材料力学性能总结1

合集下载

材料力学性能总结材料

材料力学性能总结材料

材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。

屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。

屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。

屈服变形机制:位错运动与增殖的结果。

屈服强度:开始产生塑性变形的最小应力。

屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。

米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。

消除办法:加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素;通过预变形,使柯氏气团被破坏。

影响因素:1.因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。

b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。

c)溶质元素:固溶强化。

d)第二相2.外因:温度(-);应变速率(+);应力状态。

第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。

细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。

同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。

细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。

固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。

材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。

其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。

应力软性系数:最大切应力与最大正应力的相对大小。

1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

ae=1/2σeεe=σe2/2E。

取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。

需通过合金强化及组织控制提高弹性极限。

2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。

①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。

金属中点缺陷的移动,长时间回火消除。

弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。

吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。

②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。

2024年材料力学性能总结

2024年材料力学性能总结

2024年材料力学性能总结材料科学与工程是一个不断发展的领域,随着科技的进步和经济的发展,新材料的研发和应用越来越受到关注。

在2024年,材料力学性能方面取得了一系列的突破和进展。

以下是对2024年材料力学性能的总结。

一、新材料的涌现在2024年,新材料的研发持续推进,涌现了一批具有优异力学性能的新材料。

其中包括高性能金属材料、高强度复合材料、高韧性陶瓷材料等。

这些新材料的力学性能远超传统材料,具有更高的强度、硬度、韧性、耐磨性等特点,为各行各业提供了更多的选择和可能。

二、金属材料的强度与塑性提升在金属材料领域,研究人员通过优化合金配方和热处理工艺,成功提升了金属材料的强度和塑性。

新型高强度钢材广泛应用于汽车、轨道交通、航空航天等领域,有效提高了产品的安全性和使用寿命。

同时,新型金属材料的塑性也得到了极大改善,使其更容易成形和加工,满足不同行业对材料的需求。

三、复合材料的应用扩展复合材料在2024年得到了进一步的应用扩展。

高强度复合材料被广泛应用于航空、航天、船舶等领域,可以减轻结构重量,提高载荷能力,提升产品性能。

新型的纳米复合材料在电子、光电、能源等领域也得到了广泛应用,具有优异的电、磁、光等特性,为新一代电子产品和能源装置的研发提供了重要支持。

四、陶瓷材料的韧性提升传统陶瓷材料脆性大,容易破裂,限制了其在工程应用中的广泛使用。

在2024年,陶瓷材料的韧性得到了重大突破。

通过引入纤维增强、晶体设计等手段,成功提升了陶瓷材料的韧性。

新型韧性陶瓷材料在航空、航天、汽车等领域得到了广泛应用,具有较高的强度和韧性,能够承受更大的载荷和冲击,提高了产品的安全性和可靠性。

五、仿生材料的发展仿生材料是以自然界生物体结构和性能为蓝本设计的新型材料。

在2024年,仿生材料得到了更多的关注和研究。

通过模仿昆虫翅膀、植物叶片等自然结构,研究人员开发出了一系列具有优异力学性能的仿生材料。

这些材料具有轻量化、高强度、高韧性的特点,适用于飞行器、船舶、建筑等领域。

材料力学性能复习总结

材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。

在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。

以下是对材料力学性能复习的总结。

1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。

常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。

拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。

材料的破坏形态是指材料在受力作用下发生的形态变化。

常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。

脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。

2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。

常见的变形行为有弹性变形、塑性变形和粘弹性变形等。

弹性变形是指材料在受力作用下发生的可逆性变形。

材料在弹性变形时能够恢复到原始形状和尺寸。

弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。

塑性变形是指材料在受力作用下发生的不可逆性变形。

材料在塑性变形时会发生晶格的滑移和位错的运动。

塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。

粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。

材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。

粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。

3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。

通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。

压缩试验是指将材料置于压力下进行测试。

通过压缩试验可以了解材料的强度和刚度等。

材料力学性能总结

材料力学性能总结

材料力学性能第一章二节.弹变1,。

弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。

4.比例极限σp:应力与应变成直线关系的最大应力。

5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应力。

6. 弹性比功: 表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。

7.力学性能指标:反映材料某些力学行为发生能力或抗力的大小。

8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。

10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能力。

11.循环韧性应用:减振、消振元件。

12.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。

13.包申格应变:指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。

14.消除包申格效应:预先进行较大的塑性变形。

在第二次反向受力前先使金属材料于回复或再结晶温度下退火。

三节:塑性1.塑性:金属材料断裂前发生不可逆永久(塑性) 变形的能力.2.影响材料屈服强度的因素:㈠内在因素. 1. 金属本性及晶格类型.主滑移面位错密度大,屈服强度大。

2. 晶粒大小和亚结构.晶界对位错运动具有阻碍作用。

晶粒小可以产生细晶强化。

都会使强度增加。

3.溶质原子:溶质元素溶入金属晶格形成固溶体,产生固溶强化。

4,第二相. a.不可变形的第二相绕过机制.留下一个位错环对后续位错产生斥力, b.可以变形的第二相切过机制.由于,质点与基体间晶格错排及位错切过第二相质点产生新界面需要做功,使强度增加。

2024年材料力学性能总结范文

2024年材料力学性能总结范文

2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。

通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。

本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。

关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。

____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。

新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。

此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。

二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。

____年新材料的硬度也得到了大幅提升。

在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。

通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。

此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。

三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。

____年新材料的韧性也得到了显著改善。

新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。

此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。

四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。

____年新材料的耐热性也得到了显著提升。

新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。

材料的力学性能重点总结

材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收塑性变形功的能力。

3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。

强度越高,材料越能承受外部载荷。

2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。

材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。

3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。

硬度可以衡量材料的耐磨性和耐磨损能力。

4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。

弹性模量越大,材料的刚性越高。

5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。

延展性高的材料可以更好地适应复杂应力和形状变化。

6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。

它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。

7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。

材料的蠕变性能评估了其在高温和持续应力下的稳定性。

8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。

疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。

9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。

它可以评估材料在极端工作条件下的抗冲击性能。

10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。

材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。

以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。

通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。

2024年材料力学性能总结(三篇)

2024年材料力学性能总结(三篇)

2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。

2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。

材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。

2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。

本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。

二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。

2024年,预计会有许多新型的高强度材料得到开发和研究。

这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。

这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。

2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。

2024年,预计会有许多新型的复合材料被研发和应用。

这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。

这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。

3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。

2024年,预计纳米材料的应用范围将进一步拓展。

纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。

纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。

材料力学性能总结

材料力学性能总结

材料力学性能总结首先是强度。

强度是材料在受力时抵抗变形和破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗扭强度和抗剪强度。

抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗压碎破坏的能力,抗扭强度是材料在扭转状态下抵抗破坏的能力,抗剪强度是材料在受剪应力状态下抵抗破坏的能力。

强度越高,材料的承载能力越强。

其次是刚度。

刚度是材料在受力时抵抗形变的能力。

刚度可以用杨氏模量来衡量,杨氏模量是材料在弹性阶段的应变应力比。

刚度越高,材料的刚性越好,在受力时形变较小,保持较好的形状稳定性。

再次是韧性。

韧性是材料在受力时能够吸收大量能量而不断延展的能力。

韧性可以用抗拉伸功和冲击韧性来衡量。

抗拉伸功是材料断裂前吸收的能量,冲击韧性是材料在受冲击载荷作用下的能量吸收能力。

高韧性的材料能够在受力时吸收更多的能量,具有较好的抗震和耐久性能。

此外,还有硬度。

硬度是材料抵抗刮痕或压痕的能力,常用硬度指标有布氏硬度、洛氏硬度和维氏硬度等。

硬度越高,材料越难被刮伤或压痕,具有较好的耐磨性能。

最后是塑性。

塑性是材料在受力时变形能保留在材料内部的能力。

塑性可以用屈服强度和延伸率来衡量,屈服强度是材料在破坏前的最大抗拗力,延伸率是材料在断裂前拉伸变形的百分比。

高塑性的材料能够在受力时发生大量变形而不破裂,具有较好的可塑性。

总结起来,材料力学性能是评价和选择材料时需要考虑的重要因素,包括强度、刚度、韧性、硬度和塑性等指标。

不同材料的力学性能差异很大,根据具体应用需求进行选择合适的材料,以实现最佳性能。

材料力学性能总结

材料力学性能总结

材料力学性能总结材料力学性能是指材料在受到不同形式的载荷或应力下,表现出不同的物理性质和机械性能。

材料力学性能的总结可以帮助我们更好地认识材料的特性,从而更加科学地选材和设计各种工程应用。

下面将从以下几个方面对材料力学性能进行总结。

一、强度与韧性材料的强度是指其在受到载荷或应力时所能承受的最大应力值。

强度高的材料在设计中可以承受更大的载荷或应力。

常见的材料强度指标有屈服强度、抗拉强度、压缩强度等。

但是,仅依靠强度指标来选材是不够的,因为材料的强度高并不代表它具有优良的力学性能。

例如,脆性材料的强度很高,但其韧性较差,容易发生断裂。

因此,韧性也是一个重要的材料性能。

韧性是指材料在受到载荷时能够吸收能量的能力,也称为能量吸收能力。

通常使用断裂韧性、冲击韧性等来描述材料的韧性指标。

在实际应用中,需要兼顾材料的强度和韧性,以确保其不仅能够承受载荷,还能保证结构的安全稳定。

二、硬度和耐磨性硬度是指材料抵抗各种形式的本质上属于局部破坏的作用或物理和化学作用的能力。

通常使用洛氏硬度、布氏硬度等指标来描述材料的硬度。

硬度高的材料有较强的抵抗力,并能够减少磨损和划痕的发生。

与硬度相似,耐磨性也是一个测量材料抗磨损能力的重要指标。

材料的耐磨性受到多种因素的影响,如材料本身的硬度结构、尺寸、表面形貌和应力等。

在应用中,已经开发出多种表面处理和涂层技术,可以提高材料的硬度和耐磨性,以应对不同的工程需求。

三、热性能材料的热性能包括热膨胀系数、热导率和热扩散等。

热膨胀系数是描述材料在热膨胀时的变形情况的指标。

不同的材料具有不同的热膨胀系数,而这种变形会限制材料的可靠性。

热导率是指材料在温度差异下传导热能的速率。

高热导率的材料有助于热能的传导和散热,减少过热和热膨胀的问题。

热扩散是指一个材料在受到热载荷时,能够在较短时间内吸收和释放热能的能力。

材料的热性能也同样需要在应用时进行考虑和选择。

四、协变效应协变效应是指材料在光滑的表面上受到应力或载荷时出现的变形现象。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。

强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。

2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。

具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。

韧性材料通常具有较高的延展性和断裂韧性。

3.硬度:硬度是材料抵抗刮擦或压痕的能力。

硬度高的材料具有较强的抗刮擦能力和耐磨损性能。

常用的硬度测试方法有洛氏硬度和布氏硬度等。

4.延展性:延展性是指材料在受力时的塑性变形程度。

延展性高的材料能够在受力后产生大的形变而不发生断裂。

材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。

5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。

材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。

6.温度效应:材料在高温或低温环境下的性能表现。

高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。

温度效应的了解对于材料的设计和应用非常重要。

除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。

因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。

综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。

常用于评估材料抗拉强度、抗压强度、抗弯强度等。

强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。

2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。

韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。

韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。

3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。

硬度可以用于评价材料的耐磨性和抗划伤性能。

通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。

硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。

4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。

塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。

材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。

5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。

疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。

疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。

6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。

脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。

与韧性材料相比,脆性材料更容易发生断裂。

材料的脆性取决于材料中的缺陷结构和应力分布。

总的来说,材料力学性能是评价材料质量的重要指标。

强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。

合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。

材料力学性能总结

材料力学性能总结

材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。

描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。

描述材料力学性能的主要指标是强度、延性和韧性。

其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。

1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。

E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。

E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。

零件提高刚度的方法是增加横截面积或改变截面形状。

金属的E值随温度的升高而逐渐降低。

2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。

根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。

当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。

(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。

当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。

屈服时的应力值称为屈服强度,记为σS。

有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。

对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。

机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。

材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。

(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。

在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。

材料力学性能与应用总结

材料力学性能与应用总结

材料力学性能与应用总结在我们的日常生活和工业生产中,材料无处不在。

从建筑结构中的钢梁到汽车发动机的零部件,从电子产品中的芯片到航空航天领域的飞行器部件,材料的性能决定了其应用的范围和效果。

而材料力学性能则是评估材料质量和适用性的关键指标。

材料的力学性能主要包括强度、硬度、塑性、韧性、疲劳性能等。

强度是材料抵抗外力破坏的能力,通常用屈服强度和抗拉强度来表示。

屈服强度是材料开始产生明显塑性变形时的应力,而抗拉强度则是材料在拉伸过程中所能承受的最大应力。

例如,在建筑领域,高强度的钢材能够承受更大的载荷,使建筑物更加稳固可靠。

硬度反映了材料抵抗局部塑性变形的能力。

常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

硬度高的材料通常具有较好的耐磨性,如用于制造刀具的高速钢,其硬度较高,能够在切削过程中保持锋利的刃口。

塑性是材料在断裂前产生塑性变形的能力,通常用伸长率和断面收缩率来衡量。

具有良好塑性的材料,如铝合金,在加工过程中容易成型,可以制造出各种复杂形状的零件。

韧性则是材料抵抗冲击载荷的能力。

韧性好的材料在受到突然的冲击时不容易断裂。

例如,汽车的保险杠通常采用具有高韧性的材料,以在碰撞时吸收能量,保护乘客的安全。

疲劳性能对于那些承受周期性载荷的零件至关重要。

长期的反复加载可能导致材料在低于其抗拉强度的应力下发生疲劳断裂。

例如,飞机的机翼在飞行过程中不断受到气流的冲击,其材料必须具备良好的疲劳性能,以确保飞行安全。

不同的材料具有不同的力学性能,这使得它们在不同的领域有着各自的应用。

金属材料,如钢铁、铝合金等,由于其良好的强度和塑性,广泛应用于机械制造、汽车工业、航空航天等领域。

钢铁具有较高的强度和硬度,常用于制造建筑结构和机械零部件;铝合金则具有轻质、高强度和良好的塑性,常用于航空航天和汽车工业中。

高分子材料,如塑料、橡胶等,具有重量轻、耐腐蚀、绝缘性好等优点。

塑料在电子设备、日用品和包装行业中应用广泛;橡胶则因其良好的弹性和耐磨性,常用于制造轮胎、密封件等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/4
❖ 二、 弹性模数(弹性模量)刚度1
❖ 材料产生单位弹性应变时,所需要的弹性应力。即材料产 生100%弹性变形时所需要的应力。
❖ σ=Eε τ=Gγ ,E = 2 (1+ )G
❖ E拉伸时杨氏模数105,G切变模数MPa,比弹性模数 (比刚度)E/ρ 单位m,将纵向应变el 与横(径)向应变er
m值越低,则为使位错运动速率变化所需的应 力变化就越大,屈服现象越明显。bcc金属的m值 一般小于20,所以具有较明显的屈服现象;而fcc 金属的m值大于100~200,屈服现象就不太明显。
2020/5/4
• 2、 屈服强度:材料抵抗起始塑性变形或产生微量塑性变形 的能力
• σs工程意义: • • ① 作为防止因材料过量塑性变形而导致机件失效的
• 4、 微观组织 • 金属材料组织不敏感性。 • 热处理(显微组织)对弹性模量的影响不大。如
晶粒大小对E值无影响;第二相的大小和分布对 E值的影响也很小;淬火后E值稍有下降,但退 火后又恢复到原来的水平
2020/5/4
冷塑性变形对E值稍有降低,一般在4%~6%,这与出现 残余应力有关。当塑性变形量很大时,因产生形变织构 而使E值出现各向异性,此时沿变形方向E值最大。


性ห้องสมุดไป่ตู้断
断裂
性 断


静载荷
? 韧性断裂
低温 ? 低碳钢 ? 常温
脆性断裂 ?
2020/5/4
冲击载荷
• 第一节 力--伸长曲线和应力、应变曲线
单向静载拉伸试验 试验温度确定
是应用最广泛的材料力 应力状态确定
学性能测试方法。
加载速率确定
可测试
2020/5/4
屈服强度s(0.2) 抗拉强度b 伸长率 断面收缩率
2020/5/4
二、 屈服现象与屈服强度
• 1、 屈服现象:材料在拉伸过程中,当应 力增加到一定数值,突然下降并在一定数σ
值下保持恒定(或波动),而变形持续增
加,由弹性变形转变为弹塑性变形状态,
这种现象称为“屈服现象”
σ0.2
A-上屈服点
屈服 伸长
A
C
C-下屈服点
低碳钢 黄铜
AC-屈服平台 对于没有明显屈服点的材料,
1
Hall-Petch公式:s i kyd 2
i—位错在基体金属中运动的总阻力,也称摩擦阻力,取决于
晶体结构和位错密度;d—晶粒平均直径;ky—钉扎常数,衡量
晶界对强化贡献的大小。在一定的温度和应变速率下, i和ky 为常数。ky钉扎常数,fcc金属较bcc金属低,容易屈服。
晶粒越小,屈服强度越高——细晶强化,同时 还提高材料韧性,是金属强韧化的重要手段。
2020/5/4
• 第四节 塑性变形及其性能指标
• 一、 塑性变形方式与特点 • 材料的塑性变形是微观结构的相邻部分产生永久性位移,并
不引起材料断裂的现象。
金属材料常见的塑性变形方式为滑移和孪生。
2020/5/4
• 多晶体塑性变形的特点: • • (1) 各晶粒变形的不同时性和不均匀性(晶粒位向不
设计和选材依据 • • ②和缓σs解/σ应b可力以集作中为防金止属脆冷断塑的性参变考形依加据工。的参考依据
2020/5/4
• 三、 影响金属材料屈服强度的因素 • (1) 晶体结构: • ① 晶格阻力或派纳力
平行位错间的交互作用
②位错间的交互作
用:
运动位错与林位错间的交互作用
2020/5/4
• (2)晶界与亚结构
2020/5/4
ae
1
e
e
2 e
2
2E
σ
σe
e
εe
ε
图1-10. 弹性比功
• 第三节 非理想弹性与内耗
• 一、理想弹性材料: • ①应变与应力的响应是线性的 • ②应力和应变是同相位 • ③应变是应力的单值函数
• 当塑性材料所受的应力低于弹性极限,其力学 行为可近似地用虎克定律加以表述。
• 进入弹塑性变形阶段,其力学行为需要用弹-塑 性变形阶段的数学表达式,或称本构方程加以 表述。
之负比值表示为泊松比υ。
2020/5/4
• 三、 影响弹性模数的因素
• • 1、 键合方式和原子结构 • 室温下金属的弹性模量是原子
序数的周期函数。
同一周期的元素随原
子序数的增大E值增大,
这与元素价电子数增多 及原子半径减小有关。
图1-8
同一族的元素随原子序数的增大E值减小,这与
原子半径增大有关。
同) • • (2) 各晶粒变形的相互协调性(晶界的存在)--多
晶体材料产生屈服的条件。多晶体金属作为一个连续的 整体,不允许各个晶粒在任一滑移系中自由变形,否则 就会造成晶界开裂这就要求各晶粒之间能协调变形 • • (3) 产生加工硬化现象和残余内应力 • • (4) 密度降低、电阻和矫顽力增加,化学活性增大, 抗腐蚀性能降低
2020/5/4
二、弹性后效
对于完整的弹性体,弹性变形 与加载速率无关,但对实际的金属 材料而言,弹性变形不仅是应力的 函数,而且是时间的函数。
AB-正弹性后效
eO-反弹性后效
定义:弹性应变落后于外加 应力,并和时间有关的的现 象叫弹性后效(滞弹性)。
2020/5/4
时间
应力
A
B
O
ea
c d
H
应变
2020/5/4
产生弹性后效的原因可能 与金属中点缺陷的移动有 关。
例如, -Fe中碳处于八面
体空隙及等效位置上,施 加z方向的拉应力后,x,y 轴上的碳原子就会向z轴 扩散移动,会使z方向继 续伸长变形(图1-12),于 是就产生了附加的弹性变 形。
2020/5/4
因扩散移动需要时间,故附 加应变为滞弹性应变,卸载 后z轴多余的碳原子又会回到 原来x,y轴上,使滞弹性应变 消失。
• 三、包申格效应: • 是指金属材料经预先加载产生少量塑性变形,
而后再同向加载,规定残余伸长应力增加,卸 载时降低的现象。 • 所有退火态和高温回火态金属均有此效应。
• 包申格效应可使规定残余伸长应力增加或降低 15%~20%。
2020/5/4
• 四、内耗(弹性滞后环)
• 在变形过程中被吸收的功, 可用弹性滞后环面积度量。该 环表示金属在加载和卸载的过 程中,一部分能量被金属所吸 收,这部分被吸收的能量称为 “金属的内耗”。
2020/5/4
• 金属材料的力学性能取决于: 化学成分、 组织结构、冶金质量、残余应力及表面 和内部缺陷等内在因素,也取决于载荷 性质、载荷谱、应力状态、温度、环境 介质等因素。
• 金属力学性能的本质及宏观变化规律与 金属在变形和断裂过程中的位错运动、 增殖和交互作用等微观过程有关。
2020/5/4
2020/5/4
• 2、 晶体结构 • α-Fe, <111>E=2.7×105MPa,<100>E=
1.25×105MPa • 沿原子排列最密的晶向上弹性模量较大,
多晶体各向同性。
2020/5/4
• 3、 化学成分 • 合金中固溶的溶质元素可以改变合金的晶格常数,
但对于常用的钢铁材料而言,合金元素对其晶格 常数的改变不大,因而对弹性模量的影响很小, 合金钢和碳钢的弹性模量数值相当接近。
• 五、 弹性比功 • 又称弹性比能或应变比能 • ae是材料在弹性变形过程中吸
收变形功的能力。弹性比功的含义 就是弹性变形过程中所吸收的引 起弹性变形的能量。
• 数值上等于在应力应变曲线中被 弹性变形阶段的曲线所覆盖的面 积。
• 弹簧钢2.217MPa(MJm-3)(J=Nm)、 磷青铜1.0,铍青铜1.44、橡胶2、 铝0.1、铜0.003
2020/5/4
四、 比例极限与弹性极限
• 比例极限:σp是保证材料的 弹性变形按正比关系变化的最 大应力--应力与应变在正比
关系范围内的最大应力。
• • 弹性极限:σe是材料由弹性变
形过渡到弹塑性变形时的应力。
• σp0.01表示规定非比例伸长 率0.01%时的应力。
弹性极限 比例极限
2020/5/4
• 5、 温度
•温度升高,热运动加剧,弹性模量降低
•碳钢加热时每升高100℃ ,E值下降3%~5%。但 在-50℃ ~+50℃ 的范围内,钢的E值变化不大,可 以不考虑温度的影响。
2020/5/4
•6、 加载条件和负荷持续时间
弹性变形的速率和声速一样快,远超过
实际加载速率,故加载速率对E值也无大
的影响。 结论:弹性模量是组织 不敏感的力学性能指标
2020/5/4
第二节 弹性变形及其性能指标
• 弹性变形:金属材料在外力的作用下,产生变形, 当外力去除以后变形也随之消失的现象。
弹性变形的特点:
• 弹性变形是一种可逆现象,不论在加载期还是在 卸载期,其应力和应变之间都保持单值线性关系。
• 弹性变形量都很小,一般在0.5%~1%之间。
• 金属材料的原子弹性位移量只相当于原子间距的
• 金属材料的力学性能包括: 强度、刚度、硬度、
塑性、韧性、耐磨性、缺口敏感性、断裂韧性 等。
• 人们将力学参量的临界值(或规定值)定义为 该材料的力学性能指标,如强度指标:σb、σ0.2、
σ-1,塑性指标:δ、ψ,韧性指标:AK、KIC等。
• 力学性能指标具体数值的高低,表示金属材料 抵抗变形和断裂能力的大小,是评定材料质量 的主要依据。可将其理解为:金属材料抵抗外 加载荷引起变形和断裂的能力。
几分之一。故弹性变形量小于1%。
弹性变形
2020/5/4
一、 弹性变形的本质
原子间作用力:
相关文档
最新文档