等差数列(高三文科数学第一轮复习)

合集下载

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

第二节 等差数列及其前n 项和突破点一 等差数列的基本运算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n 2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 二、填空题1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,则m 与n 的等差中项是________. 答案:32.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为________. 答案:143.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是________. 答案:44.在等差数列{a n }中,已知d =2,S 100=10 000,则S n =________. 答案:n 2[典例感悟]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n -4+3n -72=n 3n -112.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.(2018·信阳二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.3.(2018·菏泽二模)已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (9)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n. [基本能力]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:742.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案:23.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一 等差数列的性质[例1] (1)(2019·武汉模拟)若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=( )A .25B .27C .50D .54(2)(2019·莆田九校联考)在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40[解析] (1)设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3, ∴a 5=a 1+4d =3,S 9=9a 5=27.(2)因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10. 由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B. [答案] (1)B (2)B [方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m ,S 2n -1=(2n -1)a n ,S n =n a 1+a n 2=n a 2+a n -12(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n a 1+a n2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n a 1+a n2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92, 又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15.2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大?解:法一:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2.∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从而S n =25n +n n -12(-2)=-n 2+26n=-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] (2019·济南一中检测)各项均不为0的数列{a n }满足a n +1a n +a n +22=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .[解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1n +2n +3=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3)=n6n +3. [方法技巧]等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题定中的判问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[针对训练](2019·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n n -12d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.。

高考数学一轮复习之数列第二节-等差数列

高考数学一轮复习之数列第二节-等差数列

第二节 等差数列高考目标:1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数的关系.一.知识梳理1.等差数列的定义2.等差数列的通项公式3.等差中项4.等差数列的常用性质 (1)通项公式的推广(2) 若{n a }是等差数列,且m+n=p+q, 则 q p n m a a a a +=+5.等差数列的前n 项和公式 d n n na S n 2)1(1-+=)(21n n a a nS +=6.等差数列的前n 项公式与函数的关系(最值)7.等差数列与等差数列各项的和有关的性质①等差数列依次每k 项的和仍成等差数列,其公差为原公差的2k 倍...,,232k k k k k S S S S S --;②若等差数列的项数为)(2+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;③若等差数列的项数为()+∈-Nn n 12,则()n n a n S1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇④两个等差数列}{},{n n b a 的前n 项和n n T S ,之间的关系为1212--=n n n n T S b a .二.典例解析类型一.等差数列中基本量的计算例1.(1)(09.山东)在等差数列}{n a 中,6,7253+==a a a ,则=6a .(2)(10.辽宁)设n S 为等差数列}{n a 的前n 项和,若24,363==S S ,则=9a . (3)设}{n a 为等差数列,n S 为等差数列}{n a 的前n 项和,已知75,1154==S a ,n T 为数列}{nS n的前n 项和,求n T习题1.已知等差数列}{n a 中,公差0>d ,又14,454132=+=⋅a a a a . (1)求数列}{n a 的通项公式; (2)记数列11+⋅=n n n a a b ,数列}{n b 的前n 项和记为n S ,求n S .习题2.(10.浙江)设d a ,1为实数,首项为1a ,公差为d 的等差数列}{n a 的前n 项和为n S ,满足01565=+S S .(1)若55=S ,求6S 及1a ; (2)求d 的取值范围.类型二.等差数列的判定例2.已知n S 为等差数列}{n a 的前n 项和, )(+∈=N n nS b nn .求证:数列}{n b 是等差数列.总结:四种方法判定是等差数列习题3. (09.湖北)已知数列}{n a 的前n 项和2211+⎪⎭⎫⎝⎛--=-n n n a S (n 为正整数).令n n n a b 2=,求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式.习题4.已知数列}{n a 的前n 项和为n S ,且满足)2(021≥=+-n S S a n n n ,211=a . (1)求证: ⎭⎬⎫⎩⎨⎧n S 1是等差数列; (2)求n a 的表达式.类型三.等差数列的性质例3.(1)(10.全国Ⅱ)如果等差数列}{n a 中,12543=++a a a ,那么=+++721a a a .(2)等差数列}{n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 . (3)已知两个等差数列}{n a 和}{n b 的前n 项和分别为n n B A ,,且3457++=n n B A n n ,则使得nnb a 为整数的正整数n 的个数是 .习题5.(1)在等差数列}{n a 中,27,39963741=++=++a a a a a a ,则数列}{n a 的前9项和=9S .(2)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 .类型四.等差数列前n 项和的最值问题例 4.已知等差数列}{n a 满足)(2*21N n a a a n n n ∈+=++,它的前n 项和为n S ,且72,1063==S a ,若3021-=n n a b ,求数列}{n b 的前n 项和的最小值.习题6.等差数列}{n a 中,01<a ,129S S =,该数列前多少项的和最小?(多种方法)三.课后作业1.已知等差数列}{n a 的前n 项和为n S ,且满足12323=-S S ,则数列}{n a 的公差为 . 2.在等差数列}{n a 中,公差为d ,且5104S S =,则=da 1. 3.(09.辽宁)已知}{n a 为等差数列,且0,12347=-=-a a a ,则公差d 为 . 4.(09.湖南)设n S 是等差数列}{n a 的前n 项和,已知11,362==a a ,则=7S . 5.设等差数列}{n a 的前n 项和为n S ,若36,963==S S ,则=++987a a a .6.(09.海南.宁夏) 等差数列}{n a 的前n 项和为n S ,已知38,12211==+-+-m m m m S a a a ,则=m ( )A.38B.20C.10D.97.(10.福建理)设等差数列}{n a 的前n 项和为n S ,若6,11641-=+-=a a a ,则当n S 取最小值时,n = .8.数列}{n a 的前n 项和n S 满足2)1(41+=n n a S 且0>n a . (1)求1a ,2a ;(2)求数列}{n a 的通项公式;(3)令n n a b -=20,问:数列}{n b 的前多少项和最大? 9.在数列}{n a 中, )(33,3*111N n a a a n n n ∈+==++(1)设nnn a b 3=.证明:数列}{n b 是等差数列; (2)求数列}{n a 的前n 项和n S . 10.若数列}{n a 满足),(11*1为常数d N n d a a nn ∈=-+,则称数列}{n a 为调和数列.已知数列}1{nx 为调和数列, 且2002021=+++x x x ,则=+165x x .。

高三数学一轮复习5.2等差数列部分 重点、考点知识、高考真题讲解及练习

高三数学一轮复习5.2等差数列部分 重点、考点知识、高考真题讲解及练习

项起是等差数列;
11)若数列
{an
}
是等差数列,前
n
项和为
S
n
,则
{
Sn n
}
也是等差数列,其首项和
{an
}
的首
1 项相同,公差是{an} 公差的 2 ;
12)若三个数成等差数列,则通常可设这三个数分别为 x d , x, x d ;若四个数成等差数
列,则通常可设这四个数分别为 x 3d , x d , x d , x 3d ;
A. B. C. D.
【解答】解:∵等差数列{an}的前 n 项和为 Sn,a5=5,S8=36,
t

t

解得 a1=1,d=1,
∴an=1+(n﹣1)×1=n,

=
=

∴数列
的前 n 项和为:
Sn= 故选:B.
=1﹣

13.(2018•齐齐哈尔一模)已知等差数列{an}的前 n 项和为 Sn,若 a3=3,S4=14.则 {an}的公差为( ) A.1 B.﹣1 C.2 D.﹣2 【解答】解:设等差数列{an}的公差为 d,∵a3=3,S4=14. ∴a1+2d=3,4a1+ d=14,
∴数列{an}是首项为 24,公差为 2 的等差数列,
∴Sn=24n+
=﹣n2+25n=﹣(n﹣ )2+ .
∴要使此数列的前 n 项和 Sn 最大,则 n 的值为 12 或 13.
故选:C.
12.(2018•宣城二模)已知等差数列{an}的前 n 项和为 Sn,a5=5,S8=36,则数列 的前 n 项和为( )
A.20 B.35 C.45 D.90 【解答】解:由等差数列的性质得,a1+a9=a2+a8=10,S9=

高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧ a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧ a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( )A .100B .99C .98D .97答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1, ∴a 100=a 10+90d =98,故选C.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .35答案 C∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)∵a 3+a 5=2a 4=0,∴a 4=0.又a 1=6,∴a 4=a 1+3d =0,∴d =-2.∴S 6=6×6+6×(6-1)2×(-2)=6. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20∴S 7=7(a 1+a 7)2=49. (2)设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1,即a n +1n +1-a n n=1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . (2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.①设b n =a n +1-a n ,证明{b n }是等差数列;②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2,得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.②解 由①得b n =1+2(n -1)=2n -1,即a n +1-a n =2n -1.于是∑n k =1 (a k +1-a k )=∑nk =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.题型三 等差数列性质的应用命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( ) A .-2 018B .-2 016C .-2 019D .-2 017 答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3.又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114.(2)由题意知,数列{S n n}为等差数列,其公差为1, ∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1.∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A .58B .88C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.3828C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13 =3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90 (2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的首项为a 1,公差为d ,则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. 答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32 答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6,得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121 答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1)2 =⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12 =14⎝⎛⎭⎫1+212n -12≤121, 故选D.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14.9.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 11.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.*13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0, 解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.第2讲 等差数列及其前n 项和一、选择题1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析 由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ).A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。

高三一轮复习等差数列(一)

高三一轮复习等差数列(一)

变式训练
变题:在等差数列 {an }中,已知a1 24 ,前 n项和为sn ,且s10 s15 , 判断 sn 能否取得最值,并说明理由.
拓展思考:
在等差数列 {an }中,已知 a1 24 ,前 n项和为sn ,且s10 s15 , (1)求数列{ an } 的前20项和 T20 , (2)求数列{ an } 的前n项和 Tn .
高三一轮复习
等差数列(一)
执教人:南通市第三中学 沈春华
1.等差数列的定义:
1.等差数列的定义:
如果一个数列从 第二项 起,每一项源自减去 它的前一项所得的差都等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等差 数列的 公差 ,公差通常用 d 表示.
1.等差数列的定义:
如果一个数列从第二项起,每一项减去它 的前一项所得的差都等于同一个常数,那么这 个数列就叫做等差数列,这个常数叫做等差数 列的公差,公差通常用 d 表示. 关系式:an 1 an d (常数)
已知S8 100 ,S16 392 ,则S24
.
用函数的观点看等差数列
通项公式
an f (n) dn (a1 d )
前n项和公式
一次型函数
n( n 1) Sn na1 d 2
d 2 d f ( n ) n ( a1 )n 2 2
二次型函数
例题讲解
2
4.等差数列的前n项和公式
(首项为 a1,公差为d ):
n(a1 a n ) sn 2 n( n 1) na1 d 2
基础训练 1.在数列{an } 中,若 a1 1, an 1 an 2 ,则该 数列的通项 a n . 2.(必修5 第36 页 例2)在等差数列 an 中,已 知 a3 10, a9 28,则 a12 . 3. 在等差数列{ an} 中,已知 a11 a15 8 ,则 a4 a22 . 4.(必修5 第44 页习题3(3))在等差数列{an }中, 2 已知 a1 2, d , S n 20 ,则 n = . 3 5.(必修5 第41 页 练习4)已知等差数列{an }中,

高考数学第一轮复习:《等差数列》

高考数学第一轮复习:《等差数列》

高考数学第一轮复习:《等差数列》最新考纲1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. 4.了解等差数列与一次函数的关系.【教材导读】1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件? 提示:充分必要条件.2.如何推导等差数列的通项公式? 提示:可用累加法.3.如何推导等差数列的前n 项和公式? 提示:利用倒序相加法推导.1.等差数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n -a n -1=d (n ≥2,n ∈N *,d 为常数).(2)等差中项:若a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且A =a +b2. 2.等差数列的通项公式(1)若等差数列{a n }的首项是a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d . (2)通项的推广:a n =a m +(n -m )d . 3.等差数列的前n 项和公式(1)已知等差数列{a n }的首项a 1和第n 项a n ,则其前n 项和公式S n =n (a 1+a n )2.(2)已知等差数列{a n }的首项a 1与公差d ,则其前n 项和公式S n =na 1+n (n -1)2d .4.等差数列{a n }的性质(1)若m +n =p +q ,则a m +a n =a p +a q (其中m ,n ,p ,q ∈N *),特别地,若p +q =2m ,则a p +a q =2a m (p ,q ,m ∈N *).(2)若等差数列{a n }的前n 项和为S n ,则S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列. (3)若下标成等差数列,则相应的项也成等差数列,即a k ,a k +m ,a k +2m ,…(k ,m ∈N *)成等差数列.(4)若等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n . 5.等差数列的增减性与最值公差d >0时为递增数列,且当a 1<0时,前n 项和S n 有最小值;d <0时为递减数列,且当a 1>0时,前n 项和S n 有最大值.6.等差数列与一次函数的关系由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,(n ,a n )在一次函数y =px +q 的图象上,即公差不为零的等差数列的图象是直线y =px +q 上的均匀排开的一群孤立的点.当p =0时,a n =q ,等差数列为常数列,此时数列的图象是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点.【重要结论】1.等差数列{a n }中,若a m =n ,a n =m ,则a m +n =0. 2.等差数列{a n }的前n 项和为S n ,若S m =S n (m ≠n ), 则S m +n =0.3.等差数列{a n }的前n 项和为S n ,若S m =n ,S n =m , 则S m +n =-(m +n ).1.已知数列{a n }中,a 3=2,a 7=1,若⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1为等差数列,则a 11等于( )(A)0 (B)12 (C)23(D)2B 解析:由已知可得1a 3+1=13,1a 7+1=12分别是等差数列⎩⎨⎧⎭⎬⎫1a n +1 的第3项和第7项,其公差d =12-137-3=124,由此可得1a 11+1=1a 7+1+(11-7)d =12+4×124=23.解之得a 11=12. 2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) (A)1 (B)2 (C)4(D)8C解析:设等差数列{an }的公差为d ,∴⎩⎨⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,∴d =4,故选C.3.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) (A)(-3,+∞) (B)-∞,-83 (C)-3,-83(D)-3,-83D 解析:由题意知a 9≥0,a 10<0, ∴a 9=a 1+8d =24+8d ≥0,d ≥-3. a 10=a 1+9d =24+9d <0,d <-83. 综上知-3≤d <-83.故选D.4.设等差数列{a n }的前10项和为20,且a 5=1,则{a n }的公差为( ) (A)1 (B)2 (C)3(D)4B 解析:等差数列{a n }的前10项和为20,所以S 10=10(a 1+a 10)2=5(a 1+a 10)=5(a 5+a 6)=20.所以a 6=4-a 5=3.则{a n }的公差为a 6-a 5=3-1=2.故选B.5.等差数列{a n }的前n 项和为S n ,若a 2=3,S 5=25,则a 8=( ) (A)16(B)15(C)14 (D)13B 解析:设公差为d ,由a 2=3,S 5=25可得a 1+d =3,5a 1+5×42d =25 ∴a 1=1,d =2,则a 8=a 1+7d =15.考点一 等差数列的基本量运算(1)已知等差数列{a n }中,a 1010=3,S 2017=2017,则S 2018=( ) (A)2018 (B)-2018 (C)-4036(D)4036(2)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) (A)8 (B)9 (C)10(D)11(3)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( ) (A)7 (B)152 (C)172(D)8解析:(1)由等差数列前n 项和公式结合等差数列的性质可得: S 2017=a 1+a 20172×2017=2a 10092×2017=2017a 1009=2017,则a 1009=1,据此可得:S 2018=a 1+a 20182×2018=1009(a 1009+a 2010)=1009×4=4036.故选D.(2)由S n -S n -3=51得,a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.(3)设{a n }的公差为d ,由a 2=4,S 10=110得⎩⎨⎧a 1+d =4,10a 1+10×92d =110,解得⎩⎪⎨⎪⎧a 1=2,d =2,故a n =2+2(n -1)=2n , S n =2n +n (n -1)2×2=n 2+n . 所以S n +64a n=n 2+n +642n=n 2+32n +12≥2n 2·32n +12=172,当且仅当n 2=32n ,即n =8时取等号.故选C.【反思归纳】 等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可知三求二.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.【即时训练】 (1)若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) (A)12 (B)13 (C)14(D)15(2)已知在等差数列{a n }中,a 1=20,a n =54,S n =3 700,则数列的公差d ,项数n 分别为( )(A)d =0.34,n =100 (B)d =0.34,n =99 (C)d =3499,n =100(D)d =3499,n =99(3)《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份的量为( )(A)52(B)54(C)53 (D)56解析:(1)B 由题意得S 5=5(a 1+a 5)2=5a 3=25,a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d=3+5×2=13.故选B.(2)C由⎩⎪⎨⎪⎧a n =a 1+(n -1)d S n =na 1+n (n -1)d 2,得⎩⎪⎨⎪⎧54=20+(n -1)d ,3700=20n +n (n -1)d 2,解得d =3499,n =100.故选C.(3)C 易得中间的那份为20个面包,设最小的一份为a 1,公差为d ,根据题意,有[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53.故选C.考点二 等差数列的判断与证明已知S n 为等差数列{a n }的前n 项和,b n =S nn (n ∈N *).求证:数列{b n }是等差数列. 证明:设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d , ∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数), ∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d , ∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d =2a 1+nd =2b n +1. ∴数列{b n }是等差数列.【反思归纳】 判定数列{a n }是等差数列的常用方法 (1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数;(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1; (3)通项公式法:数列的通项公式a n 是n 的一次函数;(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.【即时训练】 已知数列{a n }的首项a 1=1,且点(a n ,a n +1)在函数f (x )=x4x +1的图象上,b n =1a n(n ∈N *).(1)求证:数列{b n }是等差数列,并求数列{a n },{b n }的通项公式;(2)试问数列{a n }中a k ·a k +1(k ∈N *)是否仍是{a n }中的项?如果是,请指出是数列的第几项;如果不是,请说明理由.解:(1)证明:由已知得a n +1=a n 4a n +1,1a n +1=4+1a n,∴1a n +1-1a n=4,即b n +1-b n =4, ∴数列{b n }是以1为首项,4为公差的等差数列, ∴数列{b n }的通项公式为b n =1+4(n -1)=4n -3. 又b n =1a n ,故数列{a n }的通项公式为a n =14n -3.(2)由(1)可得a k ·a k +1=14k -3·14(k +1)-3=116k 2-8k -3=14(4k 2-2k )-3, ∵4k 2-2k =2k (2k -1)∈N *,∴a k ·a k +1∈{a n },所以a k ·a k +1是数列{a n }中的项,是第4k 2-2k 项. 考点三 等差数列的性质(1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )(A)0(B)37(C)100 (D)-37(2)等差数列{a n}中,a1+3a8+a15=120,则2a9-a10的值是()(A)20 (B)22(C)24 (D)-8(3)等差数列{a n}的前m项和为30,前3m项和为90,则它的前2m项和为________.解析:(1)设{a n},{b n}的公差分别为d1,d2,则(a n+1+b n+1)-(a n+b n)=(a n+1-a n)+(b n+1-b n)=d1+d2,所以{a n+b n}为等差数列.又a1+b1=a2+b2=100,所以{a n+b n}为常数列.所以a37+b37=100.(2)因为a1+3a8+a15=5a8=120,所以a8=24,所以2a9-a10=a10+a8-a10=a8=24.(3)由S m,S2m-S m,S3m-S2m成等差数列,可得2(S2m-S m)=S m+S3m-S2m,即S2m=3S m+S3m3=3×30+903=60.答案:(1)C(2)C(3)60【反思归纳】一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m+n=p+q,则a m+a n=a p+a q(m,m,p,q∈N*).【即时训练】(1)等差数列{a n}中,a1+a7=26,a3+a9=18,则数列{a n}的前9项和为()(A)66 (B)99(C)144 (D)297(2)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于()(A)6 (B)7(C)8 (D)9(3)在等差数列{a n}中,S n为前n项和,2a7=a8+5,则S11=()(A)55 (B)11(C)50 (D)60解析:(1)由a1+a7=2a4=26,得a4=13.由a3+a9=2a6=18,得a6=9.S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.故选B.(2)因为S 5=S 9, 所以a 6+a 7+a 8+a 9=0. 又a 6+a 9=a 7+a 8, 所以a 7+a 8=0, 又a 1>0, 所以a 7>0,a 8<0.所以当n =7时S n 最大.故选B.(3)由2a 7=a 8+5,a 6=5,S 11=(a 1+a 11)·112=11a 6=55.故选A.答案:(1)B (2)B (3)A等差数列的最值问题教材源题:已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值. 解:由题意知,等差数列5,427,347,…的公差为-57, 所以S n =n 22×5+(n -1)-57 =75n -5n 214=-514n -1522+1 12556.于是,当n 取与152最接近的整数即7或8时,S n 取最大值.【规律总结】 求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n (n 为正整数);若对称轴对应两个正整数的中间,此时应有两个符合题意的n 值.【源题变式】 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?解:法一 设等差数列{a n }的公差为d , 由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0. 所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·-18a 1 =-116a 1(n 2-17n ) =-116a 1n -1722+28964a 1,因为a 1>0,n ∈N *,所以n =8或n =9时,S n 有最大值. 法二 设等差数列{a n }的公差为d ,同法一得 d =-18a 1<0.设此数列的前n 项和最大,则⎩⎨⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n =a 1+(n -1)·-18a 1≥0,a n +1=a 1+n ·-18a 1≤0,解得⎩⎨⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.课时作业基础对点练(时间:30分钟)1.已知等差数列{a n }的前n 项和为S n ,若6a 3+2a 4-3a 2=5,则S 7=( ) (A)28 (B)21 (C)14(D)7D 解析:解法一 由6a 3+2a 4-3a 2=5,得6(a 1+2d )+2(a 1+3d )-3(a 1+d )=5a 1+15d =5(a 1+3d )=5,即5a 4=5,所以a 4=1,所以S 7=7×(a 1+a 7)2=7×2a 42=7a 4=7,故选D.解法二 由6a 3+2a 4-3a 2=5,得6(a 4-d )+2a 4-3(a 4-2d )=5, 即5a 4=5,所以a 4=1,所以S 7=7×(a 1+a 7)2=7×2a 42=7a 4=7,故选D.2.已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) (A)18 (B)12 (C)9(D)6D 解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.3.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) (A)S 7 (B)S 6 (C)S 5(D)S 4C 解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.故选C.4.已知等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,如果当n =m 时,S n 最小,那么m 的值为( )(A)10 (B)9 (C)5(D)4C 解析:解法一 设等差数列{a n }的公差为d .由已知得⎩⎨⎧11a 1+11×102d =22,a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7.所以S n =-33n +n (n -1)2×7=72n 2-73n 2=72⎝ ⎛⎭⎪⎫n -73142-72×⎝ ⎛⎭⎪⎫73142,因为n ∈N *,所以当n =5时,S n 取得最小值,故选C.解法二 设等差数列{a n }的公差为d .由已知得11(a 1+a 11)2=22,所以11a 6=22,解得a 6=2,所以d =a 6-a 42=7,所以a n =a 4+(n -4)d =7n -40,所以数列{a n }是单调递增数列,又a 5=-5<0,a 6=2>0,所以当n =5时,S n 取得最小值,故选C.5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )(A)54钱 (B)43钱 (C)32钱(D)53钱B 解析:依题意,设甲所得为a 1,公差为d ,则a 1+a 2=a 3+a 4+a 5=52,即2a 1+d =3a 1+9d =52,解得a 1=43,∴甲得43钱.故选B.6.公差不为零的等差数列{a n }的前n 项和为S n ,若a 6=3a 4,且S 10=λa 4,则λ的值为( ) (A)15 (B)21 (C)23(D)25D 解析:由题意有:a 1+5d =3(a 1+3d )⇒a 1=-2d ,λ=S 10a 4=10a 1+10×92d a 1+3d=25,故选D.7.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:∵a n +1-a n =2(n ≥1),∴{a n }为等差数列,∴a n =1+(n -1)×2,即a n =2n -1. 答案:2n -1.8.(2019苏北四市一模)在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为________. 解析:设等差数列{a n }的公差为d ,由题意可得a 2+a 8=11=2a 5,则a 5=112,所以3a 3+a 11=3(a 5-2d )+a 5+6d =4×112=22.答案:229.由正数组成的等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且a n b n =2n -13n -1,则S 5T 5=________.解析:由S 5=5(a 1+a 5)2=5a 3,T 5=5(b 1+b 5)2=5b 3,得S 5T 5=a 3b 3=2×3-13×3-1=58.答案:5810.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧ a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.能力提升练(时间:15分钟)11.今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( )(A)12日 (B)16日 (C)8日(D)9日D 解析:由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n (a 1+a n )2+n (b 1+b n )2=2 250,即n (103+13n +90)2+n ⎝ ⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.12.已知数列{a n +1-a n }是公差为2的等差数列,且a 1=1,a 3=9,则a n =________. 解析:数列{a n +1-a n }是公差为2的等差数列,且a 1=1,a 3=9,∴a n +1-a n =(a 2 -1)+2(n -1), a 3-a 2 =(a 2-1)+2,∴3-a 2=(a 2-1)+2,∴a 2=1. ∴a n +1-a n =2n -2,∴a n =2(n -1)-2+2(n -2)-2+……+2-2+1=2×(n -1)n2-2(n -1)+1=n 2-3n +3. ∴a n =(n 2-3n +3)2.n =1时也成立. 则a n =(n 2-3n +3)2. 答案:(n 2-3n +3)2.13.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d =________. 解析:因为a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,所以(m -n )d =1n -1m ,所以d =1mn ,所以a m =12 015+(m -1)1mn =1n ,解得1mn =12015,即d =12015.答案:1201514.设同时满足条件:①b n +b n +22≤b n +1(n ∈N +);②b n ≤M (n ∈N +,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和:a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由.解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2,∴S n =na 1+n (n -1)2d =-n 2+9n .(2){S n }是“特界”数列,理由如下:由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }适合条件①.而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n ∈N +),则当n =4或5时,S n 有最大值20,即S n ≤20,故数列{S n }适合条件②.综上,数列{S n }是“特界”数列.15.(2019南昌模拟)已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. (1)证明:因为b n =1a n,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n 2a n +1=2a n +1a n .所以b n +1-b n =2a n +1a n-1a n=2.又b 1=1a 1=1,所以数列{b n }是首项为1,公差为2的等差数列. (2)解:由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,所以a n =1b n=12n -1.所以数列{a n}的通项公式为a n=1.2n-1。

高中数学一轮复习数列概念及等差数列:第5节 等差数列概念

高中数学一轮复习数列概念及等差数列:第5节  等差数列概念

第5节 等差数列概念【基础知识】 等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+.5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.6.注意区分等差数列定义中同一个常数与常数的区别.【规律技巧】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 是等差数列;(5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+; 四个数成等差数列,一般设为3,,,3a d a d a d a d --++. 这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+.【典例讲解】【例1】若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明a n -a n -1=d (n ≥2,d 为常数);二是等差中项法,证明2a n +1=a n +a n +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n n +c ,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解析:由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝⎛⎭⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列. 即存在一个非零常数c =-12,使数列{b n }也为等差数列. 【针对训练】1、已知{}n a 为等差数列,其前n 项和为n S .若11a =,35a =,64n S =,则n = . 【答案】82、在数列{}n a 中,11a =,()211nn n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = . 【答案】480【解析】∵()211nn n a a ++-=,∴311a a -=,531a a -=,751a a -=,……,且421a a +=,641a a +=,861a a +=,……,∴21{}n a -为等差数列,且211(1)1n a n n -=+-⨯=,即11a =,32a =,53a =,74a =,∴412341124S a a a a =+++=++=,8456783418S S a a a a -=+++=++=,128910111256112S S a a a a -=+++=++=,……,∴60151441544802S ⨯=⨯+⨯=. 3、已知数列{}n a ,若点(,)n n a *()n N ∈均在直线2(5)y k x -=-上,则数列{}n a 的前9项和9S 等于( )A .18B .20C .22D .24 【答案】A综合点评:前四个题是等差数列的判断,第五个题是等差数列5个基本量问题, 在判断一个数列是否为等差数列时,应该根据已知条件灵活选用不同的方法,一般是先建立1n a -与n a 的关系式或递推关系式,表示出1n n a a --,然后验证其是否为一个与n 无关的常数, 基本量的计算:即运用条件转化为关于1a 和d 的方程组来处理.4、数列{}n a 中,11a =,1334(,2)n n n a a n N n *-=++∈≥,若存在实数λ,使得数列3n n a λ+⎧⎫⎨⎬⎩⎭为等差数列,则λ=_________. 【答案】25、正项等差数列{}n a 中的1a 、4029a 是函数2()ln 81f x x x x =+--的极值点,则22015log a =( ) A . B . C . D .1 【答案】D【练习巩固】1.记S n 为等差数列{a n }的前n 项和,若S 33-S 22=1,则其公差d =( )A.12B .2C .3D .4【解析】由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝⎛⎭⎫a 1+d2=1,∴d =2. 【答案】B2.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2C.12D .-12【解析】由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列,所以S 22=S 1·S 4, 即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12,故选D.【答案】D3.已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为( ) A .24B .39C .104D .52【解析】因为{a n }是等差数列,所以3(a 3+a 5)+2(a 7+a 10+a 13)=6a 4+6a 10=48,所以a 4+a 10=8,其前13项的和为13(a 1+a 13)2=13(a 4+a 10)2=13×82=52,故选D.【答案】D4.设S n 是等差数列{a n }的前n 项和,公差d ≠0,若S 11=132,a 3+a k =24,则正整数k 的值为 ( )A .9B .10C .11D .12【解析】依题意得S 11=11(a 1+a 11)2=11a 6=132,a 6=12,于是有a 3+a k =24=2a 6,因此3+k =2×6=12,k =9,故选A.【答案】A15.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5 D .6 【答案】C6.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.【答案】20【解析】方法一:a 3+a 8=2a 1+9d =10,而3a 5+a 7=3(a 1+4d)+a 1+6d =2(2a 1+9d)=20.方法二:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 5+a 6)=2(a 3+a 8)=20.7.等差数列{a n }前n 项和为S n .已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.8.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n,且T n+a n+12n=λ(λ为常数),令c n=b2n(n∈N*),求数列{c n}的前n项和R n.9.在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.。

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。

高考一轮复习等差数列

高考一轮复习等差数列

等差数列1、在等差数列{a n}中,已知a3+a4=10,aa—3+a n-2=30,前n项之和是100,则项数a为() ﻫA、9B、10C、11D。

122、在等差数列{a n}中,a3+a6+a9=54,设数列{a n}的前n项和为S n,则S11=( )A、18B、99C。

198D。

2973。

设{an}是等差数列,下列结论中正确的是()A。

若a1a2>0,则a2a3>0B、若a1a3<0,则a1a2<0ﻫC。

若a1<a2,则a22<a1a3D。

若a1≥a2,则a22≥a1a34、已知等差数列数列{an}满足a n+1+a n=4a,则a1=( )A。

—1B、1C。

2D、35、在等差数列{a n}中,已知a1=3,a9=11则前9项和S9=( )A、63B、65C、72D、626、已知等差数列{aa}满足a1=—4,a4+a6=16,则它的前10项和S10=( )A。

138B、95C。

23D、1357、已知等差数列{an}的前n项和为S n,公差为d,若a1<0,S12=S6,下列说法正确的是()A。

a<0B。

S19〈0C。

当n=9时S n取最小值D、S10>08。

在等差数列{a n}中,已知a5+a10=12,则3a7+a9等于()A、30B、24C、18D、129、已知S n是等差数列{a n}的前n项和,且S6=3,S11=18,则a9等于( ) ﻫA。

3B、5C。

8D、1510、在等差数列{a n}中,a9=a12+6,a2=4,设数列{a n}的前n项和为Sa,则数列{}的前10项和为( ) ﻫA、B、C、D、11。

在等差数列{a n}中,已知a2+a3=13,a1=2,则a4+a5+a6= ______ 、12。

在公差大于1的等差数列{a n}中,已知a12=64,a2+a3+a10=36,则数列{|a n|}的前20项和为______ 。

13、已知{a n}为等差数列,S n为其前n项和、若a1=6,a3+a5=0,则S6= ______ 、14。

高三一轮复习 数列的复习

高三一轮复习  数列的复习

数列的复习【知识整理】:一 、等差数列1.等差数列的通项公式:①a n =a 1+____×d②(推广公式)a n =a m +______×d注意:数列{}n a 是等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,特别地,数列{}n a 是公差不为0的等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,且0≠p .2、等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.注意:①b 是a 、c 的等差中项的充要条件是a ,b ,c 成等差数列;②若a ,b ,c 成等差数列,那么c b b a b c a b c a b ca b -=--=-+=+=;;;22都是等价的;③若数列{}n a 是等差数列,则()*-+∈≥-=-N n n a a a a n n n n ,211,整理得211+-+=n n n a a a . 3、等差数列的性质{}n a 是等差数列,d 为公差.(1)1123121,+---+=+==+=+=+k n k n n n n a a a a a a a a a a 即 (2)若m, n, p, q ∈N*,若m +n =p +q ,则_________________若m, n, p ∈N*,若m +n =2p ,则__________________ (3)()mn a a d d m n a a mn m n --=⇔-+= (m, n, ∈N*,且m ≠ n ).(4)序号成等差数列的项又组成一个等差数列,即 ,,,2m k m k k a a a ++仍成等差数列,公差为()*∈Nm k md ,.(5)若{}{}n n b a ,都是等差数列,则数列{}{}{}{}{}2121,,,,,(λλλλλλb k c b a b a b a ka c a n n n n n n n ++++,,,,均为常数)也是等差数列.(6)连续三个或三个以上k 项和依次组成一个等差数列,即)2(,,,232*∈≥--N k k S S S S S k k k k k 且 成等差数列,公差为d k 2.(7)①当项数为奇数()12+n 项时,其中有()1+n 个奇数项,n 个偶数项.1-+=n a S S 偶奇;()112++=+n a n S S 偶奇; ()nn S S na S a n S n n 1,,111+=∴=+=++偶奇偶奇. ②当项数为偶数n 2项时,()11,-,,+++=+===n n n n a a n S S nd S S na S na S 奇偶奇偶偶奇 ∴1+=n na a S S 偶奇. 能力知识清单:1、等差数列{}n a 中,若()0,,=≠==+nm n n a n m n a m a 则. 2、等差数列{}n a 中,若()()n m S n m n S m S n m m n +-=≠==+则,, 3、等差数列{}n a 中,若()0,=≠=+nm m n S n m S S 则; 4、若{}n a 与{}n b ,为等差数列,且前1-21-2m m m m n n T S b a T S n =,则与项和为二、等比数列1. 等比数列的通项公式:①a n =a 1q n -1 ② a n =a m q n -m2、若﹛a n ﹜为等比数列,m, n, p, q ∈N*,若m +n =p +q ,则___________ 3. 等比数列的前n 项和公式: S n = ⎪⎩⎪⎨⎧=≠)1()1(q qS n = _________________()1≠q4、等比数列{a n }的前n 项和S n ,S 2n -S n ,S 3n -S 2n 成 数列,且公比为________ 7.等比中项:如果a ,b ,c 成等比数列,那么b 叫做a 与c 的等比中项,即b²=_____________________三、判断和证明数列是等差(等比)数列常有四种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。

高考总复习一轮数学精品课件 第六章 数列 第二节 等差数列

高考总复习一轮数学精品课件 第六章 数列 第二节 等差数列
= -1,
考点二
等差数列的判断与证明
典例突破
例2.已知各项均为正数的数列{an}的前n项和为Sn,a1=2,且对任意
n∈N*,anSn+1-an+1Sn=2an+1-2an恒成立.
+ 2
(1)求证:数列{ }是等差数列;

(2)求数列{an}的通项公式;
(3)若不等式λan>n-5对任意的正整数n恒成立,求实数λ的取值范围.
(1)证明 因为anSn+1-an+1Sn=2an+1-2an,
所以an(Sn+1+2)=an+1(Sn+2).又数列{an}各项均为正数,即anan+1>0,所以
+1 +2
+2

=0,
+1

所以数列
+2

是等差数列.
(2)解 由(1)知数列
+2

是首项为 2,公差为 0
答案 C
解析由等差数列{an}知,a2+a2 023=a1+a2 024=6,
所以S2 024= 2 024(1 + 2 024 ) =1 012×6=6 072.
2
)
3.记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=
答案 2
解析设等差数列的公差为d.
由题意得2(3a1+3d)=3(2a1+d)+6,即3d=6,解得d=2.
第六章
第二节 等差数列




01
强基础 增分策略
02

高三一轮复习-等差数列教案

高三一轮复习-等差数列教案

《等差数列》一、考纲要求1.了解等差数列与一次函数的关系;等差数列前n项和公式与二次函数间的关系.2.理解等差数列的概念.n项和公式;能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.二、教学策略分析本节课采用了讲练结合的教学策略:教师讲解例题→学生反应练习→点评→学生稳固提高→点评→学生归纳总结→学生完成课后作业,以学生为本,关注学生的开展.在学生解题的过程中引导他们对等差数列的知识进行整理和深入思考、提高运用知识的能力.设计能够激发学生发散思维的练习题,使学生在掌握方程的根本方法的同时,能够结合等差数列的性质提高解题效率,力求使各层次的学生都有所提高. 三、教学过程(一)展示近四年全国卷对数列的考察(二)知识点梳理等差数列的定义及相关性质(三)例题讲解、变式练习例1等差数列{a n}的前n项和记为S n.已知a10=30,a20=50.①求通项a n;②若S n=242,求n.变式1〔1〕20xx全国卷一理数(2)20xx全国卷一理数例2已知数列{a n}的各项均为正数,前n项和为S n,且满足2S n=a2n+n-4.(1)求证:{a n}为等差数列;(2)求{a n}的通项公式。

变式2〔20xx全国卷二理数〕(四)课堂小结1、本节内容在高考中主要考查等差数列的定义、通项公式、前n项和公式、等差中项、等差数列的性质.高考中各种题型都有,一般选择题、填空题主要考查等差数列的定义、通项公式、性质及前n项和公式,难度不大,解答题则综合考查等差数列的相关知识,有时会与其他知识综合命题,难度中等。

从能力考查来看,主要考查学生的运算能力、数据处理能力及转化与化归的思想意识。

2.准确理解概念,掌握等差数列的有关公式和性质;注意不同性质的适用条件和考前须知。

(五)课后作业完成一轮活页等差数列及其性质。

2023年高考数学(文科)一轮复习——等差数列及其前n项和

2023年高考数学(文科)一轮复习——等差数列及其前n项和

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。

高中数学一轮总复习数列与等差数列

高中数学一轮总复习数列与等差数列

高中数学一轮总复习数列与等差数列高中数学一轮总复习:数列与等差数列数列是数学中重要的概念之一,在各个学科中都有广泛的应用。

本文将对数列的概念、性质和常见类型进行系统总结和复习,其中重点关注等差数列及其应用。

一、数列的概念与性质数列是由一系列按照一定规律排列的数所组成的。

通常用数学符号表示为{an}或(an),其中n表示项的位置,an表示第n项的数值。

数列常见的表示方法有三种:通项公式、递推公式和文字描述。

通项公式可以将数列的第n项与n的关系用数学公式表示出来,递推公式则是通过前一项或前几项与后一项的关系进行推导。

对于数列,我们可以关注其首项、公差、末项和项数等性质。

首项是数列中的第一项,通常用a1表示;公差是指相邻两项之间的差值,通常用d表示;末项是数列中的最后一项,通常用an表示;项数是数列中的项的个数,通常用n表示。

二、等差数列及其性质等差数列是一种常见的数列类型,其中相邻两项之间的差值保持不变。

等差数列的通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差。

等差数列的性质如下:1. 前n项和公式:等差数列的前n项和Sn可以用以下公式表示:Sn=(a1+an)n/2或Sn=n(a1+an)/2。

2. 通项和项数的关系:对于等差数列{an},若已知首项a1、公差d和项数n,则末项an可以通过an=a1+(n-1)d求得。

3. 等差中项:等差数列的中项可以通过以下公式表示:an=a1+(n/2-1)d。

4. 通项之和:等差数列的相邻项之和可以通过以下公式表示:an+an-1=2a1+(2n-3)d。

三、等差数列的应用等差数列在数学中有广泛的应用,特别是在数学建模和实际问题中。

下面介绍一些常见的等差数列应用:1. 等差数列求和:根据等差数列的前n项和公式,可以方便地计算等差数列的和,常用于计算数列中数值的总和。

2. 等差数列在几何图形中的应用:等差数列可以用于构造等差数列的和与差具有特定性质的几何图形,如等边三角形、矩形等。

高考数学一轮复习 3.2 等差数列教案

高考数学一轮复习 3.2 等差数列教案

3.2 等差数列●知识梳理1.等差数列的概念若数列{a n }从第二项起,每一项与它的前一项的差等于同一个常数,则数列{a n }叫等差数列.2.通项公式:a n =a 1+(n -1)d ,推广:a n =a m +(n -m )d . 变式:a 1=a n -(n -1)d ,d =11--n a a n ,d =mn a a m n --,由此联想点列(n ,a n )所在直线的斜率.3.等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b =2c a +;a 、b 、c 成等差数列是2b =a +c 的充要条件.4.前n 项和:S n =2)(1n a a n +=na 1+2)1(-n n d =n ·a n -21(n -1)nd . 变式:21n a a +=n S n =n a a a n+⋅⋅⋅++21=a 1+(n -1)·2d =a n +(n -1)·(-2d ).●点击双基1.(2003年全国,文5)等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 是A.48B.49C.50D.51解析:由已知解出公差d =32,再由通项公式得31+(n -1)32=33,解得n =50.答案:C2.(2003年全国,8)已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于A.1B.43 C.21D.83解析:设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2,由等差数列的性质,当m +n =p +q 时,a m +a n =a p +a q .设x 1为第一项,x 2必为第4项,可得数列为41,43,45,47,∴m =167,n =1615.∴|m -n |=21.答案:C3.(2004年春季上海,7)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则a n =___________________.解析:将点代入直线方程得na -1-n a =3,由定义知{na }是以3为首项,以3为公差的等差数列,故na =3n ,即a n =3n 2.答案:3n 24.(2003年春季上海,12)设f (x )=221+x,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为___________________.解析:倒序相加法,观察函数解析式的特点,得到f (x )+f (1-x )=22,即f (-5)+ f (6)=22,f (-4)+f (5)=22,f (-3)+f (4)=22,f (-2)+f (3)=22,f (-1)+ f (2)=22,f(0)+f (1)=22,故所求的值为32.答案:32●典例剖析【例1】 数列{a n }的前n 项和为S n =npa n (n ∈N *)且a 1≠a 2, (1)求常数p 的值;(2)证明:数列{a n }是等差数列. 剖析:(1)注意讨论p 的所有可能值. (2)运用公式a n =⎩⎨⎧--11n nS S S .2,1≥=n n 求a n .解:(1)当n =1时,a 1=pa 1,若p =1时,a 1+a 2=2pa 2=2a 2, ∴a 1=a 2,与已知矛盾,故p ≠1.则a 1=0. 当n =2时,a 1+a 2=2pa 2,∴(2p -1)a 2=0. ∵a 1≠a 2,故p =21. (2)由已知S n =21na n ,a 1=0.n ≥2时,a n =S n -S n -1=21na n -21(n-1)a n -1.∴1-n na a =21--n n .则21--n n a a =32--n n ,…,23a a =12.∴2a a n =n -1.∴a n =(n -1)a 2,a n -a n -1=a 2.故{a n }是以a 2为公差,以a 1为首项的等差数列.评述:本题为“S n ⇒a n ”的问题,体现了运动变化的思想. 【例2】 已知{a n }为等差数列,前10项的和S 10=100,前100项的和S 100=10,求前110项的和S 110.剖析:方程的思想,将题目条件运用前n 项和公式,表示成关于首项a 1和公差d 的两个方程.解:设{a n }的首项为a 1,公差为d ,则⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+,109910021100,100910211011d a d a 解得⎪⎪⎩⎪⎪⎨⎧=-=.1001099,50111d a ∴S 110=110a 1+21×110×109d =-110.评述:解决等差(比)数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于a 1和d (q )的方程;②巧妙运用等差(比)数列的性质(如下标和的性质、子数列的性质、和的性质).一般地,运用数列的性质,可化繁为简.思考讨论此题能按等差数列的关于和的性质来求吗?【例3】 已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .剖析:由S n =12n -n 2知S n 是关于n 的无常数项的二次函数(n ∈N *),可知{a n }为等差数列,求出a n ,然后再判断哪些项为正,哪些项为负,最后求出T n .解:当n =1时,a 1=S 1=12-12=11;当n ≥2时,a n =S n -S n -1=12n -n 2-[12(n -1)-(n -1)2]=13-2n .∵n =1时适合上式,∴{a n }的通项公式为a n =13-2n .由a n =13-2n ≥0,得n ≤213,即当 1≤n ≤6(n ∈N *)时,a n>0;当n ≥7时,a n <0.(1)当 1≤n ≤6(n ∈N *)时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =12n -n 2.(2)当n ≥7(n ∈N *)时,T n =|a 1|+|a 2|+…+|a n |=(a 1+a 2+…+a 6)-(a 7+a 8+…+a n )=-(a 1+a 2+…+a n )+2(a 1+…+a 6)=-S n +2S 6=n 2-12n +72.∴T n =⎪⎩⎪⎨⎧+--72121222n n nn ).,7(),,61(**N N ∈≥∈≤≤n n n n评述:此类求和问题先由a n 的正负去掉绝对值符号,然后分类讨论转化成{a n }的求和问题.深化拓展若此题的S n =n 2-12n ,那又该怎么求T n 呢?答案:T n =⎩⎨⎧≥-≤-.72,66n S S n S nn●闯关训练 夯实基础1.等差数列{a n }中,a 10<0,a 11>0且a 11>|a 10|,S n 为其前n 项和,则A.S 1,S 2,…,S 10都小于0,S 11,S 12,…都大于0B.S 1,S 2,…,S 19都小于0,S 20,S 21,…都大于0C.S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0D.S 1,S 2,…,S 20都小于0,S 21,S 22,…都大于0 解析:由题意知⎩⎨⎧>+<+,010,0911d a d a 可得d >0,a 1<0.又a 11>|a 10|=-a 10,∴a 10+a 11>0.由等差数列的性质知a 1+a 20=a 10+a 11>0,∴S 20=10(a 1+a 20)>0. 答案:B2.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{S n }中也为常数的项是A.S 7B.S 8C.S 13D.S 15解析:设a 2+a 4+a 15=p (常数),∴3a 1+18d =p ,即a 7=31p . ∴S 13=2)(13131a a +⨯=13a 7=313p .答案:C3.在等差数列{a n }中,公差为21,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_________.解析:由等差数列的定义知a 2+a 4+a 6+…+a 100=a 1+a 3+a 5+…+a 99+50d =60+25=85.答案:854.将正偶数按下表排成5列:那么2004应该在第______________行第______________列.解法一:由2004是正偶数列中第1002项,每一行四项,故在第251行中的第二个数.又第251行是从左向右排且从第二行开始排,故2004为第251行第3列.解法二:观察第三列中的各数,可发现从上依次组成一个首项为4,公差为8的等差数列,可算得2004为此数列的第251项.答案:251 35.(2004年全国,文17)等差数列{a n}的前n项和为S n,已知a10=30,a20=50.(1)求通项{a n};(2)若S n=242,求n.解:(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组a1+9d=30,①a1+19d=50. ②由①②解得a1=12,d=2,故a n=2n+10.(2)由S n=na1+2)1(-nn d及Sn =242,得方程12n+2)1(-nn×2=242,解得n=11或n=-22(舍).6.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,S 3,…,S 12中哪一个最大,并说明理由. 解:(1)a 3=12,∴a 1=12-2d ,解得a 12=12+9d ,a 13=12+10d .由S 12>0,S 13<0,即2)(12121a a +>0,且2)(13131a a +<0,解之得-724<d<-3.(2)由a n =12+(n -3)d >0,由-724<d <-3,易知a 7<0,a 6>0,故S 6最大.培养能力7.已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21.(1)求证:{nS 1}是等差数列;(2)求a n 的表达式.(1)证明:∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2),S n≠0(n =1,2,3…).∴nS 1-11-n S =2.又11S =11a =2,∴{nS 1}是以2为首项,2为公差的等差数列.(2)解:由(1),nS 1=2+(n -1)·2=2n ,∴S n =n21.当n ≥2时,a n =S n -S n -1=n21-)1(21-n =-)1(21-n n 〔或n ≥2时,a n =-2S n S n -1=-)1(21-n n 〕;当n =1时,S 1=a 1=21.∴a n =⎪⎪⎩⎪⎪⎨⎧--)1(2121n n ).2(),1(≥=n n8.有点难度哟!(理)设实数a ≠0,函数f (x )=a (x 2+1)-(2x +a1)有最小值-1.(1)求a 的值;(2)设数列{a n }的前n 项和S n =f (n ),令b n =na a a n242+⋅⋅⋅++,证明:数列{b n }是等差数列.(1)解:∵f (x )=a (x -a 1)2+a -a 2,由已知知f (a1)=a-a2=-1,且a >0,解得a =1,a =-2(舍去).(2)证明:由(1)得f (x )=x 2-2x , ∴S n =n 2-2n ,a 1=S 1=-1.当n ≥2时,a n =S n -S n -1=n 2-2n -(n -1)2+2(n -1)=2n -3,a 1满足上式即a n =2n -3.∵a n +1-a n =2(n +1)-3-2n +3=2,∴数列{a n }是首项为-1,公差为2的等差数列.∴a 2+a 4+…+a 2n =2)(22n a a n +=2)341(-+n n =n (2n -1),即b n =nn n )12(-=2n -1.∴b n +1-b n =2(n +1)-1-2n +1=2.又b 2=12a =1,∴{b n }是以1为首项,2为公差的等差数列.(文)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售,甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元时售价依台数n成等差数列,设该数列为{a n},则a n=780+(n-1)×(-20)=800-20n.由a n≥440解不等式800-2n≥440,得n≤18.当购买台数小于18时,每台售价为800-20n元,在台数大于等于18台时每台售价为440元.到乙商场购买每台约售价为800×75%=600元.价差(800-20n)n-600n=20n(10-n).当n<10时,600n<(800-20n)·n;当n=10时,600n=(800-20n)·n;当10<n≤18时,(800-20n)<600n;当n>18时,440n<600n.答:当购买少于10台时到乙商场花费较少;当购买10台时到两商场购买花费相同;当购买多于10台时到甲商场购买花费较少.探究创新9.有点难度哟!已知f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n,n 为正偶数,且a 1,a 2,a 3,…,a n 组成等差数列,又f (1)=n 2,f (-1)=n .试比较f (21)与3的大小.解:∵f (1)=a 1+a 2+…+a n =n 2. 依题设,有2)(1n a a n =n 2,故a 1+a n =2n ,即2a 1+(n -1)d =2n .又f (-1)=-a 1+a 2-a 3+a 4-a 5+…-a n -1+a n =n ,∴2n ·d =n ,有d =2.进而有2a 1+(n -1)2=2n ,解出a 1=1.于是f (1)=1+3+5+7+…+(2n -1).f (x )=x +3x 2+5x 3+7x 4+…+(2n -1)x n .∴f (21)=21+3(21)2+5(21)3+7(21)4+…+(2n -1)(21)n. ①①两边同乘以21,得21f (21)=(21)2+3(21)3+5(21)4+…+(2n -3)(21)n +(2n -1)(21)n +1. ②①-②,得21f (21)=21+2(21)2+2(21)3+…+2(21)n-(2n-1)(21)n +1,即21f (21)=21+21+(21)2+…+(21)n -1-(2n -1)(21)n +1.∴f (21)=1+1+21+221+…+221-n -(2n -1)n 21=1+2112111---n -(2n -1)n21=1+2-221-n -(2n -1)n21<3.∴f (21)<3. ●思悟小结1.深刻理解等差数列的定义,紧扣从“第二项起”和“差是同一常数”这两点.2.等差数列中,已知五个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明a n -a n -1(n ≥2)为常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).4.等差数列{a n }中,当a 1<0,d >0时,数列{a n }为递增数列,S n 有最小值;当a 1>0,d <0时,数列{a n }为递减数列,S n 有最大值;当d =0时,{a n }为常数列.5.复习时,要注意以下几点:(1)深刻理解等差数列的定义及等价形式,灵活运用等差数列的性质.(2)注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.●教师下载中心教学点睛本节教学时应注意以下几个问题:1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m=a n+(m-n)d.2.由五个量a1,d,n,a n,S n中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d 外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3d,a-d,a+d,a+3d.4.等差数列的性质在求解中有着十分重要的作用,应熟练掌握、灵活运用.5.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.拓展题例【例1】已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少相同的项?并求所有相同项的和.分析一:两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数.解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11.∵数列5,8,11,…与3,7,11,…公差分别为3与4, ∴{a n }的公差d =3×4=12,∴a n =12n -1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n =12n -1≤302,即n ≤25.5.又n ∈N *,∴两个数列有25个相同的项. 其和S 25=11×25+22425⨯×12=3875.分析二:由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解法二:设5,8,11,…与3,7,11,…分别为{a n }与{b n },则a n =3n +2,b n =4n -1.设{a n }中的第n 项与{b n }中的第m 项相同,即3n +2=4m -1,∴n =34m -1.又m 、n ∈N *,∴设m =3r (r ∈N *),得n =4r -1. 根据题意得⎩⎨⎧≤-≤≤≤,100141,10031r r 解得1≤r ≤25(r ∈N *).从而有25个相同的项,且公差为12, 其和S 25=11×25+22425⨯×12=3875.【例2】 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n }的前n 项和,求T n .解:设等差数列{a n }的公差为d ,则S n =na 1+21n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧=+=+,7510515,721711d a d a 即⎩⎨⎧=+=+.57,1311d a d a解得a 1=-2,d =1.∴nS n=a 1+21(n -1)d =-2+21(n -1)=25-n .∴11++n S n -nSn=21.∴数列{nS n}是等差数列,其首项为-2,公差为21.∴T n =41n 2-49n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:等差数列(高三文科数学第一轮复习)
开课时间:20XX 年10月 18 日 授课班级:高三(4)班 主讲教师: 张文雅
[教学目标]
1、 知识目标:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用
等差数列的性质解决有关问题。

2、 能力目标:培养学生观察能力、探究能力、体现用方程的数学思想方法分析问题、解
决问题的能力。

3、 情感目标:通过等差数列公式的应用,激发学生学习数学的兴趣,培养学生勇于思考、善于思考的品质。

[重点]:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式
[难点]:理解并掌握等差数列的有关性质及应用。

[教学方法]:类比式、 探究式、讨论式、合作式。

[教学过程]:
知识梳理:
一、等差数列的定义:
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则该数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。

用式子可表示为
二、等差数列的公式:
2、等差数列的前n 项和公式:
三、等差中项:
巩固练习:
{}17611,35)5(S S S n a S n n 求项和,且的前是等差数列已知+=
四、判定与证明方法:
)
,2(1*-∈≥=-N n n d a a n n d m n a a m n )(-+=推广:d n n na a a n S n n 2)1(2)(11-+=+=,的等差中项与叫做成等差数列,那么、、如果b a A b A a b a A +=2且为同一常数;的任意自然数,证明定义法:对于12)1(--≥n n a a n )2,(1
≥∈=-*-n N n d a a n n 即:d n a a n )1(11-+=:、等差数列的通项公式)(*∈N m n 、{}670669668667,20053,1)1(1、、、、)等于(则序号的等差数列,如果公差为是首项D C B A n a d a a n n ==={}614515,70,102a a a a n 求中)等差数列(=={}11128,168,48,)3(a S S S n a n n 求若项和为的前等差数列=={}725,32554a a S a n 求且项和的前)若等差数列(==的思想解决问题。

外两个,体现了用方程,知其中三个就能求另、、、、共涉及五个量及注:n n n n n S a n d a d n n na a a n S d n a a 11112)1(2)()1(-+=+=-+=
提醒:1、等差数列主要的判定方法是定义法和等差中项法,而对于通项公式法和前n 项和公式法主要适合在选择填空题中简单判断。

2、若要判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

练习:
五、等差数列性质:
等差数列的性质:
练习:{}
_______,30,10,302010===S S S S n a n n 则且项和为的前已知等差数列 都成立等差中项法:证明)2,(2)2(11≥∈+=*+-n N n a a a n n n q pn a n +=通项公式法:验证)3(Bn An S n +=2n )4(项和公式法:验证前{}{}n n n n b N n n a a a b a 为通项的数列是等差数列,求证:以:设例)(121*∈+++= 是等差数列10111213390146343)3(、、、、)则这个数列的项数为(,,且所有项的和为,最后三项的和为项的和为若一个等差数列前D C B A {}、不确定、、、,则若项和为的前等差数列
D C B A S a a S n a n n 1009555)(10,)2(19173==+{}{}的值?求,且、项和分别为的前、拓展练习:等差数列88,3213b a n n T S T S n b a n n n n n n +-={}____,201
2354321==++++a a a a a a a n 则中,)等差数列:(例{}的等差数列;组成公差为、是等差数列,则、若md N m k a a a a m k m k k n )(,,,12*++∈ {}.)(,,,,32232d k N k S S S S S S n d a k k k k k n n 是等差数列,其公差为那么数列项和为,前公差为、若等差数列
*∈-- {})(100)(1412252=+=∈+=a a S R b a bn an S n a n n ,则且、项和的前已知数列、不确定
、、、D C B A 8416{}),(2*∈+=+N q p n m q p n m a n 、、、是等差数列,且、若q p n m a a a a +=+则m q p a a a m q p 2,2=+=+则特殊地:若{}1715129,4,132019181784、、、、)的值为(则中,若在等差数列
例D C B A a a a a S S a n +++==
分析:
备用:
{}________2,10.11是最小的序号则使中,已知在等差数列n S d a a n n =-=
{})中最大的是(则项的和,且为前中,在等差数列n n n S a a a n S a ,53,0.2421=>
1276106
S D S S C S B S A 、或、、、 {}中最大的是则项的和,已知为前中,、等差数列n n n S S S a n S a ,0,0,12313123<>=121376S D S C S B S A 、、、、
【小结】
1、等差数列的定义
3、等差数列的前n 项和公式:
4、等差中项:
5、等差数列的性质:
有最大值;时,)当(n S d a ⎩⎨⎧<>0011有最小值;时,)当(n S d a ⎩⎨⎧><0021{}{}{}的值。

最大的序号及使得项和的前求的通项公式;求满足:设等差数列
例n S S n a a a a a n n n n n )2()1(.9,54103-==),2(1*-∈≥=
-N n n d a a n n d n a a n )1(21-+=:、等差数列的通项公式d m n a a m n )(-+=推广:d n n na a a n S n n 2)1(2)(11-+=+=成等差数列,、、如果b A a b
a A +=2则q p n m a a a a +=+则{}),()1(*∈+=+N q p n m q p n m a n 、、、是等差数列,且若{}的等差数列;组成公差为、是等差数列,则若md N m k a a a a m k m k k n )(,,,)2(2*++∈ {}.)(,,,,)3(2232d k N k S S S S S S n d a k k k k k n n 是等差数列,其公差为那么数列项和为,前公差为若等差数列*∈-- *++∈-+=-+=⎩⎨⎧≥≤⎩⎨⎧≤≥N n n n d a n d d n n na S a a a a n n n n n 求最值,注意次函数的图像或配方法的二次函数式,利用二看成法二或利用法一)2(22)1()(0000)(12111
【布置作业】
立体设计限时作业(二十七)【教学反馈】:。

相关文档
最新文档