正弦交流电路的相量表示法..
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设相量
+j
则:
I ψ I
1 90 I ψ I ψ 90 o jI
+1
I ψ 180 90 I ψ 90 -j I 1 180 I ψ I ψ 180 -I
3.用旋转有向线段表示正弦量
● 在平面坐标上做长度为Um 、角度为 的有向线段 A ● 使有向线段以速度 按逆时针方向旋转. * 旋转有向线段 A,在 t 时刻 的角度为: (t )
2.1.5
知识链接 正弦电量的相量表示方法
i I m sin t
i
讨论:正弦交流电的表示方法有哪几种?
瞬时值表示
Im
T
波形图表示
t
当遇到正弦电量的加、减等运算时,用这两种表示方法来进 行分析、计算,则麻烦、费时,为此引入了相量表示法,从 而使正弦交流电路的分析和计算大为简化。
解.
(2) 91.3 78
(3) 58269
5060 50(cos60 j sin 60 ) 25 j 43.3
91.3 78 91.3 cos(78 ) j sin(78 ) 19 j89.3
a
o
面的复数表示为: A=a+jb r 表示复数的大小,称为复数的模。
有向线段的复数表示
正弦量的相量表示法
r
a 2 b2
2. 复数的表示方法
设A为一复数: 在右图的复平面上有如下关系:
+j
注意:正弦量 并不等于复 数
b
A
r
1) 代数式 A =a + jb 2) 三角式
0
a
+1
A r cos ψ j r sin ψ r (cos ψ j sin ψ )
虚部与虚部加减,作为结果的虚部
用有向线段加减时,符合平行四边形法则
例:A1=2+j3
A2=4+j4
则
A1+A2=(2+j3)+(4+j4)=6+j7 A1-A2=(2+j3)-(4+j4)=-2-j
正弦量的相量表示法
2) 复数的乘除
模与模乘除,作为结果的模
辐角与辐角加减,作为结果的辐角 如: 则:
四、 正弦量的相量表示法 2. 正弦量的相量表示法
为了与一般的复数相区别,我们把表示正弦量的
复数称为相量,并在大写字母上打“.”表示。
设正弦量
u Umsin( ω t ψ )
jψ
相量表示:
Ue U
或
Uψ
相量的模=正弦量的有效值 相量辐角=正弦量的初相角
U e U ψ U m m m
50 45 50 cos 45 j50sin 45 35.4 j35.4 60 - 45 60 cos(45) j 60sin(45) 42.4 j 42.4 30 180 30 cos180 30
3. 复数的运算
1)复数的加减
实部与实部加减,作为结果的实部
I 2= 15147 (V )
=100 20 ( V ) U
3.3 正弦量的相量表示法
【例题讲解】
u(t ) 2U sin(t θ )
例1. 已知 i 141.4 sin(314t 30o )A
u 311.1sin(314t 60 )V
o
对应
U U θ
* 该旋转有向线段每一瞬时在纵轴上的投影为: u(t ) U m sin t u 是正弦量u在t时刻的值 y
u
A
O
ω
u1
x
O
Um
Baidu Nhomakorabea
ω t1
ψ
ωt
旋转向量包含了正弦量的三个要素,故可以用它来表示正弦量
在正弦稳态交流电路中,各正弦量的频率与电源 频率相同。通常,该频率是已知的,故只需确定 正弦量的振幅和初相就能将它表达。(用三个要 素中的二个要素来描述即可) 故正弦量可用旋转有向量A的初始有向线段来表示
1.复数的实部、虚部和模
叫虚单位,数学上用 i 来代表它,因为在电工 中i代表电流,所以改用 j 代表虚单位,即 j = 1
1
令一直角坐标系的横轴表示复数的实
+j b r φ
+1
部,称为实轴,以+1为单位;纵轴表 示虚部,称为虚轴,以+j为单位。
A
复平面中有一有向线段A,其实部 为a,其虚部为b,有向线段A可用下
3) 指数式
4) 极坐标式
正弦量的相量表示法
Are
jψ
用的最多的是代数式和极坐标式
A rψ
知识链接
讨论:如何把代数形式变换成极坐标形式?极 坐标形式又如何化为代数形式?
6 j8 10 53.1 6 j8 10 126.9 6 j8 10 - 126.9 6 j8 10 - 53.1
A1=a1+jb1 =
r11
·
A2=a2+jb2 = = r1 · r2
r22
A1· A2=
r11
r22
(1 2 )
A1 r11 r1 (1 2 ) A2 r22 r2
正弦量的相量表示法
3) 旋转90度的算子j
j 0 j1 1 90 - j 0 - j1 1 - 90 - 1 j j 1 90 90 1 180
解: I 10030o A
U 220 60o V
试用相量表示i, u .
Um U 70.7V 2
例2. 已知 I 5015 A, f 50Hz .试写出电流的瞬时值表达式。 解:
i 50 2sin(314t 15 ) A
例3
把下列复数化为代数式。
(1) 5060
jψ
相量式
相量的模=正弦量的最大值
相量辐角=正弦量的初相角
【练习与思考】
用有效值相量表示下列正弦量
i1( t ) 10 2 sin( t 60 )
A A
i2 ( t ) 15 2 cos( 314t 57 ) u( t ) 200 sin t
解:
V
= I 10 - 60 ( A) 1
相量表示法也具有幅值、 频率及初相这 3 个主要特征
正弦交流电的3大类表示方法
解析式 波形图
i I m sin t
i
Im
T
t
U
相 量 法
1、相量图
.
I a jb I (cos j sin ) I
2、相量式 (复数 符号法)
具体见下页内容:
+j
则:
I ψ I
1 90 I ψ I ψ 90 o jI
+1
I ψ 180 90 I ψ 90 -j I 1 180 I ψ I ψ 180 -I
3.用旋转有向线段表示正弦量
● 在平面坐标上做长度为Um 、角度为 的有向线段 A ● 使有向线段以速度 按逆时针方向旋转. * 旋转有向线段 A,在 t 时刻 的角度为: (t )
2.1.5
知识链接 正弦电量的相量表示方法
i I m sin t
i
讨论:正弦交流电的表示方法有哪几种?
瞬时值表示
Im
T
波形图表示
t
当遇到正弦电量的加、减等运算时,用这两种表示方法来进 行分析、计算,则麻烦、费时,为此引入了相量表示法,从 而使正弦交流电路的分析和计算大为简化。
解.
(2) 91.3 78
(3) 58269
5060 50(cos60 j sin 60 ) 25 j 43.3
91.3 78 91.3 cos(78 ) j sin(78 ) 19 j89.3
a
o
面的复数表示为: A=a+jb r 表示复数的大小,称为复数的模。
有向线段的复数表示
正弦量的相量表示法
r
a 2 b2
2. 复数的表示方法
设A为一复数: 在右图的复平面上有如下关系:
+j
注意:正弦量 并不等于复 数
b
A
r
1) 代数式 A =a + jb 2) 三角式
0
a
+1
A r cos ψ j r sin ψ r (cos ψ j sin ψ )
虚部与虚部加减,作为结果的虚部
用有向线段加减时,符合平行四边形法则
例:A1=2+j3
A2=4+j4
则
A1+A2=(2+j3)+(4+j4)=6+j7 A1-A2=(2+j3)-(4+j4)=-2-j
正弦量的相量表示法
2) 复数的乘除
模与模乘除,作为结果的模
辐角与辐角加减,作为结果的辐角 如: 则:
四、 正弦量的相量表示法 2. 正弦量的相量表示法
为了与一般的复数相区别,我们把表示正弦量的
复数称为相量,并在大写字母上打“.”表示。
设正弦量
u Umsin( ω t ψ )
jψ
相量表示:
Ue U
或
Uψ
相量的模=正弦量的有效值 相量辐角=正弦量的初相角
U e U ψ U m m m
50 45 50 cos 45 j50sin 45 35.4 j35.4 60 - 45 60 cos(45) j 60sin(45) 42.4 j 42.4 30 180 30 cos180 30
3. 复数的运算
1)复数的加减
实部与实部加减,作为结果的实部
I 2= 15147 (V )
=100 20 ( V ) U
3.3 正弦量的相量表示法
【例题讲解】
u(t ) 2U sin(t θ )
例1. 已知 i 141.4 sin(314t 30o )A
u 311.1sin(314t 60 )V
o
对应
U U θ
* 该旋转有向线段每一瞬时在纵轴上的投影为: u(t ) U m sin t u 是正弦量u在t时刻的值 y
u
A
O
ω
u1
x
O
Um
Baidu Nhomakorabea
ω t1
ψ
ωt
旋转向量包含了正弦量的三个要素,故可以用它来表示正弦量
在正弦稳态交流电路中,各正弦量的频率与电源 频率相同。通常,该频率是已知的,故只需确定 正弦量的振幅和初相就能将它表达。(用三个要 素中的二个要素来描述即可) 故正弦量可用旋转有向量A的初始有向线段来表示
1.复数的实部、虚部和模
叫虚单位,数学上用 i 来代表它,因为在电工 中i代表电流,所以改用 j 代表虚单位,即 j = 1
1
令一直角坐标系的横轴表示复数的实
+j b r φ
+1
部,称为实轴,以+1为单位;纵轴表 示虚部,称为虚轴,以+j为单位。
A
复平面中有一有向线段A,其实部 为a,其虚部为b,有向线段A可用下
3) 指数式
4) 极坐标式
正弦量的相量表示法
Are
jψ
用的最多的是代数式和极坐标式
A rψ
知识链接
讨论:如何把代数形式变换成极坐标形式?极 坐标形式又如何化为代数形式?
6 j8 10 53.1 6 j8 10 126.9 6 j8 10 - 126.9 6 j8 10 - 53.1
A1=a1+jb1 =
r11
·
A2=a2+jb2 = = r1 · r2
r22
A1· A2=
r11
r22
(1 2 )
A1 r11 r1 (1 2 ) A2 r22 r2
正弦量的相量表示法
3) 旋转90度的算子j
j 0 j1 1 90 - j 0 - j1 1 - 90 - 1 j j 1 90 90 1 180
解: I 10030o A
U 220 60o V
试用相量表示i, u .
Um U 70.7V 2
例2. 已知 I 5015 A, f 50Hz .试写出电流的瞬时值表达式。 解:
i 50 2sin(314t 15 ) A
例3
把下列复数化为代数式。
(1) 5060
jψ
相量式
相量的模=正弦量的最大值
相量辐角=正弦量的初相角
【练习与思考】
用有效值相量表示下列正弦量
i1( t ) 10 2 sin( t 60 )
A A
i2 ( t ) 15 2 cos( 314t 57 ) u( t ) 200 sin t
解:
V
= I 10 - 60 ( A) 1
相量表示法也具有幅值、 频率及初相这 3 个主要特征
正弦交流电的3大类表示方法
解析式 波形图
i I m sin t
i
Im
T
t
U
相 量 法
1、相量图
.
I a jb I (cos j sin ) I
2、相量式 (复数 符号法)
具体见下页内容: