数学史概论 第五讲
数学史第五节课
13
《几何原本》-专家点评
公元前3世纪时,最著名的数学中心是亚历山 大城;在亚历山大城,最著名的数学家是欧 几里得。像伟大的希腊几何学家欧几里得这 样千古流传的人物在历史中寥寥无几,虽然 他没有像恺撒那样建功立业、没有像柏拉图 那样创立自己的学说,但他凭借一本教科书 名声显赫。而在人类众多的书籍中,像《几 何原本》这样影响巨大的教科书也是少见的。
11
五条公设
1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交, 若在直线同侧的两个内角之和小于180°, 则这两条直线经无限延长后在这一侧一定 相交。
12
最后一条公设就是著名的平行公设,或者叫 做第五公设。它引发了几何史上最著名的长 达两千多年的关于“平行线理论”的讨论, 并最终诞生了非欧几何。
18
《几何原本》的伟大历史意义在于它是用公 理方法建立起演绎的数学体系的最早典范。 这部著作给后人以极大的启发,不仅由此引 出了公理化演绎的结构方法,给数学以及其 他自然科学以典范的作用,而且由于其中第 五公设的不可证明性质,引发了非欧几何的 出现。值得注意的是,《几何原本》虽然主 要是对平面几何和立体几何的发展,但是也 包含着大量的代数和数论内容。
33
《几何原本》在中国
前六卷的翻译工作 《几何原本》传入中国,首先应归 功于明末科学家徐光启。 徐光启(1562~1633),字子先,上海吴淞人。 他在加强国防、发展农业、兴修水利、修改 历法等方面都有相当的贡献,对引进西方数 学和历法更是不遗余力。他认识意大利传教 士利玛窦之后,决定一起翻译西方科学著作。 利玛窦主张先译天文历法书籍,以求得天子 的赏识。但徐光启坚持按逻辑顺序,先译 34 《几何原本》。
数学史概论
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
《数学史概论》课程标准
《数学史概论》课程标准课程名称:数学史概论课程类型:A类课程编码:0702033280适用专业及层次:数学计算机系教育专业、专科层次课程总学时:32学时,其中理论28学时,其他4学时。
课程总学分:2一、课程的性质、目的与任务1.本课程的性质:专业选修课2.课程目的与任务:本课程是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。
因此,它是培养学生素质以及了解数学发展历史的重要途径,本课程对提升学生的数学文化素养有着重要的意义。
通过教学使学生了解本课程的性质、地位和意义,知道这门课程的研究对象、范围,以及它与所学数学知识的联系,了解数学史在自然科学技术史中的地位和作用,全面提升专业素养;理解数学史的理论、思想和方法。
培养学生综合运用数学理论和方法分析问题、解决问题的能力,提高学生的整体素质;通过数学史的学习,使学生认识到要解决实际问题,自己所学知识远远不够,学而后知不足,激发学生强烈的学习愿望和求知欲。
3.课程与其它课程的联系:《数学史概论》是数学教育专业的选修课程。
数学史是人类文明史的重要组成部分,本课程不仅与数学专业的基础课程及自然科学有直接联系,也与人文历史等学科领域密切相关,所以也可作为其他专业的拓展课程,借以提高学生的整体素养。
二、教学内容、教学要求及教学重难点本课程由六个专题组成,内容应反映出数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法。
教学内容可参考标准给出的可供选择的专题,并在此基础上可根据学生的知识结构及相关课程设置可相应增减专题的内容,如三次数学危机、数学的严格性与三个数学学派、从透视学到射影几何、计算机技术与对数、两项影响最大的国际数学奖励——菲尔兹奖和沃尔夫奖等,体现课程内容一定的弹性和开放性。
本课程的知识与技能要求分为知道、理解、掌握、学会四个层次,这四个层次的一般涵义表述如下:知道——是指对这门学科和教学现象的认知。
数学史课件
文艺复兴时期的数学家不仅关注纯粹的数学理论,还将数学知识应用于实际问题的解决中 。例如,他们在建筑设计、机械制造、航海等领域运用数学知识和方法,推动了这些领域 的进步和发展。
16
04
近代数学革命性突破
2024/1/28
17
微积分的创立与发展
2024/1/28
微积分的起源
01
古希腊时期阿基米德对面积和体积的研究为微积分学奠定了基
数理统计的兴起
19世纪,高斯、皮尔逊等数学家在概率论的基础上,发展出了数 理统计学,为数据分析提供了有力工具。
概率论与数理统计的应用
在现代科学、工程、医学、经济等领域中,概率论与数理统计发挥 着重要作用。
19
线性代数与矩阵理论的建立
2024/1/28
线性代数的起源
18世纪,高斯等数学家开始研究线性方程组,为线性代数的发展 奠定了基础。
非欧几何
研究不满足欧氏几何公理的几何体系 ,包括黎曼几何、罗氏几何等。
2024/1/28
微分几何
研究曲线、曲面等微分性质,以及流 形上的微分结构。
拓扑学
研究空间在连续变换下的性质,包括 连通性、紧致性、维数等概念。
23
代数学领域
初等代数
研究数、式、方程和不等式等基本概念和运 算规则。
抽象代数
研究群、环、域等代数结构及其性质,包括 同态、同构等概念。
数学与神秘主义
数学在古埃及神秘主义和宗教仪式中的角色 。
10
古印度数学
数字系统的创新
算术与代数的发展
0的发明及印度数字系统对现代数字的影响 。
印度数学家对算术和代数的研究,如《莉 拉瓦蒂》和《比贾经》等著作。
数学史概论》教案
《数学史概论》教案第一章:数学史的概述1.1 数学史的定义与意义1.2 数学发展的大致历程1.3 数学史的研究方法与资料来源1.4 数学史与数学教育的关联第二章:古代数学2.1 古代数学的背景与文化环境2.2 埃及数学与巴比伦数学2.3 古希腊数学:毕达哥拉斯学派与欧几里得2.4 中国古代数学:勾股定理与算盘第三章:中世纪数学3.1 印度数学:阿拉伯数字与零的概念3.2 伊斯兰数学家:阿尔·花拉子米与代数学的发展3.3 欧洲中世纪数学:数学符号与运算规则的改进3.4 中国宋元数学:天元术与代数学的进展第四章:文艺复兴与科学革命时期的数学4.1 欧洲文艺复兴时期的数学发展4.2 哥白尼、开普勒与牛顿的数学贡献4.3 解析几何的诞生:笛卡尔与费马4.4 微积分的创立:牛顿与莱布尼茨第五章:现代数学的发展5.1 17至18世纪数学:欧拉与拉格朗日5.2 19世纪数学:非欧几何与群论5.3 20世纪初数学:集合论、数理逻辑与泛函分析5.4 现代数学的多元化发展:计算机科学与数学的交叉第六章:中国的数学成就(续)6.1 明清时期的数学发展6.2 数学著作《数书九章》与《算法统宗》6.3 清朝的数学教育与科举中的数学考试6.4 中国数学对日本及朝鲜数学的影响第七章:欧洲启蒙时期的数学7.1 启蒙运动与数学的关系7.2 莱布尼茨与微积分的发展7.3 伯努利兄弟与概率论的兴起7.4 欧拉与数学分析的进一步发展第八章:19世纪的数学突破8.1 非欧几何的发现8.2 群论与域论的建立8.3 数学符号与逻辑的完善8.4 19世纪数学的其他重要进展第九章:20世纪的数学革命9.1 集合论与数理逻辑的进展9.2 泛函分析与谱理论的发展9.3 拓扑学与微分几何的新成就9.4 计算机科学与数学的关系第十章:数学史的教育意义与应用10.1 数学史在数学教育中的作用10.2 数学史如何激发学生对数学的兴趣10.3 数学史在数学课程设计中的应用10.4 数学史与跨学科研究的结合第十一章:数学与科技的互动11.1 计算机科学与数学的关系11.2 信息技术与数学软件的发展11.3 数学在生物科学、物理学等领域的应用11.4 数学模型与模拟在科学研究中的作用第十二章:数学哲学与数学思想12.1 数学哲学的基本问题12.2 形式主义、直觉主义与逻辑实证主义12.3 数学基础危机与集合论的困境12.4 数学思想在数学发展中的影响第十三章:数学与社会文化13.1 数学与文化的交融13.2 数学在民族志与人类学中的应用13.3 数学传播与教育的发展13.4 数学与社会公正、性别平等的关系第十四章:数学史的国际视角14.1 非洲、拉丁美洲数学史14.2 亚洲数学史:印度、日本与伊斯兰世界14.3 数学交流与比较数学史的研究14.4 数学史的国际会议与出版物第十五章:数学史的展望与挑战15.1 数学史的研究现状与趋势15.2 数字人文与数学史的结合15.3 跨学科研究在数学史中的应用15.4 数学史的未来挑战与机遇重点和难点解析本《数学史概论》教案涵盖了数学史的基本概念、古代数学、中世纪数学、文艺复兴与科学革命时期的数学、现代数学的发展、中国的数学成就、欧洲启蒙时期的数学、19世纪的数学突破、20世纪的数学革命、数学史的教育意义与应用、数学与科技的互动、数学哲学与数学思想、数学与社会文化、数学史的国际视角以及数学史的展望与挑战。
数学史概论近代数学的兴起
外,还讨论了截影的数学性质,成为射影 几何发展的起点。
重要人物
布努雷契 [意](F.Brunelleschi,1377-1446) 阿尔贝蒂(L.B. Alberti ,1404-1472) <论绘画>---早期数学透视法的代表
作
富有独创精神的数学天才-----德沙格
(g.desargues, 1591~1661) (笛沙格)
关于四次方程的解法,以后韦达和笛卡 尔都作过研究,并取得成果,由此引发探求 五次方程根式解的尝试,经拉格朗日、阿贝 尔、伽罗瓦的努力,阿贝尔首先证明了一般 的五次及以上方程无根式解,伽罗瓦在此基 础上创造了群论,将代数研究推向纵深。
3.代数符号体系与代数运算
韦达(F.Vieta):<分析引论>(1591) 近现代数学一个最为明显、突出的标志,
《大法》(Ars Magna)
x px q (p, q >0)
3
实质是考虑恒等式
3 3
(a b) 3ab(a b) a b
3
若选取a,b,使:3ab=p, a3-b3=q,不难解得a,b
a3
q q 2 p 3 ( ) ( ) 2 2 3
b3
q 2
q p ( )2 ( )3 2 3
帕斯 卡
拉伊尔(1640-1718),著作《圆锥线》,
最突出的地方在于极点理论方面有所 创新,获得并且这样的定理:若一点 Q在直线p上移动,则该点Q的极带将 绕直线p的极点P转动。
5.2.4计算技术与对数
十六世纪前半叶,欧洲人象印度、阿拉伯人一
样,把实用的算术计算放在数学的首位。
1585年荷兰数学家史蒂文发表的《论十进制算
(完整版)数学史
一、设置《数学史选讲》的必要性和作用随着数学的发展、时代的不断前进,数学在日常生活、社会和科学技术发展中的作用日益广泛,人们对数学和数学教育的认识越来越深入。
数学具有悠久的历史,它不仅是数学知识的积累,人类认识客观世界的有力工具,也是人类文化的重要组成部分。
《普通高中数学新课程标准》理念中指出:“数学课程应当适当地反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学的推动作用,数学的思想体系,数学的美学价值,数学家的创新精神。
数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。
”如何实现《标准》的理念,使数学教育在人的全面发展过程中发挥应有的作用呢?如何渗透数学文化,体现人文精神呢?实现这一理念的最佳途径是在数学课程教学中融入数学史的内容。
在新的教材编排里,就着重数学文化这一方面进行了很多的改编。
增加了很多数学文化,数学史的内容。
数学发展的历史是一部内容丰富、思想深刻的历史。
通过生动、丰富的事例,使学生了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,作用:1. 帮助学生更好地理解数学。
数学史的学习使学生开阔数学视野,认识数学的科学价值,应用价值和文化价值,体会数学的美学意义,可以使学生更多了解数学的基本思想和方法,及其在解决生活和生产实际问题中的应用。
2. 激发学生学习数学的兴趣,树立学好数学的信心。
3. 培养生学形成锲而不舍的研究精神和科学态度4. 培养学生的创新精神5. 形成批判性的思想习惯和崇尚科学的理性精神二、数学史的主要体现形式数学史在高中数学课程中的安排可以采取多种形式,可以通过课外数学活动或小组活动的一项内容,也可以穿插渗透于课堂教学的各个环节结合教学内容进行。
但作为选修系列的一个专题,《数学史选讲》相对比较集中地将数学发展中一些能够体现重大数学思想发展又比较贴近高中学生水平与实际的选题汇串在一起学习。
数学史概论 第五讲
达芬奇自画像
蒙娜丽莎
• 德沙格(G.Desargues, 1591~1661): 系统讨论透视法的第一人. 他研究投影法的动机是希望证明阿波罗尼奥斯 圆锥曲线的定理. 1636年发表第一篇关于透视法的论文. 代表作是1639年发 表的《试论锥面截一平面所得结果的初稿》,书中引入70多个投影几何术 语, 有些很古怪, 如投影线叫‚棕‛, 标有点的直线叫‚干‛, 其上有三点成对合关 系 的直线叫‚树‛ 等等。 创造性思想: 从焦点透视的投影与截影原理出 发, 对 平行线引入无穷远点的概念, 继而获得无穷 远线的概念; 讨论了今天所谓的笛沙格定理: 投影三角形 ABC 和A‘B’C‘ 的对应 边(或 延长线)交点Q、R、P共线。反之,对应 边交点共线的三角形,对应顶点连线 AA'、BB'、CC'共点O 。 德沙格在他朋友鲍瑟1648年发表的一本 关于透视法著作的附录中,发表了三角形其 它一些射影性质的结论,其中包含投影变换 下交比不变性定理。
韦达的这种做法受到后人的赞赏,并被吉拉德的《代数新发现》和 奥特雷德(Oughtred, 1575~1660)的《实用分析术》所继承。特别是通 过后者的著作使得采用数学符号的风气流行起来。对韦达所使用的代数 法的改进工作是由笛卡儿完成的,他首先用拉丁字母的前几个(a, b, c, d, …)表示已知量,后几个(x, y, z, w, …)表示未知量,成为今天的 习惯。 到十七世纪末,欧洲数学家已普遍认识到,数学中特意使用符号具有 很好的功效。并且使数学问题具有一般性。
2
3
b3
q q p 2 2 3
2
3
对于带有二次项的三次方程,通过变换总可以将二次项消去,从而变成 卡尔丹能解的类型。
《数学史概论》教案教材
《数学史概论》教案第一讲数学的起源与早期发展主要内容:数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。
1、数与形概念的产生从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。
人从生产活动中认识到了具体的数,导致了记数法。
“屈指可数”表明人类记数最原始、最方便的工具是手指。
早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)等。
世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。
2、河谷文明与早期数学2.1 古代埃及的数学(1)古王国时期:前2686-前2181年。
埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。
(2)新王国时期:前1567-前1086年。
埃及进入极盛时期,建立了地跨亚非两洲的大帝国。
数学贡献:记数制,基本的算术运算,分数运算,一次方程,正方形、矩形、等腰梯形等图形的面积公式,近似的圆面积,锥体体积等。
公元前4世纪希腊人征服埃及以后,这一古老的数学完全被蒸蒸日上的希腊数学所取代。
2.2 古代巴比伦的数学背景:古代巴比伦简况两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字“楔形文字”。
(1)古巴比伦王国:公元前1894-前729年。
汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。
(2)亚述帝国:前8世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。
(3)新巴比伦王国:前612-前538年。
尼布甲尼撒二世(在位前604-前562年)统治时期达到极盛,先后两次攻陷耶路撒冷,建成世界古代七大奇观之一的巴比伦“空中花园”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,是古代西方人眼中的全部世界,而中国的长城距他们太远了。
《数学史概论》教案
《数学史概论》教案一、教学目标1. 知识与技能:(1)使学生了解数学发展的历史背景和主要成就;(2)培养学生对数学史的兴趣和好奇心;(3)提高学生运用数学知识解决实际问题的能力。
2. 过程与方法:(1)通过查阅资料、讨论交流等方式,学会分析数学问题;(2)培养学生团队合作精神,提高研究性学习的能力。
3. 情感态度与价值观:(1)使学生认识数学与人类文明发展的密切关系;(2)培养学生尊重和热爱数学的情感;(3)引导学生关注数学在社会、科技和经济发展中的应用。
二、教学内容1. 中国古代数学:(1)中国古代数学的发展历程;(2)古代数学家及他们的主要成就;(3)举例介绍《九章算术》和《周髀算经》等古代数学著作。
2. 欧洲古代数学:(1)古希腊数学的发展历程;(2)古希腊数学家及他们的主要成就;(3)举例介绍欧几里得《几何原本》等古代数学著作。
3. 印度数学:(1)印度数学的发展历程;(2)印度数学家及他们的主要成就;(3)举例介绍阿瑜博达等印度数学家的贡献。
4. 阿拉伯数学:(1)阿拉伯数学的发展历程;(2)阿拉伯数学家及他们的主要成就;(3)举例介绍花拉子米等阿拉伯数学家的贡献。
5. 近现代数学:(1)近现代数学的主要发展历程;(2)近现代数学家及他们的主要成就;(3)举例介绍牛顿、莱布尼茨、欧拉等近现代数学家的贡献。
三、教学重点与难点1. 教学重点:(1)中国古代、欧洲古代、印度、阿拉伯以及近现代数学的主要发展历程;(2)各个时期著名数学家及他们的主要成就。
2. 教学难点:(1)近现代数学的发展历程及数学家的贡献;(2)如何引导学生理解数学发展与人类文明的密切关系。
四、教学方法1. 讲授法:讲解各个时期数学发展的历史背景、主要成就和著名数学家;2. 讨论法:组织学生分组讨论,分享对数学史的理解和感悟;3. 案例分析法:举例分析具体数学家的贡献和影响。
五、教学评价1. 平时成绩:考查学生课堂参与度、讨论交流和作业完成情况;2. 期中考试:测试学生对数学史知识的掌握和理解;3. 课程论文:引导学生深入研究某一时期或数学家的贡献,培养学生的研究能力。
《数学史概论》教案
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
《数学史概论》教案
《数学史概论》教案一、教学目标1. 让学生了解数学的发展历程,掌握数学的基本概念、原理和方法。
2. 通过数学史的学习,培养学生的逻辑思维能力、创新意识和团队协作能力。
3. 增强学生对数学学科的兴趣和自信心,提高数学素养。
二、教学内容1. 数学的起源与发展古代数学:中国、古埃及、古希腊、印度等中世纪数学:欧洲数学的发展近现代数学:笛卡尔、牛顿、莱布尼茨等2. 数学基本概念与原理自然数、整数、分数、实数、虚数等集合、映射、函数、极限、微积分等3. 数学方法与技巧几何作图、勾股定理、欧几里得算法等代数解方程、费马大定理、数论等概率论、统计学、运筹学等4. 数学在实际应用中的案例物理学、工程学、计算机科学等领域的数学应用经济学、生物学、社会学等领域的数学模型5. 数学家与数学成果毕达哥拉斯、欧几里得、阿基米德、牛顿、莱布尼茨等希尔伯特、康托尔、哥德尔、图灵等三、教学方法1. 讲授法:讲解数学的发展历程、基本概念、原理和方法。
2. 案例分析法:分析数学在实际应用中的案例,培养学生解决问题的能力。
3. 小组讨论法:分组讨论数学问题,培养学生的团队协作能力和创新意识。
4. 研究性学习法:引导学生自主探究数学知识,提高学生的自主学习能力。
四、教学资源1. 教材:《数学史概论》2. 课件:PowerPoint或其他教学软件3. 互联网资源:相关数学史网站、论文、视频等4. 数学工具:计算器、绘图软件等五、教学评价1. 平时成绩:课堂参与度、小组讨论、作业等2. 期中考试:考查学生对数学基本概念、原理和方法的掌握程度3. 期末考试:考查学生对数学史的了解、数学思维能力和实际应用能力4. 综合评价:结合平时成绩、考试成绩,全面评价学生的学习效果六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 教学计划:第1-4课时:数学的起源与发展第5-8课时:数学基本概念与原理第9-12课时:数学方法与技巧第13-16课时:数学在实际应用中的案例第17-20课时:数学家与数学成果七、教学策略1. 激发兴趣:通过讲述数学史的趣味故事,引发学生对数学的兴趣。
数学史-第五讲-微积分的创立课件
计算机科学中的应用:微积分在计 算机科学中也有应用,如数值计算、 图像处理、机器学习等领域。
微积分的发展历程
微积分思想的萌芽
牛顿与莱布尼茨的 贡献
微积分在19世纪 的进一步发展
现代微积分的应用 与影响
微积分的创立过程
牛顿的贡献
牛顿对微积分创立的贡献 牛顿的微积分理论体系 牛顿的微积分应用 牛顿的微积分对后世的影响
际分析等
计算机科学: 算法设计、数 据结构、图像
处理等
微积分的未来发展
微积分在未来的应用前景
微积分在科学计算中的应用 微积分在金融领域的应用 微积分在人工智能领域的应用 微积分在物理和工程领域的应用
微积分与其他学科的交叉发展
微积分与计算机科学:数值计算、算法设计、数据科学等领域的应用 微积分与物理学:经典力学、电磁学、量子力学等领域的基础工具 微积分与经济学:边际分析、弹性分析、最优控制等领域的应用 微积分与生物学:细胞动力学、生态学、流行病学等领域的研究工具 微积分与金融学:资产定价、风险管理、投资组合优化等领域的应用 微积分与工程学:机械工程、土木工程、电子工程等领域的基础工具
微积分的思想方法
极限思想的起源
极限思想
极限思想在微积分中的应用
极限思想在数学中的重要性
极限思想在其他领域的应用
导数的定义与几何意义
导数思想
导数在函数分析中的应用
导数在优化问题中的应用
导数在其他领域的应用
积分思想
积分概念:通过求 解总和来描述变量 之间的关系
积分方法:通过求 和、求积等方式来 解决问题
添加副标题
数学史-第五讲-微积分的创立
汇报人:PPT
目录
CONTENTS
数学史概论
华沙学派: 点集拓扑、集论、数学基础
• 带头人: 谢尔宾斯基(1882-1969), 马祖凯维奇(1888-1945) • 刊物《数学基础》(1920年创刊) • 数学家: 萨克斯(1897-1942), 库拉托夫斯基(1896-1980), 塔尔斯基 (1902-1983), 波苏克(1905-1982)
美国数学家获菲尔兹奖简况
数 学 家 道格拉斯(1897-1965) 米尔诺(1931- ) 柯恩(1934-2007) 斯梅尔(1930- ) 汤普逊(1932- ) 曼福德(1937- ) 费弗曼(1949- ) 奎伦(1940- ) 瑟斯顿(1946- ) 弗里德曼(1951- ) 威顿(1951- ) 麦克马伦(1958- ) 欧克恩科夫(1969- ) 时间 1936 1962 1966 1966 1970 1974 1978 1978 1983 1986 1990 1998 2006 年龄 39 31 32 36 38 37 29 38 37 35 39 40 37 主要研究领域 复分析 微分拓扑、代数拓扑 连续统假设、调和分析 微分拓扑、动力系统 有限群论 代数几何 调和分析、多复变函数 代数 K 理论 低维拓扑 四维庞加莱猜想 超弦理论 复动力系统、双曲几何 概率论
4.法国数学渐渐复苏 在20年代末,法国的一批青年数学家组成了名为布 尔巴基的团体,倡导法国数学改革,提倡结构主义, 研究整个数学,编著《数学原本》。在二次大战后风 靡一时,对20世纪数学有深远影响.
5.德国数学渐渐复苏 第二次世界大战后的德国数学总的来说未能恢复哥庭 根昔日的雄风. 联邦德国的数学家以F.Hirzebruch为首在波恩创立 了Plank的数学研究所,成绩显著. 1984年法尔廷斯解决了Mordell猜想,震惊世界, 德国数学家仍在复苏中.
数学史概论-数学与统计学院
自从公元4世纪罗马皇帝宣布基督教为国教起,基督教逐渐成为统治 人民的宗教。虔诚的基督教徒对现实生活缺乏兴趣,重视死后的生活, 并非常重视为死后而作的准备。他们认为,自然科学是卑下的。他们整 天学习圣经,相信“从圣经以外获得的知识,如果它是有害的,理应加 以排斥;如果它是有益的,那它会包含在圣经里。”由于数学常与星象 术和数的神秘论混在一起,数学也遭到了排挤。6世纪的皇帝查士尼丁的 法典中,就有“彻底禁止应受到谴责的数学技艺”的规定。
3.1.1
古代《绳法经》中的数学
印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教 和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很 大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。吠陀即梵文 veda,原意为知识、光明,《吠陀》内容包括对诸神的颂歌、巫术的咒语和 祭祀的法规等,这些材料最初由祭司们口头传诵,后来记录在棕榈叶或树 皮上。《吠陀》中有关于庙宇、祭坛的设计与测量的部分《测绳的法规》 (又译成绳法经),有一些几何内容和建筑中的代数计算问题。如勾股定 理、矩形对角线的性质、相似直线形的性质以及一些作图法等。在作一个 正方形与已知圆等积的问题中,使用了圆周率的以下近似值:
阿拉伯数字的来历
公元 773 年,印度数码传入阿拉伯国家,后来通过阿拉 伯人传至欧洲,但零号的传播比 1 - 9要迟。在 0 出现前,用 小点表示零。12世纪开始,欧洲人将大量的阿拉伯文的数学 著作翻译为拉丁文。在13世纪初,斐波那契的《算盘书》中 首先介绍了包括零号在内的完整的印度数码。后来,这种数 码就开始在欧洲流行。在欧洲人的印象中,这些数码来自阿 拉伯国家,故称之为阿拉伯数码,这个名称一直沿用至今。 这就是今天国际通用的所谓阿拉伯数码的来历。 所以人们常说的阿拉伯数字实际上是印度人发明的。这 种印度数码与十进位值制记数法成为近世欧洲科学赖以进步 的基础。
数学史讲义
数学史选讲学习目标:了解数学发展的历史性﹑累积性特征(大厦);了解数学科学的整体性﹑统一性(大树);了解数学创造的过程(战舰)。
学习意义:不了解数学史,就不可能全面了解整个人类文明史。科学的皇后(为人类提供精密思维的模式) ;科学的女仆(科学的语言和工具);推动人类物质生产,影响人类物质生活方式人类思想革命的武器 (逻辑说服力与计算精确性);促进艺术发展的文化激素 (艺术特征, 数学概念与原理)。
教学教程:一:情境引入:中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界也同样具有许多耀眼的光环。
中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。
例如:【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。
【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。
【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。
【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。
【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。
【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。
【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”。
【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”。
【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”。
数学史概论-数学与统计学院
由于商业贸易和一系列的十字军东征,欧洲人开始了解 比欧洲先进得多的东方文化和科学技术,促进了欧洲科学的 加速发展。在12-15世纪,欧洲在数学上主要是吸收古希腊、 印度、中国和阿拉伯的数学遗产。当时的西班牙保存有许多 阿拉伯著作和一些希腊著作。为了获取知识,欧洲的学者们 都愿意到颇具世界性的西班牙去旅行。他们在西班牙学习并 将大量科学著作翻译成拉丁文。数学著作的翻译主要有英国 人阿德拉特(约1120)翻译的《几何原本》和花拉子米的天 文表;意大利人普拉托(12世纪上半叶)翻译的巴塔尼的 《天文学》和狄奥多修斯的《球面几何》以及其它著作。12 世纪最伟大的翻译家格拉多(1114-1187)将90多部阿拉伯 文著作翻译成拉丁文,其中包括托勒密的《大汇编》、欧几 里得的《几何原本》、花拉子米的《代数学》。
5151欧洲中世纪的回顾欧洲中世纪的回顾第五章希望的曙光希望的曙光欧洲文艺复兴欧洲文艺复兴时期的数学时期的数学521521透视理论的创立与三角学的独立透视理论的创立与三角学的独立522522三四次方程的解法三四次方程的解法523523韦达与符号代数韦达与符号代数524524对数的发明对数的发明55
第五章 希望的曙光——欧洲文艺复兴 时期的数学
(2)三角学
航海、历法推算以及天文观测的需要,推动了三角学的 发展。在古希腊和印度、阿拉伯人的眼中,三角形是天文学 的附庸,它仅仅是为了天文学的研究而使用的一种工具。 1450年前,三角形一般指球面三角学。后来由于间接测量、 测绘工作的需要而出现了平面三角,因此平面三角学的发展 较晚。 15世纪,德国数学家穆勒将三角学从天文学的奴隶地位 中解放出来,使三角学成为一个独立的数学分支。他写了 《三角全书》,阐述了平面三角和球面三角的正余弦定理及 如何解平面和球面三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 中世纪的欧洲
二、 向近代数学的过渡 三、 解析几何的诞生
一、中世纪的欧洲
• 大约在公元500年左右才开始出现新文化 • 公元5~11世纪,是欧洲历史上的黑暗时期 出现一些水平低下的算术和几何教材: 博埃齐:选编了《几何》、《算术》等教科书,《几何》仅包含《原 本》的第一卷和第三、四卷的部分命题,以及一些简单的测 量术;《算术》则是根据四百年前尼科马库斯的一本浅易的 著作编写的。 • 比德(V.Bede,674~735)、热尔拜尔(Gerbert,约950~1003)等人也讨论过 数 学. 前者研究过算术中的指算,据说后者可能把印度-阿拉伯数字带入欧洲。 • 直到12世纪,欧洲数学才出现复苏的迹象。这种复苏是由于受翻译、 传播阿拉伯著作和希腊著作的刺激开始。 • 文艺复兴的意大利成为东西方文化的熔炉. • 古代学术传播西欧的路线如图5.1所示
2
3
q q p 3 b 2 2 3
2
3
于是得到 a b 就是所求的 x . 后人称之为卡尔丹公式。
卡尔丹还对形如 x3 = px + q (p , q > 0 )的方程给出了解的公式: x = a +b
其中
a3
q q p 2 2 3
卡尔丹:将塔氏方法推广到一般情形的三次方程, 给出几何证明;认识到三次方程有三个根,四 次方程有四个根;对三次方程求解中的所谓“ 不可约”情形感到困惑,认为复根是成对出现 的;卡尔丹还发现了三次方程的三根之和等于 x2项的系数的相反数,每两根乘积之和等于x 项的系数,等等 • 1572年,意大利数学家邦贝利在其所著教科书《代 代数》中引进虚数,用以解决三次方程不可约情况,并以dimRq11表示 -11。
• 牛顿在其《普遍的算术》中证明复根成对出现
• 荷兰人吉拉德《代数新发现》(1629) 作进一步的推断:对于n次多项式方 程,如果把不可能的(复数根)考虑在内,并包括重根,则应有n 个根。 • 根与系数的关系问题后来由韦达、牛顿和格列高里等人作出系统阐述。
* 法国代数学: • 韦达:《分析方法入门》(1591)、《论方程的整理与修正》(1615)、《有效 的数值解法》(1600)等方程论著作 给出代数方程的近似解法与代数方程的多项式分解因式解法。 • 笛卡儿:1637年,首次应用待定系数法将四次方程分解成两个二次方程求 解.《几何学》中提出因式分解定理:f (x) 能为 (x-a) 整除,当且仅当a 是 f (x) = 0的一个根;未加证明叙述了n次多项式方程应有 n个根的论断, 以 及 “笛卡儿符号法则”:多项式方程f (x) = 0 的正根的最多个数等于系 数 变 号的次数,负根的最多个数等于两个正号与两个负号连续出现的次数. 1.2 符号代数的引入
•
数学著作的翻译:
阿德拉特:《几何原本》、花拉子米 天文表; 普拉托:巴塔尼《天文学》、狄奥多 修斯《球面几何》以及其它著作 罗伯特:花拉子米《代数学》等 杰拉德:90多部阿拉伯文著作翻译 成拉丁文.包括《大汇编》,《原 本》,《圆锥曲线论》,《圆的度 量》等
• 斐波那契:
《算盘书》(Abaci, 1202) 印度-阿拉伯数码,分数算法,开方 法,二次和三次方程,不定方程, 以及《几何原本》和希腊三角学的 大部分内容
二、向近代数学的Байду номын сангаас渡
1 代数学
1.1 三、四次方程求解:
• 费罗(S. Ferro, 1465~1526): 发现形如
的三次方程的代数解法,并将解法秘密传给他 的学生费奥 • 塔塔利亚:宣称可以解形如
的三次方程,并最终将解法传授与卡尔丹
《论数字与度量》(1556-1560):数学百科全书和16世纪最好的数学著作之一
• 韦达:《分析引论》(1591) 第一次有意识地使用系统的代数字母与符号,辅音 字母表示已知量,元音字母表示未知量,他把符号 性代数称作“类的算术”.同时规定了算术与代数 的分界,认为代数运算施行于事物的类或形式,算 术运算施行于具体的数.使代数成为研究一般类型 的形式和方程的学问,因其抽象而应用更为广泛. 韦达的符号代数保留着齐性原则,要求方程中各项都 是“齐性”的,即体积与体积相加,面积与面积相加.
时间 1202年 1494年 1489年 1631年 1557年 1591年 1637年 1631年 1631年 1631年 1659年 16世纪 1593年
根号
根号 乘幂xn
▔
n
C.Rudolff (奥地利)
A.Girard(1593~1632,荷) Oresme
16世纪
16年 14世纪 1484年 1634年 1637年
• 部分文艺复兴时期出现的缩写代数符号:
1494年《算术集成》:继斐波那契之后
第一部内容全面的数学书
猫捉老鼠问题 :一只老鼠在60英尺高的白杨树顶上,
一只猫在树脚下的地上。老鼠每天下降1/2英尺,晚上
又上升1/6英尺;猫每天往上爬1英尺,晚上又滑下1/4 帕西奥里(意,1445-1517年) 英尺;这棵树在猫和老鼠之间每天长1/4英尺,晚上 又缩1/8英尺。试问猫要多久能捉住老鼠? (意,1994)
运算或关系 方根 加,减 加,减 减 等于 等于 等于 乘 乘 比例 除 大于,小于 方括号,大括号
符号 R p, m +,~ = ~ :: >, < [ ],{ }
使用者 Fibonacci (1170~1250, 意) Pacioli (约1445~1517, 意) J.Widman(德) Oughtred(英) R. Recorde(英) Vieta(法) Descartes(法) Oughtred(英) Oughtred(英) Oughtred(英) J.H.Rahn (1622~1676, 瑞士) T. Harriot(1560~1621,英) Vieta (法)
再选择适当的 z ,使上式右边成为完全平方式,实际上使
4( p 2z)( p 2 r 2 pz z 2 ) q 2 0
即可。这样就变为z的三次方程。
费拉里所讨论的四次方程类型主要有以下几种
x 4 ax3 bx2 c x 4 ax2 bx c
x 4 ax3 b x 4 ax b
• 卡尔丹:《大术》(或《大法》1545年)
三次方程 x3 = px + q (p , q > 0 ) 的解法: 实质是考虑恒等式:(ab)3 + 3ab(ab) = a3b3 若选取 a 和b,使 3ab= p,a3b3 = q, 由(*)不难解出a 和b,
(* )
q q p 3 a 2 2 3
A B t an a b 2 ab A B t an 2
建立解球面三角形的方法与一套公式, 给出帮助记忆这些公式的今天 所谓的“纳皮尔法则”. 这些球面三角公式大都是托勒玫建立的, 但 也 有 韦达自己的公式 cos A ,如 cos B cos C sin B sin C cos a
达芬奇自画像
蒙娜丽莎
• 德沙格(G.Desargues, 1591~1661): 系统讨论透视法的第一人. 他研究投影法的动机是希望证明阿波罗尼奥斯 圆锥曲线的定理. 1636年发表第一篇关于透视法的论文. 代表作是1639年发 表的《试论锥面截一平面所得结果的初稿》,书中引入70多个投影几何术 语, 有些很古怪, 如投影线叫“棕”, 标有点的直线叫“干”, 其上有三点成对合关 系 的直线叫“树” 等等。 创造性思想: 从焦点透视的投影与截影原理出 发, 对 平行线引入无穷远点的概念, 继而获得无穷 远线的概念; 讨论了今天所谓的笛沙格定理: 投影三角形 ABC 和A‘B’C‘ 的对应边 (或 延长线)交点Q、R、P共线。反之,对应 边交点共线的三角形,对应顶点连线 AA'、BB'、CC'共点O 。 德沙格在他朋友鲍瑟1648年发表的一本 关于透视法著作的附录中,发表了三角形其它 一些射影性质的结论,其中包含投影变换下交 比不变性定理。
(这总可以做到 y 4 py2 qy r 0 )
由此进一步得到
y 4 2 py2 p 2 py2 qy r p 2
于是,对于任意的z,有
( y 2 p z)2 py2 qy p 2 r 2z( y 2 p) z 2 ( p 2z) y 2 qy ( p 2 r 2 pz z 2 )
韦达的这种做法受到后人的赞赏,并被吉拉德的《代数新发现》和 奥特雷德(Oughtred, 1575~1660)的《实用分析术》所继承。特别是通 过后者的著作使得采用数学符号的风气流行起来。对韦达所使用的代数 法的改进工作是由笛卡儿完成的,他首先用拉丁字母的前几个(a, b, c, d, …)表示已知量,后几个(x, y, z, w, …)表示未知量,成为今天的 习惯。 到十七世纪末,欧洲数学家已普遍认识到,数学中特意使用符号具有 很好的功效。并且使数学问题具有一般性。
▔ xn an a3 aaa ax
乘幂xn
乘幂axn 指数a3 指数a3 指数ax
Bombelli (法)
Chuquet (法) Pierre Herigone (法) T. Harriot(1560~1621,英) Descartes (法)
2 三角学
• 波伊尔巴赫: 把托勒玫的《天文大成》译成拉丁文,并编制了十分精确的正弦表。 • 雷格蒙塔努斯: 《论各种三角形》欧洲第一部脱离天文学的三角学专著 全书分五卷,前两卷论平面三角, 后三卷论球面三角, 给出了球面三角 正弦定理和边的余弦定理。 《方位表》:制定高达5位的三角函数表, 除正余弦表外, 还有正切表。 首次对三角学作出完整、独立的阐述,使其开始在欧洲广泛传播。 • 维尔纳(Werner,1468~1528):《论球面三角》(1514) 改进了将雷格蒙塔努斯的思想。 • 雷提库斯: 将传统的弧与弦的关系, 改进为角的三角函数关系, 并采用了六个函数 (正弦、余弦、正切、余切、正割、余割),编制了间隔为10“的10位 和15位正弦表。 • 韦达:将平面三角与球面三角知识系统化.在《标准数学》(1579)和《斜截 面》(1615) 中, 把解平面直角三角形和斜三角形的公式汇集在一起, 其中包括自己得到的正切公式: