八年级数学下册二次根式计算题专项练习含答案

合集下载

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。

人教版八年级数学下册第十六章 二次根式习题(含答案)

人教版八年级数学下册第十六章 二次根式习题(含答案)

第十六章 二次根式一、单选题1.下列二次根式中,属于最简二次根式的是( )A B C D22得( ). A .2 B .44x -+C .-2D .44x -3有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠C .2a >-. 或0a ≠D .2a ≥- 且0a ≠ 4.下列各式属于最简二次根式的有( )A B C D 5.下列运算正确的是( )A B )C =±3D .6( ) A .4至5之间B .5至6之间C .6至7之间D .7至8之间 7.下列运算正确的是( )A 5±B 2=-C =D .8.下列代数式能作为二次根式被开方数的是( )A .3﹣πB .aC .a 2+1D .2x+49.若x ≤0,则化简|1﹣x |﹣ 的结果是( )A .1﹣2xB .2x ﹣1C .﹣1D .110.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=△ABC 的三边长分别为1,2△ABC 的面积为( )A .1B .2C .3D .4二、填空题11.计算 的结果是_____.122(3)0b +=,则M (a ,b )点的坐标为________.13.若实数m 、n 满足|m ﹣0,且m 、n 恰好是Rt △ABC 的两条边长,则△ABC 的周长是_____.14.分母有理化:=_________.三、解答题15.化简计算:(1(22(1+-.16.已知:实数a ,b ﹣|a ﹣b|.17,等的式子,其实我1==.以上这种化简的步骤叫做分母有理化. (1(249++.答案1.C2.A3.D4.B5.D6.B7.C8.C9.D 10.A 11.12.(1,-3)13.12或14.215.(1)6;(2)+6 16.2a-3b+317.(1(2)3.。

八年级数学下册二次根式练习题

八年级数学下册二次根式练习题

八年级数学下册二次根式练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1⋅ )A .B .CD .2.若代数式x +x 等于( )AB .C .2D .1-3.下列运算正确的是( )A B =C5=- D .=4.已知有理数a ,b ,c 在数轴上对应的点位置如图所示,则a b ca b c -+的值是( )A .-1B .-2C .-3D .-45.下列运算正确的是( )A B .(23=- C .2-= D =60,0)a b >>等于( )A B C D .7.使分式201928x x --有意义的x 的取值范围是( )A .4x =B .4x ≠C .4x =-D .4x ≠-8x ,小数部分为y y -的值是( )A .3 B C .1 D .39.已知4y x =+,当x 分别取正整数1,2,3,4,5,…,2022时,所对应y 值的总和是()A .2026B .2027C .2028D .202910.秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是( )A .205<<B .2152<<C .12<<1D 1> 二、填空题11_____. 12.若9x 2-16=0,则x =_______.13.化简;(1)=_____________;(2=___________()0a >;(3)10111)1)=_____________;14______.15.25的算数平方根是____________.16.二次根式的定义:形如______的式子.17.已知实数a 、b 30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1x +2x -1x 2x 的值为_____________.三、解答题18.如图,E ,F 是正方形ABCD 的对角线BD 上的两点,且BE =DF .(1)求证:△ABE △△CDF ;(2)若AB =,BE =2,求四边形AECF 的面积.19.化简:2(34x ≤≤)20.计算:(1)-+÷(2)101()|3|(2(1)2-+-++-. 21.计算:22.计算:(3)5623.先化简,再求值△2(53y x ,其中x =12,y =4参考答案:1.A【分析】根据二次根式的乘法法则计算,再化简,即可求解.⋅==.故选:A【点睛】本题主要考查了二次根式的乘法,熟练掌握二次根式的性质是解题的关键.2.B【分析】利用代数式x +x .【详解】△代数式x +x +=△x ==故选B .【点睛】本题考查了二次根式的加减运算,正确的合并同类二次根式是解题的关键.3.BA B ,根据二次a ,判断C ,根据二次根式的除法判断D .=故A 错误,=故B 正确,5,故C 错误,2=,故D 错误,故选B .【点睛】本题考查的是合并同类二次根式,二次根式的化简,二次根式的除法,掌握以上知识是解题的关键.4.C【分析】先由数轴观察得出c <a <0<b ,据此计算即可.【详解】解:由数轴可得:c <a <0<b ,()1113a b c a b c-+=--+-=-, 故选:C .【点睛】本题考查了利用数轴进行的相关计算,数形结合并明确绝对值等的化简法则,是解题的关键.5.D【分析】根据二次根式的运算法则,逐一解答.【详解】解:A.A 错误;B. (23= ,故B 错误;C. =C 错误;D. =D正确,故选:D.【点睛】本题考查二次根式的运算,是基础考点,掌握相关知识是解题关键.6.A【分析】直接根据二次根式的乘除法法则进行计算即可.==故选:A.【点睛】此题主要考查了二次根式的乘除法,熟练掌握运算法则是解答此题的关键.7.B【分析】根据分式有意义的条件,即分母不为零求出x的取值范围即可.x-≠,【详解】解:由题意得:280x≠,解得4故选:B.【点睛】本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键.8.C【详解】解:因为12<,11,y=,即x=1,1y-==.1)1故选:C.9.C【分析】根据二次根式的性质、绝对值的性质进行化简,然后代入求值即可.【详解】解:由二次根式的性质可知,4y x=+=|x-3|-x+4,当x=1时,y=5,当x=2时,y=3,当x≥3时,y=x-3+4-x=1,△当x分别取1,2,3,…,2022时,所对应的y值的总和是5+3+1×2020=2028;故选:C.【点睛】本题主要考查二次根式,熟练运用二次根式的性质是解答此题的关键.10.C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,△23,△1-1<2,△12<1,故选:C.【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.11【分析】根据二次根式的乘法法则和减法法则进行计算即可.444=【点睛】此题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.12.4 3±【分析】先将方程变形为2169x =,然后方程两边同时开平方即可得到x 的值. 【详解】解:由题意可知:2169x =, 等式两边同时开平方,得到:43x =±, 故答案为:43±. 【点睛】本题考查了利用平方根的定义解方程,计算过程中细心,注意正数开平方后有两个平方根. 13.4531.【分析】(1)根据二次根式的乘法运算法则计算,然后利用二次根式性质化简即可;(2)先把被开方式因式分解,利用二次根式性质化简,化简结果也可3(3)利用乘方的逆运算分出一次幂与10次幂即))1110111=,再利用积的乘方逆运将底数用平方差公式化简后再与一次幂因式相乘.【详解】解:(1)45==(23==()0a >;(3))))101011101)1)111111⎡⎤==⨯=⎣⎦故答案为(1)45(2)3(31.【点睛】本题考查二次根式的乘法乘方混合运算,掌握二次根式性质,二次根式乘方与乘法运算法则是解题关键. 14【分析】先化简二次根式,再合并同类二次根式即可.=【点睛】本题考查了二次根式的化简、二次根式的加减,掌握二次根式的性质和合并同类二次根式法则是解题的关键.15.53【分析】根据算术平方根的定义和实数的相反数分别填空即可.【详解】△2525=△25的算数平方根是5;3-3;故答案为:5,3.【点睛】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键.160)a≥0)a≥的式子叫做二次根式.0)a≥.【点睛】本题考查二次根式,解题的关键是正确理解二次根式的定义——0)a≥的式子叫做二次根式.17.5【分析】根据非负数的性质得出a=2,b=3,根据根与系数的关系可得x1+x2=2,x1•x2=3,整体代入即可求得.【详解】解:△实数a、b30b+=,△a=2,b=-3,△关于x的一元二次方程x2-ax+b=0的两个实数根分别为x1、x2,△x1+x2=a=2,x1•x2=b=-3,△12122(3)5x x x x-=-+-=,故答案为:5.【点睛】本题考查了非负数的性质以及一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解决本题的关键是熟练掌握一元二次方程根与系数的关系.18.(1)证明见解析(2)6【分析】(1)利用正方形的性质证明,45,AB CD ABE CDF 再结合BE =DF ,从而可得结论; (2)先利用正方形的性质证明6,,ACBD AC BD 再求解EF 的长,再利用四边形AECF 的面积12AEF CEF S S EF AC ,即可得到答案. (1)证明: 正方形ABCD ,,45,AB CD ABE CDF,BE DF = .ABE CDF ∴≌ (2)如图,连结AC , 正方形ABCD ,32,AB2232326,,AC BD AC BD2,BE DF == 6222,EF△四边形AECF 的面积12AEF CEF S S EF AC 126 6.2【点睛】本题考查的是全等三角形的判定与性质,正方形的性质,勾股定理的应用,二次根式的乘法运算,掌握“正方形的对角线相等且互相垂直平分”是解本题的关键.19.(1)3a (2)27x -【分析】(1)根据二次根式的乘法法则相乘,最后化简即可;(2a ,最后脱去绝对值化简即可.(1)原式3a =(2)△34x ≤≤△30x -≥,40x -≥原式234x x =---3(4)x x =---27x =-【点睛】本题考查了二次根式的性质及二次根式的乘法运算,绝对值的化简;(2)小题中一定注意确定绝对值符号内式子的符号.20.(1)(2)5【分析】(1)运用分配律进行运算,再利用二次根式除法运算法则运算,最后再进行加减运算即可;(2)先进行负整数指数幂运算、绝对值运算、零指数幂运算,然后再进行加减运算即可.【详解】解:(1)原式===2018-+(2)原式=2+3+1﹣1=5.【点睛】本题考查的知识点比较多,涉及二次根式除法运算、负整数指数幂、绝对值、零指数幂、有理数的加减等知识,但都比较简单,注意在运算的时候要细心,减少出错.21.(1)384;(2)【分析】(1)根据平方根和立方根的定义开方,在计算即可;(2)先化简,再利用二次根式的运算法则运算即可.(1)解:原式=3+5+34=834; (2)原式==【点睛】本题考查二次根式的化简,理解平方根、立方根的定义,熟练运用二次根式的运算法则是解题的关键.22.(1)2(3)-【分析】(1)先计算二次根式的除法,再将每个二次根式化为最简二次根式,最后合并同类二次根式;(2)利用二次根式的性质化简,再计算乘除法,最后合并同类二次根式;(3)先化为最简二次根式,分母有理化,再计算二次根式的加减法.(1)解:原式2-=2(2)原式=9(3)原式=22-【点睛】本题考查二次根式的混合运算,涉及分母有理化、最简二次根式等知识,是基础考点,掌握相关知识是解题关键.23.【分析】先确定0,0x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将,x y 的值代入计算即可得. 【详解】解:由题意得:10,0y x x>>, 0,0x y ∴>>,则2(53y x222(53x y x x =⋅2(=2==+将1,42x y ==代入得:原式== 【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.。

人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)

人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)

人教版数学8年级下册第16章专题01 二次根式一、选择题(共12小题)1.(2022x的取值范围是( )A.x≥0B.x≥﹣2C.x>2D.x≤22.(2022秋•门头沟区期末)下列代数式能作为二次根式被开方数的是( )A.x B.3.14﹣πC.x2+1D.x2﹣13.(2022秋•x的取值范围在数轴上表示正确的是( )A.B.C.D.4.(2021春•光山县期末)下列各式中,一定是二次根式的是( )B C DA5.(2022x的取值范围为( )A.x>0B.x≥﹣1C.x≥0D.x>﹣16.(2021春•番禺区期末)下列运算正确的是( )A=B=C=D=x7.(2021春•海珠区期末)下列各式中,最简二次根式的是( )A B C D8.(2021A.2B C.D.9.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是( )A B C D10.(2022秋•静安区校级期中)下列二次根式中,最简二次根式是( )A B C D11.(2021秋•惠民县期末)下列二次根式中属于最简二次根式的是( )A B C D12.(2022秋•徐汇区校级期中)下列根式中,最简二次根式有( )个.A.2B.3C.4D.5二、填空题(共12小题)13.(2022秋•吉林期末)代数实数范围内有意义,则x的取值范围是 .14.下列代数式中,是二次根式的有 (填序号).x<0).15.(2021春•黄埔区期末)计算:= ,= ,③(―2= .16.(2017.17.(2020•梧州一模)计算:2= .18.(2021春•花都区期末)已知x<2= .19.(2022 .20.(2022•南阳二模)写出一个实数x x可以是 .21.(2022秋•的是 .22.(2022秋•晋江市校级期中) .23.(2022a>0,b>0)化为最简二次根式: .24.(2022秋•虹口区校级月考),最简二次根式有 个.三、解答题(共13小题)25.(2021a>0,b>0).26.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=++2,求x y的值.27.(2022秋•昌平区期中)已知y=++5,求x+y的平方根.28.(2022秋•奉贤区期中)已知x,y为实数,且y=―+1,求xy的平方3根.29.(2022秋•湖口县期中)已知y=+++2.(1)求y x的值;(2)求y的整数部分与小数部分的差.30.(2022秋•洛宁县月考)已知a,b,c为实数,且c=+―+2―c2+ab的值.31.(2022春•岑溪市期中)已知实数x,y满足y=++5,求:(1)x与y的值;(2)x2﹣y2的平方根.32.(2022春•龙岩期中)已知|2022﹣a|+=a,求a﹣20222的值.33.(2021春•花都区期末)计算:―+34.(2022春•灵宝市期中)把下列二次根式化简最简二次根式:(1(2(3(435.(2021•中原区开学)(1)把下列二次根式化为最简二次根式:(2)解方程:(3x﹣2)2﹣4=036.(2021•黄岛区校级开学)把下列二次根式化简成最简二次根式:(1(2(337.(2022秋•西安月考)若a=2,b=3,c=﹣6参考答案一、选择题(共12小题)1.D2.C3.A4.D5.B6.B7.C8.C9.C10.C11.D12.C;二、填空题(共12小题)13.x≥514.①③⑥15.5;4;316.>17.318.2﹣x19.420.5(答案为不唯一)21.22.223.24.1;三、解答题(共13小题)25.解:原式==2a >0,b >0).26.解:由题意得:2x ―1≥01―2x ≥0,∴2x ﹣1=0,解得x =12,所以y =2,所以x y =(12)2=14.27.解:由二次根式有意义可得:3―x ≥0x ―3≥0,解得x =3.∴y =5.∴x +y =3+5=8.故x +y 的平方根为±28.解:由题意得,x ―27≥027―x ≥0,解得x =27,则y =13,∴xy =27×13=9,∴9=±3.29.解:∵y =+++2,∴x ―2≥02―x ≥0,解得x =2,∴y =+2.(1)y x =2=6++4=10+(2)∵y =+2,23,∴y 的整数部为4+2―4=―2,∴y的整数部分与小数部分的差为:4―2)=6―30.解:∵c=+―+2―∴a﹣2=0,b﹣1=0,c=2―∴a=2,b=1,∴c2+ab=(2―2+2×1=4+3﹣+2=9﹣31.解:(1)根据题意得:x﹣13≥0,13﹣x≥0,∴x=13,∴y=5;(2)x2﹣y2=132﹣52=169﹣25=144,144的平方根为±12,∴x2﹣y2的平方根为±12.32.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,=2022,∴a﹣2023=20222,∴a﹣20222=2023.33.解:原式=―+=34.解:(1==(2==(3===(4==35.解:(1)=====∴(3x﹣2)2=4,∴3x﹣2=±2,即3x﹣2=2或3x﹣2=﹣2,或x=0.解得x=4336.解:=====37.解:∵a=2,b=3,c=﹣6,===。

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12. 2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14. 231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

人教版八年级数学第十六章二次根式测试题(含答案)

人教版八年级数学第十六章二次根式测试题(含答案)

人教版八年级数学第十六章二次根式测试题(含答案)人教版八年级数学第十六章二次根式测试题(含答案)一、单选题(共20题;共40分)1.下列二次根式中,最简二次根式是()XXX.下列根式中,属于最简二次根式的是()A.﹣XXX下列根式中,不是最简二次根式的是()XXX.下列计算正确的是()XXX.函数中自变量的取值范围是()A.≥-2B.≥-2且≠1C.≠1D.≥-2或≠16.下列各式一定是二次根式的是()XXX.(2015•黄冈)下列结论正确的是()A.C.使式子B.单项式的系数是﹣1的值等于,则a=±1有意义的x的取值范围是x>﹣1 D.若分式8.以下式子没成心义的是()A.9.式子B.C.D.有意义的条件是()A.x≥3B. x>3C.x≥﹣3D. x>﹣310.的值是()A. 3B.﹣3C. ±3D. 611.要使式子在实数规模内成心义,字母a的取值必需满意A.a≥2B.a≤2C.a≠2D.a≠012.二次根式成心义的前提是()A. x>3B. x>﹣3C.x≥﹣3D.x≥3第1页13.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10B.x≥10C. x<10D. x>1014.以下运算精确的选项是()A.﹣=B.=2C.﹣=D.=2﹣15.计算A. 6B. 4的成效是()C. 2;(2)+6 D. 12;(3);(4);(5).16.下列各式是二次根式的有1)()A. 4个B. 3个C. 2个D. 1个17.二次根式中,x的取值范围是()A.x≤3B. x=3C.x≠3D. x<318.下列二次根式中,是最简二次根式的是()XXX.以下式子中,属于最简二次根式的是()XXX.已知a为实数,下列各式是二次根式的是()XXX、填空题(共9题;共10分)21.当________时,22.计算23.将24.函数25.若代数式26.计算XXX。

的结果是________.化成最简二次根式的成效为________.中,自变量x的取值范围是________.成心义,则x的取值规模为________.+()2=________.,则其面积为________.的平行四边形的周长是________.27.一个等边三角形的边长为28.相邻两边长分别是2+29.当x取________时,2﹣与2﹣的值最大,最大值是________.第2页3、计较题(共4题;共25分)30.若a,b为有理数,且31.计较:32.化简:×(+=).,求的值.33.计较:(1)(2)×+-;4、解答题(共2题;共15分)34.计较题(1)(2)35.如图,在四边形ABCD中,∠A=∠BCD=90°,∠B=45°,,.求四边形ABCD的面积.五、综合题(共1题;共10分)36.一个三角形的三边长划分为、、.(1)求它的周长(请求成效化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值第3页谜底剖析局部一、单选题1.C2.B3.B4.D5.B6.C7.B8.B9.C10.A11.A12.C13.A14.A15.D16.C17.A18.D19.B20.B二、填空题21.-2≤x≤22.223.324.25.x≥2且x≠326.627.28.829.5;2三、计算题30.解:b=131.解:原式=32.解:原式==2﹣=4.33.(1)解:(2)解:四、解答题+2+﹣=6﹣2=4.+=|2﹣|+|2+|++=2+3+=,因为a、b都为有理数,所以a=0,b=,所以第4页34.(1)解:原式=(2)解:原式=。

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x(4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

初中八年级下册数学二次根式练习题及答案

初中八年级下册数学二次根式练习题及答案

初中数学八年级下册二次根式练习题____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b28.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .14310.计算:ab ab b a 1⋅÷等于 ( )A .ab ab 21B .ab ab 1C .ab b 1D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅b a a b 182____________;=-222425__________.15.计算:=⋅b a 10253___________.16.计算:2216a cb =_________________.17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(b a b b a1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc 4322-.23.(6分)已知:2420-=x ,求221x x +的值.初中数学二次根式拓展提高综合题一、单选题(共8道,每道12分)1.设a,b,c都是实数,且满足,则的值为()A.-5B.11C.5D.32.若,则的值为()A. B. C. D.3.化简的值为()A.1B.2C.3D.44.已知,化简:结果为()A.aB.bC.2b-aD.a-2b5.在如图所示的数轴上,点B和点C关于点A对称,A、B两点对应的实数分别是和-1,则点C所对应的实数是()A. B.C. D.6.比较大小:()A.大于B.小于C.等于D.无法判断7.化简的结果是()A. B.C. D.8.若,则代数式=()A.2013B.2012C.-2013D.-2012参考答案一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.拓展提高综合题答案一、单选题(共8道,每道12分)1 答案:A试题难度:三颗星 知识点:二次根式的双重非负性2 答案:D试题难度:三颗星 知识点:二次根式的双重非负性3 答案:D试题难度:三颗星 知识点:二次根式的双重非负性4 答案:A试题难度:三颗星 知识点:二次根式的化简求值5 答案:C试题难度:三颗星 知识点:数轴表示无理数6 答案:B试题难度:三颗星 知识点:比较大小7 答案:A试题难度:三颗星 知识点:完全平方式的应用8 答案:C试题难度:三颗星 知识点:完全平方公式的运用。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

八年级数学下册《二次根式的乘除》练习题及答案(人教版)

八年级数学下册《二次根式的乘除》练习题及答案(人教版)

八年级数学下册《二次根式的乘除》练习题及答案(人教版)一单选题1.估计√3×√6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间2.下列为最简二次根式的是()A.√26B.√32C.√0.5D.√123.如图在长方形ABCD中无重叠放人面积分别为16cm2和12cm2的两张正方形纸片则图中空白部分的面积为()A.(−12+8√3)cm2B.(16−8√3)cm2C.(8−4√3)cm2D.(4−2√3)cm24.如果√12⋅√x是一个正整数那么x可取的最小正整数值为()A.2B.4C.3D.125.计算1√2−1的结果是()A.√2B.√22C.√2−1D.√2+16.在√16x3√23−√0.5√a x√253中最简二次根式的个数是()A.1B.2C.3D.4 7.计算√2×√8+√−273的结果为()A.﹣1B.1C.4−3√3D.7 8.√2+1的倒数是()A.√2B.√2+1C.√2﹣1D.√22+19.已知a=1√2+1b=1√2−1则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等10.下列计算中错误的是()A.√14×√7=7√2B.√60÷√30=√2C.√3×√6=9√2D.√8√2a=2√a a二 填空题11.当a =﹣1时 二次根式 √2−7a 的值为 . 12.记1√5−2的整数部分是a 小数部分是b 则a b 的值为 . 13.分母有理化 √2= . 14.一个长方形相邻两边的长分别为 √2 √8 则它的周长和面积分别是15.计算 4√ab 3·12√a 3b = 三 解答题16.先化简 再求值 a √b a −2b √ab 3+3√ab 其中b= √a −2+√2−a +3 . 17.如图所示 在Rt△ABC 中 △ACB=90° CD△AB 于点D .若S△ABC =3 √2 cm 2 BC= √3 cm 求AC 和CD 的长.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度 所用的经验公式是 v =16√df其中 v 表示车速(单位 km/h ) d 表示刹车后车轮滑过的距离(单位 m ) f 表示摩擦因数.在某次交通事故调查中 测得 d =20 m f =1.2 该路段限速60km/h 该汽车超速了吗?请说明理由(已知 √2≈1.4,√3≈1.7 ) 19.计算 2√ab 3×34√a 3b ÷3√1a 20.已知 1√2+2√1 + 2√3+3√2 + 3√4+4√3 +…+ n √n+1+(n+1)√n = 4950 求n 的值. 21.习题集上有一道题为 “先化简 再求值 2a −√a 2−4a +4 其中a= √3 小刚的解法如下 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a -a+2=a+2 当a= √3 时 原式= √3 +2 小刚的解法正确吗?若不正确 请写出正确的解法。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

(完整版)八年级数学下册二次根式练习题及答案

(完整版)八年级数学下册二次根式练习题及答案

八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。

1、当x ________时,2?x在实数范围内有意义。

2、计算: =________。

3、化简: = _______。

4、计算:2×=________。

5、化简:=_______。

6、计算:÷7、计算:-20-5=_______。

8化简: = ______。

1235=_______。

二、选择题。

、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。

17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。

44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。

20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。

1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。

(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档

(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档

-1- x 2132 -122132 a ab 2 a + b a - b (x -1)2 2x -3 3 3 4 a 3 11(3a -4b )2x -8 y - 2 5 x 2 - 2x +1 1- x + x 2 44b - a 3 (- 2 )259 +16 9 16(-9) ⨯(-4) (a + b )2 a 2 -1 a +1 a -1 a ba 248 1 8 130.5 122 1a初中数学二次根式测试题(一)判断题:(每小题 1 分,共 5 分).1. ( 2)2 =2.……( )2.是二次根式.……………( )3.=- =13-12=1.( )4., , c是同类二次根式.……()5. 的有理化因式为 .…………()(二)填空题:(每小题 2 分,共 20 分)6. 等式 =1-x 成立的条件是.7. 当 x时,二次根式有意义.8.比较大小: -2 2- .9. 计算:(3 1 )2 - ( 1 )2 等于 .1 10. 计算:3 2 2 1 2 ·= .9 11. 实数 a 、b 在数轴上对应点的位置如图所示:aob则 3a - = .12.若+ =0,则 x = ,y =.13.3-2的有理化因式是.114.当 <x <1 时, -=.215.若最简二次根式3b -1a + 2 与是同类二次根式,则 a =,b = .(三)选择题:(每小题 3 分,共 15 分)16 A 2 2 2 3 6B .下列变形中,正确的是………()( )(2 5) = × =( )=- (C )= + (D )= 9 ⨯ 17. 下列各式中,一定成立的是……()(A )=a +b(B )=a 2+11(C ) =·(D )= b18. 若式子 2x -1 -+1 有意义,则 x 的取值范围是………………………()11 1(A )x ≥(B )x ≤(C )x =(D )以上都不对22 219.当 a <0,b <0 时,把化为最简二次根式,得…………………………………( )(A (B )1 (C ) - b - ab (D ) b 20.当 a <0 时,化简|2a - |的结果是…()(A )a (B )-a(C )3a (D )-3a(五)计算:(每小题 5 分,共 20 分)23.(- 4)-( 3 - 2 ); 1- 2x 4(a 2 +1)2ababab48 12 3 122 a 3b a b ab ba5 - 25 x - 2 y 3x + 2 y - 86 3 6 3 724.(5+ - 6 )÷ ;2-4+2( -1)0;26.( -+2 + )÷ .(六)求值:(每小题 6 分,共 18 分)1 1bb27. 已 知 a = ,b = ,求-的值.2 4128. 已知 x =,求 x 2-x +的值.+29. 已知+ =0,求(x +y )x 的值.(七)解答题:30.(7 分)已知直角三角形斜边长为(2+ )cm ,一直角边长为( +2 )cm ,求这个直角三角形的面积.a -b 25. 50 +2 +1b ax 2 - 8x +16 a 3 3x -8 y - 2 5 5 5 3 21 25 5 5 5 5 5 5 x - 2 y 3x + 2 y - 8 x - 2 y 3x + 2 y - 8 (26 + 3)2 - ( 6 + 2 3)231.(7 分)已知|1-x |-=2x -5,求 x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6. 【答案】x ≤1.37. 【提示】二次根式有意义的条件是什么?a ≥0.【答案】≥ .28.【提示】∵ 3 < 4 = 2 ,∴ - 2 < 0 ,2 - 1 9.【提示】(3 )2-( )2=?【答案】2 .2 2 10.> 0 .【答案】<. 11. 【提示】从数轴上看出 a 、b 是什么数?[ a <0,b >0. ] 3a -4b 是正数还是负数? [ 3a -4b <0. ]【答案】6a -4b .12. 【提示】和 各表示什么?[x -8 和 y -2 的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2. 13.【提示】(3-2)(3+2 )=-11.【答案】3+2 .1 1114.【提示】x 2-2x +1=()2;-x +x 2=( )2.[x -1;-x .]当 <x <1 时,422113 x -1 与 -x 各是正数还是负数?[x -1 是负数, -x 也是负数.]【答案】 -2x .2 2215. 【提示】二次根式的根指数是多少?[3b -1=2.]a +2 与 4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16. 【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】3.a24.22-2.25.5 .26.a 2+a -+2.bb ( a + b ) - b ( a - b )ab + b - ab + b2b27. ==.2 ⨯ a - ba - b当 a = 1 ,b = 1 时,原式= 4 =2.241 - 12 4 28. 【提示】本题应先将 x 化简后,再代入求值.1【解】∵ x =- 2 5 + 2==5 - 4+ 2 .∴ x 2-x + =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .29.【解】∵≥0, ≥0,而+ =0,⎧x - 2 y = 0 ∴ ⎨ ⎧x = 2 解得 ⎨ y = 1. ∴ (x +y )x =(2+1)2=9.⎩3x + 2 y - 8 = 0. ⎩30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:=3(cm ).3 5 566 3 (x - 4)23 ⎩数学八年级(下) 复习测试题∴ 直角三角形的面积为:S = 1×3×(+ 2 2 3答:这个直角三角形的面积为( 2)= + 3 2+ 3 )cm 2.(cm 2) 31.【解】由已知,等式的左边=|1-x |- =|1-x |-|x -4 右边=2x -5.⎧1 - x ≤ 0只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎨x - 4 ≤ 0. 解得 1≤x ≤4.∴ x 的取值范围是 1≤x ≤4.3 3 6453 -a 2 + 2x 2X 38X6X 3 yxx-2 x x-2 - y x 2 -yy二次根式一、选择题(共 20 分):1、下列各式中,不是二次根式的是( )A 、B 、C 、D 、2、下列根式中,最简二次根式是()A.B. C. D.3、计算:3÷ 16的结果是 ( ) A 、2 B 、 2C 、 2D 、4、如果 a2=-a ,那么 a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零5、下列说法正确的是() a 2=- aa 2= aA 、若,则 a <0 B 、若,则 a >0C 、 a 4b 8=a 2b 4D 、5 的平方根是6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( )A 、-3B 、1C 、-3 或 1D 、-17、能使等式=成立的x 值的取值范围是( )A 、x≠2B 、x≥0C 、x >2D 、x≥28、已知 xy >0,化简二次根式 x 的正确结果是()A. B. C.- D.-9、已知二次根式 的值为 3,那么 x 的值是()A 、3B 、9C 、-3D 、3 或-31 26 32 X 2+15-yx - 2 3 - x x - 2 x -1 x + y 3 2 - 12 3 - 23 24 - 34 3 25 3 3 a 2b1 5(x - 2)(3 - x ) 2 - x (-3)22 2 (a-3)210、若 a = , b = ,则 a 、b 两数的关系是( )5A 、 a = bB 、 ab = 5C 、 a 、b 互为相反数D 、a 、b 互为倒数二、填空题(共 30 分):11、当 a=-3 时,二次根式 1-a 的值等于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档