习过程:一、设置情境,激发兴趣在单位圆⊙O 上一点P ,以A 为起点做逆时针方向旋转,能否建立一个数学模型, 刻画点P 的位置变化情况. 二、互助合作,形成概念探究一(请同学们动手操作→独立思考→互相讨论→共同交流→探究结论) 请同学们在练习本上作图,完成表格,并思考以下问题: 问题一:3226πππα=时P 的坐标分别是什么?是不是唯一确定的?问题二:任意给定一个角α,它的终边OP 与单位圆交点P 是否唯一确定?三角函数的定义:设α是一个任意角,R ∈α,它的终边OP 与单位圆相较于点P (x,y )正弦函数: 余弦函数: 正切函数:记为探究二、请同学们回忆一下初中锐角三角函数的定义并完成下列问题 问题一:求出346πππ的正弦、余弦、正切值问题二:请按照本节课学习的三角函数的定义求出问题一 你能得出怎样的结论呢?结论: 三、小试牛刀 例1 求35π的正弦、余弦和正切值 小结:变式训练一:完成下列表格四、学以致用例2如图,设α是一个任意角,它终边上任意一点P (不与原点O 重合)的坐标(x,y ),点探究三:请同学们讨论以下问题:问题一:正弦值是否随点P位置的改变而改变?问题二:余弦和正切值是否随点P位置的改变而改变?小结:变式训练二:已知角θ的终边过点P(-12,5),求角θ的三角函数值.五、课堂小结:六、当堂检测1.思考辨析(1)sin α表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sin α=yr,且y越大,sin α的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()2.已知角α终边过点P(1,-1),则tan α的值为()A.1B.-1 C.22D.-22八、作业布置 必做题:1.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________.2.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝⎛⎭⎫-15π4. 选做题:已知角α的终边上有一点P 的坐标是(3a,4a ),其中a ≠0,求αsin 、αcos 、αtan 的值.三角函数的概念的学情分析1. 学生的认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识。

三角函数教材分析及教学建议

三角函数教材分析及教学建议

《三角函数》教材分析及教学建议一、新旧教材对比分析三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。

这是学生在高中阶段学习的最后一个基本初等函数。

三角恒等变换在数学中有一定的应用。

三角函数与三角恒等变换是高中数学课程的传统内容,因此,本模块的内容属于“传统内容”。

与以往的教科书相比较,本书在内容、要求以及处理方法上都有新的变化。

1.以基本概念为主干内容贯穿本书,削枝强干,教材体系更显合理。

“标准”设定的三角函数与三角恒等变换学习目标是:(1)通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用;(2)运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换。

根据上述学习目标,在编写教科书过程中,特别注意突出主干内容,强调模型思想、数形结合思想。

“三角函数”一章,突出了三角函数作为描述周期变化的数学模型这一本质。

即通过现实世界的周期现象,在学生感受引入三角函数必要性的基础上,引出三角函数概念,研究三角函数的基本性质,并用三角函数的基础知识解决一些实际问题。

与传统的处理方法不同,这里把三角恒等变换从三角函数中独立出来,其目的也是为了在三角函数一章中突出“函数作为描述客观世界变化规律的数学模型”这条主线。

为了实现削枝强干的目标,教科书除了将三角恒等变换独立成章外,还在具体内容上进行了处理。

在三角函数部分删减了任意角的余切、正割、余割,已知三角函数值求角以及符号x,arccosarcsin等内容。

任意角、弧度制概念,同角三角函x arctan,x数的基本关系式,周期函数与最小正周期,三角函数的奇偶性等内容都降低了要求。

三角恒等变换中,两角和与差的正余弦、正切公式,二倍角的正余弦、正切公式由原来的掌握减弱为能从两角差的余弦公式导出。

积化和差、和差化积、半角公式都作为三角恒等变换基本训练的例题,不要求用积化和差、和差化积、半角公式作复杂的恒等变形。

《数学》第五章“三角函数”教材分析与教学建议

《数学》第五章“三角函数”教材分析与教学建议
数 。 学 习 三 角 函数 将 对 函 数 的 周 边 概 念 如 函数 符 号 、 定义域 、 值域、 单调性 、 奇偶 性、 周 期 性 等 建 构 更 完 整 的 认 识 。教 师在 教 学 中 要 注 意 让 学 生体 会 三 角 函数 与 一般 函 数 的 区别 与联 系 , 同 时 要 特 别 注 重 数 形
中要注意让学生体会三角 函数 与一般 函数之 间的关 系 ,
即个 性 与共 性 之 间 的关 系 。 同时 , 在本章的教学中 , 要 特
别注 意数学思想方法 的渗 透 . 如突 出“ 数形结合 ” 的思想
方 法 。 由于 三 角 函数 的基 础 是 几 何 中的 相 似 形 和 圆 , 而
角 的正弦 :与单位 圆交点 的横 标 就等 于这 个角 的余 弦: 与单位 圆交点的纵 坐标 与横坐标 的比值就等 于这个
角的正切。
维方法 。 学好余 弦函数 的图像 和性质 的最有效 的方法是
与正 弦 函数 的 图像 和性 质 进 行 类 比 。 下面, 笔 者 对 本 章 的教 学 内容 , 从 学习准备 、 教 学 探
本 章 可 看 作 是 第 三章 ( 函数 ) 的延伸和拓展 。 在 教 学
边角 的问题 。到 了中职教 育阶段 , 需要从 函数 的角度来
认 识 三 角 函数 , 落 实 大 纲 中 与 三 角 函数 部 分 相 关 的教 学 内容 与 要 求 。 本 章 首 先 对 角 的概 念 进 行 推 广 . 并 通 过 弧 度 制 对 角 的度量建立角与实数之 问的一一对应关 系 , 为 学 生 理 解 三 角 函数 是 以实 数 为 自变 量 的 函 数 奠 定 基 础 ; 为 了角 的 概 念 推 广 的需 要 .把 角 放 到 平 面 直 角 坐标 系 中 进 行 研 究, 不 仅建立 了角 的大小与终 边位 置的关 系 , 而 且 通 过 角 的 终 边 上 的点 的坐 标 来 定 义 任 意 角 的 j 角 函 数 . 并 利

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析

第三章三角函数学情与教材分析
第三章的三角函数是高中数学中的重要内容之一。

本文将对学
生学情以及教材进行分析。

1. 学生学情分析
根据对学生学情的观察和调查,我们可以得出以下结论:
- 许多学生对三角函数的概念和性质还存在一定的困惑,特别
是在涉及角度和弧度的转化、三角函数的图像和周期等方面。

- 学生普遍在解三角函数方程和应用相关知识进行实际问题求
解时存在困难。

- 一部分学生对于三角函数的应用场景理解欠缺,缺乏实际的
应用实例和背景知识。

2. 教材分析
针对学生的学情特点,应对教材进行一定的分析和优化,以提
高学生的研究效果和兴趣:
- 引入生活中的实际问题,结合三角函数的应用场景进行教学,以增加学生对概念的理解和兴趣的培养。

- 对于三角函数概念的讲解,可采用多样化的教学方法,如图
形展示、实例演示等,帮助学生更好地理解和掌握。

- 加强练环节,提供大量的练题,包括应用题和思考题,以培
养学生的解题能力和思维能力。

- 利用现代技术手段,如计算机软件和互动教学平台,提供多
样化的研究资源和研究工具,帮助学生更好地研究和巩固所学知识。

总结:
通过对学生学情和教材的分析,我们可以更好地调整教学策略,提高学生的学习效果和成绩水平。

在三角函数教学中,引入生活中
的实际问题,多样化的教学方法以及加强练习和利用现代技术手段
等措施都是有效的教学策略。

人教A版数学必修4第一章三角函数教材分析

人教A版数学必修4第一章三角函数教材分析

必修4“第一章三角函数”教材分析函数是刻画客观世界变化规律的数学模型,不同的变化规律应当用不同的函数来刻画。

三角函数是描述客观世界中周期性变化规律的重要数学模型,在数学和其他领域中具有重要作用,它是学生在高中阶段学习的又一类重要的基本初等函数。

本章中,学生将在数学1中学习函数概念与基本初等函数I的基础上,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用.通过本章的学习,学生将进一步加深对函数概念的理解,提高用函数概念解决问题的能力.一、内容与课程学习目标本章的学习内容是三角函数及其基本性质.通过本章学习,要引导学生:1.了解任意角的概念和弧度制,能进行弧度与角度的互化;2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;3.借助单位圆中的三角函数线推导出诱导公式(的正弦、余弦、正切),能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;4.借助图象理解正弦函数、余弦函数在,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等);5.理解同角三角函数的基本关系式:sin2x+cos2x=1,;6.结合具体实例,了解的实际意义;能借助计算器或计算机画出的图象,观察参数A,ω,φ对函数图象变化的影响;7.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.二、内容安排本章共安排了6个小节以及两个选学内容,教学时间约需16课时,大体分配如下(仅供参考):1。

1任意角和弧度制…………………………………………………约2课时1。

2任意角的三角函数………………………………………………约3课时1。

3三角函数的诱导公式……………………………………………约2课时1。

4三角函数的图象与性质…………………………………………约4课时1.5函数y=Asin(φ)的图象………………………………约2课时1。

6三角函数模型的简单应用……………………………………约2课时小结……………………………………………………………………约1课时本章知识结构如下:1.本章学习的认知基础主要是几何中圆的性质、相似形的有关知识,在数学1中建立的函数概念,以及指数函数、对数函数的研究经验;主要的学习内容是三角函数的概念,图象与性质,以及三角函数模型的简单应用;单位圆是研究三角函数的重要工具,借助它的直观,可以使学生更好地理解三角函数的概念和性质,因此三角函数的学习可以帮助学生更好地体会数形结合思想;三角函数作为描述周期现象的重要数学模型,与其他学科(特别是物理、地理)有紧密联系,因此本章的学习可以培养学生的数学应用能力。

人教版必修第一册高中数学《三角函数》单元教材教学分析

人教版必修第一册高中数学《三角函数》单元教材教学分析
2、弧度制概念的建立
3、正弦型函数的图像变换
4、任意角、任意角的三角函数、三角函数的周期性、诱导公式、同角三角函数关系以及三角函数的图像
教学方法和手段的设计
教学方法:讲授法、直观演示法和练习法
教学手段:多媒体辅助教学,直尺
学生思想教育和行为习惯的培养及学习方法
1、不死记硬背知识点。注重基础知识和基本解题技能的培养,注意基本概念、基本定理、公式的辨析比较和理解。
7、协调好讲、练、评、辅之间的关系。追求数学复习的最佳效果,注重实效,努力提高复习教学的效益;同时,精心设计教学,做到精讲精练,不加重学生的负担,避免题海战。做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型的错误,易错点,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、有针对性,加快教学节奏,提高教学效率。
人教版必修第一册高中数学《三角函数》单元教材教学分析
学段及学科
高中数学
教材版本
人教版必修第一册
单元名称
《三角函数》
单元教材主题内容与价值作用
三角函数在整个高中数学体系当中,所占的比例和它的地位仅次于二次函数,三角函数在高考题当中会有有一个小题一个大题。但是真正在其他题当中在解析的时候,用到三角函数去解题的不在少数。所以说三角函数这一章节在参数方程和有些求最值或者范围的题目当中,是非常重要的。
3、掌握直角三角形的边、角关系,会用勾股定理、直角三角形两锐角互余和锐角三角函数解直角三角形。
情感态度与价值观:
1、在解直角三角形时,注意选择简便解法,进一步培养学生分析问题和解决问题的能力。
2、经历把实际问题转化为数学问题的过程,进一步体会三角函数在解决问题过程中的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数教材分析学号::105012011112 姓名:冯远翔 班级:教师3-2班一、内容组织1、内容简介本章内容主要包括三角寒素任意角的概念、弧度制、任意角的三角函数、诱导公式、三角函数的图象和性质、三角函数模型及其应用.三角函数是一种基本初等函数,它是描述周期现象的数学模型,在数学与其他领域中具有重要的作用,三角函数既是解决生产实际问题的工具,又是进一步学习的基础.本章内容可以看成是数学中“函数”一章的延伸和拓展,因此,在学习过程中药注意体会三角函数与一般函数之间的关系,即共性与个性的关系.三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具.三角函数也属于函数范畴,那么,之前学习函数时所研究函数的图像及性质,对于三角函数同样的需要研究.函数的种类很多,而三角函数则是函数研究几何的一种工具,通过角度来认识代数关系.三角函数同样有函数的三要素、符号和表达式.为了更好的学习三角函数,教材引进了任意角和弧度制的概念作为基础认识.本节教材重点研究三角函数的诱导公式、三角函数线、三角函数()b x A y ++=ϕωsin 的奇偶性,单调性、周期性、最大和最小值. 以下是三角函数的定义.设任意角α的终边与单位圆的交点坐标为()y x P ,1,由 于角απ+的终边与角α的终边关于原点对称,角απ+的终边与单位圆的交点2P 与点1P 关于原点O 对称,因此点2P 的坐标是()y x --,,由三角函数的定义得:y =αsin x =αcos xy=αtan y -=+)sin(απ x -=+)cos(απ xy=+)tan(απ 从而得到:公式一 公式二公式三 公式四我们可以用下面一段话来概括公式一道四:)(2Z k k ∈•+πα,α-απ±的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.如图,设任意角α的终边与单位位圆的交点1P 的坐标为),(y x .由于角απ-2的终边与角α的终边关于直线x y =对称.角απ-2的终边与单位圆的交点2P 与点1P 关于直线x y =对称,因此2P 的坐标为),(x y .于是我们有x =αcos y =αsin y =-)2cos(απ x =-)2sin(απ从而得到公式五 公式六ααπsin )sin(-=+ ααπsin )cos(-=+ααπtan )tan(=+ααsin )sin(-=-ααcos )cos(=-ααtan )tan(-=-ααπsin )sin(=- ααπcos )cos(-=- ααπtan )tan(-=- απαsin )2sin(=*+k απαcos )2cos(=*+k απαtan )2tan(=*+k 其中Z k ∈x=-)2sin(απy =-)2cos(απααπsin )2cos(-=+ααπcos )2sin(=+(由于⎪⎭⎫⎝⎛--=+αππαπ22,则由公式四及公式五得到公式六) 公式五及六可以概括如下απ±2的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.利川公式五.或公式六,.可以实现正弦函数和余弦函数之间的转化,公式一到六都叫故诱导公式.由前面的例子可以看出,函数b x A y ++=)sin(ϕω及函数b x A y ++=)cos(ϕω(其中A ,ω,ϕ为常数,且0≠A ,0>ω)的周期仅与自变量的系数有关(1)周期性 其周期为ωπ2=T .(2)奇偶性观察正弦曲线和余弦曲线,可以看到正弦曲线关于原点O 对称,余弦曲线关于y 轴对称,由诱导公式ααααcos )cos(,sin )sin(=--=-,可知:正弦函数是奇函数,余弦函数是偶函数.(3)单调性我们可以先在正弦函数的一个周期区间上(如⎥⎦⎤⎢⎣⎡-23,2ππ)讨论他们的单调性,再利用他们的周期性,将他们的单调性扩展到整个定义域上.正弦函数在每一个闭区间)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ上都是增函数,其值从1-增大到1;每一个闭区间)(223,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ上都是增函数,其值从1增大到1-. (4)最大值与最小值 正弦函数当且仅当)(22Z k k ∈+ππ取得最大值1,当且仅当)(22Z k k ∈+-ππ取得最小值1-.正弦函数当且仅当)(2Z k k ∈π取得最大值1,当且仅当)(2Z k k ∈+ππ取得最小值1-. 2、来龙去脉在初中,学生没有学习过三角函数,而是学习了一次函数、二次函数、反比例函数等简单的函数类型.但是学生有学习过平面几何以及函数的基本知识,这为以后的学习打下了基础.初中学习的相似三角形、全等三角形、平角、直角、特殊角等通过这些认识了教的应用、到高中,初次学习三角函数,是在学习了函数的概念及其性质之后,知道三角函数为任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.运用函数的相关知识来理解三角函数则更加清晰明了.另外,高中的三角函数是从几何图形抽象为代数语言,其形式更加严密、更加准确,但也更加难懂,着也是高中数学的特点.今后,学生还将学习三角恒等变换、解三角形等等知识都需要运用到三角函数的知识来解决.并且更加深入的了解三角函数在学习、生活、工作中的应用.重新认识三角函数在高中知识体系中的地位与作用.3、核心内容三角函数的核心与函数的核心是有不同,函数的概念的核心是函数的对应法则,具有相同的定义域和对应法则的函数是同一函数,但是三角函数是周期函数,并且其几何性质改变了三角函数的函数着一特点.就是可以有不同的对应法则是同一个函数.三角函数的核心在于在对应法则在最简的时候同时有相同的定义域,呢么才是同一个函数.另外,三角函数的诱导公式决定了这一性质.在三角变换中、截三角形等问题中其对应法则的唯一性与多样性是特别注意的.另外一方面,三角函数一般是在任意角与弧度制的基础上运算更加快捷,但是不能只知道运用弧度制来做,需要变通才行.而三角函数的其他性质都与函数的概念及性质类似的可以认识学习.4、三角函数的属性与层次三角函数的概念与性质是逐步形成并深化的,它的属性有概念、表示、性质、运算,在中学,没有三角哈数的概念,但是学习了基本初等函数的知识,为高中的学习做好了准备.三角函数本身也是函数,它具备函数所以的内容,并且还具有自身的独特性.它是高中学习的一个超越函数,运用牙就函数的方法来研究三角函数,通过直观的几何背景,总结出运用比例值来表示角,规定弧度制来刻画这一命题.再探究其表示方法、函数线图像、函数的单调性、奇偶性、最值、周期性等.在这一层次探索三角函数的本质特性.不同于其他函数的,是它有自己的领域.用代数的符号来解决几何中一些难题.从角度过度到弧度,这是跨领域的桥梁.运用数形结合的思想来了解几何背后的代数问题.三角函数的个特殊的函数体系,在纵轴上的有限于在横轴上的无限体现了数学的自然美.更体现出其特殊.5、学习三角函数概念与性质的关键环节对三角函数的概念的认识,应明确(1)三角函数也是函数,它具备函数的任何条件.同样有哈数的三要素(定义域、对应法则、值域).(2)深刻理解三角函数的定义域为整个实数域.因为受弧度制的影响或没有清楚地分开弧度与角度的关系,导致理解错误.(3)因为三角函数具有周期性,其正弦和余弦是可以通过变换转化的,因此,对应法则不一定相同但也可能是同一个函数.(4)对三角函数的本质要认识清楚.任意角的函数值可能相同,也可能不同.正角与负角只是方向的相反.图像的平移,伸缩变换要通过亲自动手才鞥深刻的体会到三角函数的变换过程.对三角函数基本性质的教学与函数的教学相似.关键是强调研究函数性质的“三部曲“,建立研究函数性质的策略知识.具体地,研究三角函数性质是的”三部曲“如下1)观察图像,发现函数图像特征;2)结合图、表,用自然语言描述函数图像特征;3)用数学的符号语言定义函数的性质.6、不同的概念体系人教 B 版——先以研究正弦函数为重点,从研究的方法到产生的结论,形成完整的研究过程.苏教版突出了三角函数周期性的地位,更符合新课标的要求.人教版教材关于三角函数的性质以并列的形式呈现,但事实上对于学生而言,各条性质的学习在难易程度上是有很大区别的.三角函数出现了周期性,使学生没有任何经验可供类比,加之周期函数概念的抽象,造成了一个学习难点.而对三角函数周期性的理解,又关系到求极值点和单调性的学习.因此,周期性体现了三角函数性质的特殊性.二、学生理解1、学生理解三角函数概念及性质的基础学生在学习了函数的概念及性质后再学习三角函数,他们会把函数的知识套用到三角函数上,这样做其实是正确的.但是,要注意的是,三角函数又具有它自身的特点,三角函数的本质是角度对应任意两边的比值为因变量的函数.初学者没有抓住三角函数的这样的特点,很难理解它的符号含义.学生在初中已经学习过函数的三种表示方法,在函数的概念及性质那一节中又学习了函数和映射,对三角函数的认识提高了很多.但是,三角函数在一开始首先介绍任意角和弧度制,旨在让学生从新的角度来认识三角函数,区别于普通函数的概念.弧度制的引入为更好的解决三角函数定义域中实数与角度的关系,更利于计算.在之后的章节里则很轻易的运用以前学过的函数知识解决了三角函单调性、周期性、奇偶性、最值等问题. 2、学生自发的方法(1)求三角函数值,代入化简求值是学生自发解决;(2)类比函数的概念及性质,学习了解三角函数的概念及性质;(3)对三角函数单调性和周期性的判断,学生会自发通过画图进行治肝炎判断; (4)对三角函数奇偶性的判断,学生会组发同哟图像对称型进行直观判断; (5)研究函数的最大、最小智时,学生会自发借助数形结合思想进行简单判断. 3、学生的学习能力限度在学习了函数的概念之后,大多数学生会通过类比到三角函数学习.然而,三角函数特别于其他函数的是它的定义域和对应法则,定义域通常会用弧度制,对应法则为超越函数符号.在没有真正认识三角函数的本质及其内容很难理解.三角函数的函数性质的研究需要学生动手去做.三角函数的变换很容易混淆,左右平移的方向、伸缩的正负方向都容易做错. 4、具体内容的难易正弦函数、余弦函数、正切函数等各个三角函数的定义,三角函数的单调性、平移变换、伸缩变换、对称性、诱导公式都是三角函数教学的重点.高中一开始接触三角函数符号很难理解它的含义,没有认识到三角函数的几何意义,对三角函数的认识与掌握有一定的难度.三角函数的变换常常会使得学生晕头转向,错误的判断变换的方向和大小,由于新学习的任意角与弧度制不够熟悉,无法直接从几何角度的维度过度到代数运算的层面.由于三角函数的定义域一般为角度,那么第一节中介绍的任意角及其周期性,再结合三角函数变换中很容易导致学生遗漏所求得的角度.与必修一学习的函数的概念及其性质相似,三角函数的概念及其性质的研究方法也可以通过同样的方式来探索,往往通过给出几个特殊具体的几何图形归结出三甲函数,让学生通过观察获得函数的几何定义或函数性质的直观认识,在利用图表探究函数的数量关系特征,并通过代数运算,验证法相的数量特征对定义域中的数用弧度制更加的方便灵活,最后概括道一般而形成基本性质的定义. 5、学生典型误解与认知重组(1)关于符号x x x tan ,sin ,cos 等等,tan cos/sin/是函数,x x x tan ,sin ,cos 是将tan cos/sin/施加于x 的结果,在学习过函数的前提下,学生知识对tan cos/sin/的含义不熟悉.在三角函数的计算过程中学生很可能会对同一个三角函数值y 对应的x 产生遗漏,因为三角函数是一个周期函数,在三角函数的定义域内,多个因变量可以对应同一个函数值.三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.(2)三角函数是周期函数,也是对称型函数,它的周期与对称轴的求解比较简单,,而特殊的地方在于变换,很多学生会凭借着初中学习过得函数知识来模仿学习三角函数,平移变换和伸缩变换的教学特别要注意,学生很容易走入一个误区就是,增加x 就是向正方向变换,减少x 就是向负方向变换.显然,平移变换和伸缩变换都不属于上述情况,而是相反.当我们用惯性思维去思考的时候可能会不如愿.所以,在这里需要学生认知重组,用数量关系的变化认识变量的增减性,体会三角函数的变换规律.(3)三角函数的导公式也是一个难点,诱导公式的变换可以使得三角函数之间互相转化,使得不相同的函数存在唯一的对应法则.如果死记硬背三角公式,那么三角公式又太多,因此,造成学生学习三角函数的苦恼.然而,其实诱导公式的记忆并不需要背很多,只要多加练习三角函数之间的转化就能熟练地掌握它了.三、效果评估1、典型题目及其变式(1)若角α满足条件0sin2<α,0sin cos <-αα,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:B解析:0cos 2sin sin2<=ααα ∴0cos sin <αα即αsin 与αcos 异号,∴α在二、四象限,又0sin cos <-αα ∴ααsin cos <由图4—5,满足题意的角α应在第二象限 变式:(2)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A.第一象限B.第二象限C.第三象限D.第四象限 答案:B解析:∵A 、B 是锐角三角形的两个内角,∴A +B >90°, ∴B >90°-A ,∴cos B <sin A ,sin B >cos A ,故选B.(3)在()π2,0内,ααcos sin <使成立的x 取值范围为( ) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛45,2,4.ππππ A⎪⎭⎫ ⎝⎛2,4.ππB ⎪⎭⎫ ⎝⎛45,4.ππC ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛23,45,4.ππππ D 答案:C解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,图4—5由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7)(3)若αsin >αtan >αcot (-2π<α<2π),则α∈( ) A.(-2π,-4π) B.(-4π,0)C.(0,4π)D.(4π,2π)答案:B解法一:取α=±3π,±6π代入求出αsin 、αtan 、αcot 之值,易知α=-6π适合,又只有-6π∈(-4π,0),故答案为B. 解法二:先由αsin <αtan 得:α∈(-2π,0),再由αtan >αcot 得:α∈(-4π,0) 评述:本题主要考查基本的三角函数的性质及相互关系. (4)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( ) A.6π B.2π C.32π D.3π答案:C解析:y =4sin (3x +4π)+3cos (3x +4π)=5[54sin (3x +4π)+53cos (3x +4π)]=5sin (3x +4π+ϕ)(其中tan ϕ=43) 所以函数y =sin (3x +4π)+3cos (3x +4π)的最小正周期是T =32π.故应选C.评述:本题考查了a sin α+b cos α=22b a +sin (α+ϕ),其中sin ϕ=22ba b +,cos ϕ=22ba a +,及正弦函数的周期性.(5)tan20°+tan40°+3tan20°·tan40°的值是_____. 答案:3 解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ,∴tan20°+tan40°=3-3tan20°tan40°,∴tan20°+tan40°+3tan20°tan40°=3.(6)函数x x y cos )62sin(π-=的最小值是 .答案:43-解析:21)62sin(21662sin 21cos 6sin --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=ππππx x x x y ,当162sin -=⎪⎭⎫ ⎝⎛-πx 时,函数有最小值,y 最小4321121-=⎪⎭⎫ ⎝⎛--评述:本题考查了积化和差公式和正弦函数有界性(或值域). 2、典型解题方法及使用范围(7)已知函数x x y cos sin 3+=,R x ∈1)当函数y 取得最大值时,求自变量x 的集合;2)该函数的图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到? .解:(1)()R x x x x x x x x y ∈+=+=+=+=),6sin(2)6sin cos 6cos(sin 2cos sin 3cos sin 3πππy 取得最大值必须且只需,,226Z k k x ∈+=+πππ即Z k k x ∈+=,23ππ所以,当函数y 取得最大值时,自变量x 的集合为{Z k k x ∈+=,23ππ}2)变换的步骤是:①把函数x y sin =的图象向左平移6π,得到函数)6sin(π+=x y 的图象; ②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数)6sin(2π+=x y 的图象;经过这样的变换就得到x x y cos sin 3+=函数的图象.评述:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力.已知函数12()log (sin cos )f x x x =-1)求它的定义域和值域; 2)求它的单调区间; 3)判断它的奇偶性; 4)判断它的周期性.解1)x 必须满足sinx-cosx>0,利用单位圆中的三角函数线及52244k x k ππππ+<<+,k∈Z ∴ 函数定义域为)452,42(ππππ++k k ,k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时,0sin()14x π<-≤∴0sin cos x x <-121log 2y -≥∴ 函数值域为⎪⎭⎫⎢⎣⎡+∞-,21;2)函数)(x f 在定义域内单调递减,因为对数函数的底数为121<; 3)∵()f x 定义域在数轴上对应的点关于原点不对称,.∴()f x 不具备奇偶性; 4)∵ )()2(x f x f =+π∴ 函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分x x cos sin -的符号;以Ⅱ、Ⅲ象限角平分线为标准,可区分x x cos sin +的符号. (8) 已知)(325cos 35cos sin 5)(2R x x x x x f ∈+-= 1)求)(x f 的最小正周期; 2)求)(x f 单调区间;3)求)(x f 图象的对称轴,对称中心。

相关文档
最新文档