【重要资料】2014上海中学自主招生数学试题[带答案

合集下载

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A);(;(C)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1; (C) y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A)∠2; (B)∠3;(C) ∠4;(D) ∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014上中自主招生数学试题

2014上中自主招生数学试题

F ED C A 2014上中自主招生数学试题一、填空题1.已知b a b a +=+111,则=+ba ab ______. 2.有______个实数x ,可以使得x -120为整数?.3.在△ABC 中,AB=AC ,CD=BF ,BD=CE ,用含∠A 的式子表示∠EDF ,∠EDF 应为=______.4.在直角坐标系中,抛物线)0(4322>-+=m m mx x y 与x 轴交于A 、B 两点,若A 、B 两点到原点的距离分别为OA 、OB ,且满足3211=-OA OB ,则m=__________.5.定圆A 的半径为72,动圆B 的半径为r ,r<72且r 是一个整数,动圆B 保持内切于圆且沿圆A 的圆周滚动一圈,若动圆B 开始滚动时的切点与结束时的切点是同一点,则r 共有__________个可能的值.6.学生若干人租游艇若干只,如果每船坐4人,就余下20人;如果每船坐8人,那么就有一船不空也不满,则学生共有______人?7.对于各数互不相等的正整数组(a 1,a 2,…,a n )(n 是不小于2的正整数),如果在i<j 时有a i >a j ,则称a i 与a j 是该数组的一个“逆序”.例如数组(2,4,3,1)中有逆序“2,1”“4,3”“4,1”“3,1”,其逆序数为4,现若有各数互不相同的正数组(a 1,a 2,a 3,a 4,a 5,a 6)的逆序数为2,则(a 6,a 5,a 4,a 3,a 2,a 1)的逆序数是___________________.8.若n 为自然数,则使得关于x 的不等式19102111<+<n x n 有唯一的整数解的n 的最大值为________.二、选择题9.已知x 2+ax-12能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数为( )A .3B .4C .6D .810.如图,D 、E 分别为△ABC 的底边所在直线上的两点,DB=EC ,过A 点作直线l ,作DM ∥AB 交l 于M ,作EN ∥AC 交l 于N ,设△ABM 面积为S 1,△ACN 面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 211.设p 1,p 2,q 1,q 2为实数,则p 1p 2=2(q 1+q 2),若方程甲:x 2+p 1x+q 1=0,乙:x 2+p 2x+q 2=0,则( )A .甲必有实根,乙也必有实根B .甲没有实根,乙也没有实根C .甲、乙至少有一个有实根D . 甲、乙是否总有一个有实根不能确定12.设201310075332112222++++= a ,201510077352312222++++= b ,则以下四个选项中最接近a-b 的整数为( )A .252.B .504C .1007D .2013三、解答题13.直角三角形ABC 和直角三角形ADC 有公共斜边AC(B 、D 位于AC 的两侧),M 、N 分别是AC 、BD 中点,且M 、N 不重合.(1)线段MN 与BD 是否垂直?证明你的结论;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN 的长.14.是否存在m 个不相等的正数a ,a 2,…,a m (m≥7),使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m 值;若不存在,说明理由.。

2014年上海市中考数学试卷及答案word版

2014年上海市中考数学试卷及答案word版

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2;(B)∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=_________.8.函数11yx=-的定义域是_________.9.不等式组12,28xx->⎧⎨<⎩的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分) 计算:131128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:1.B2.C3.C4.D5.A6.B填空题:7.a2+a8.x≠19.3<x<410.35211.k<112.2620.x=021. 37.522.BE=3 23题24题数学试卷及试题25题数学试卷及试题11。

2014年上海市中考数学试卷(附答案与解析)

2014年上海市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前上海市2014年初中毕业统一学业考试数 学本试卷满分150分,考试时间100分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23⨯的结果是( )A .5B .6C .23D .322.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为( )A .860810⨯B .960.810⨯C .106.0810⨯D .116.0810⨯3.如果将抛物线2y x =向右平移1个单位,那么所得新抛物线的表达式是 ( )A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+4.如图,已知直线,a b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠5.某市测得一周 2.5PM 的日均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是( )A .50和50B .50和40C .40和50D .40和406.如图,已知AC BD ,是菱形ABCD 的对角线,那么下列结论一定正确的是( )A .ABD △与ABC △的周长相等B .ABD △与ABC △的面积相等C .菱形ABCD 的周长等于两条对角线长之和的两倍 D .菱形ABCD 的面积等于两条对角线长之积的两倍第Ⅱ卷(非选择题 共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上) 7.计算:(1)a a += .8.函数11y x =-的定义域是 . 9.不等式组12,28x x -⎧⎨⎩><的解集是 .10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔 支.11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度1:2.4i =,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1),(2),(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,0k ≠),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式可以是 (只需写一个). 15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且3AB EB =.设=AB a BC b =,,那么=DE (结果用,a b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图所示,那么三人中成绩最稳定的是 .17.一组数:2,1,3,,7,,23x y ,…,满足“从第三个数起,前两个数依次为,a b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页)数学试卷 第4页(共22页)18.如图,已知在矩形ABCD 中,点E 在边BC 上,=2BE CE ,将矩形沿着过点E 的直线翻折后,点,C D 分别落在边BC 下方的点C ,D ''处,且点,,C D B ''在同一条直线上,折痕与边AD 交于点,F D F '与BE 交于点G .设AB t =,那么EFG △的周长为 (用含t 的代数式表示).三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)计算:131128|23|3--+-.20.(本小题满分10分) 解方程:2121111x x x x +-=--+.21.(本小题满分10分)已知水银体温计的读数()y ℃与水银柱的长度(cm)x 之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表1记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度(cm)x4.2 … 8.2 9.8体温计的读数()y ℃ 35.0 … 40.0 42.0 (1)求y 关于x 的函数解析式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本小题满分10分)如图,已知Rt ABC △中,°90,ACB CD ∠=是斜边AB 上的中线,过点A 作AE CD ⊥,AE 分别与,CD CB 相交于点,,=2H E AH CH . (1)求sin B 的值;(2)如果5CD =,求BE 的长.23.(本小题满分12分)已知:如图,梯形ABCD 中,,=AD BC AB DC ∥,对角线,AC BD 相交于点F ,点E 是边BC 延长线上一点,且=CDE ABD ∠∠. (1)求证:四边形ACED 是平行四边形; (2)连接AE ,交BD 于点G .求证:DG DFGB DB=.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)24.(本小题满分12分)在平面直角坐标系xOy 中(如图),已知抛物线223y x bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点(0,2)C -.(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点(,0)P t ,且3t >,如果BDP △和CDP △的面积相等,求t 的值.25.(本小题满分14分)如图所示,已知在平行四边形ABCD 中,45,8,cos 5AB BC B ===,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点,E F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)连接AP ,当AP CG ∥时,求弦EF 的长; (3)当AGE △是等腰三角形时,求圆C 的半径长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页)数学试卷 第8页(共22页)上海市2014年初中毕业统一学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】BB . 【考点】二次根式的乘法运算法则. 2.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a <≤,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,几为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即1060800000000 6.0810=⨯,故选C . 【考点】科学记数法. 3.【答案】C【解析】抛物线2y x =的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到顶点的坐标为(1,0),所以所得的抛物线的表达式为2(1)y x =-,故选C . 【考点】二次函数图像的平移 4.【答案】D【解析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,可得1∠的同位角是5∠,故选D . 【考点】同位角的识别. 5.【答案】A【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,众数可能不止一个.从小到大排列此数据为37,40,40,50,50,50,73,数据50出现次数最多,所以50为众数,处在第4位是中位数50,故选A . 【考点】中位数,众数. 6.【答案】B【解析】选项A ,∵四边形ABCD 是菱形,∴AB BC AD ==,∵AC BD ≠,∴ABD △与ABC △的周长5 / 11不相等,A 错误;选项B ,∵12ABD ABCD S S =棱形△,12ABC ABCD S S =棱形△,∴ABD △与ABC △的面积相等,B 正确;选项C ,菱形的周长与两条对角线之和不存在固定的数量关系,C 错误;选项D ,菱形的面积等于两条对角线之积的12,D 错误,故选B. 【考点】菱形的性质应用.第Ⅱ卷二、填空题 7.【答案】2a a +【解析】利用代数式的乘法运算的法则计算得原式2a a =+,故答案为2a a +. 【考点】代数式的乘法运算. 8.【答案】1x ≠【解析】根据分母不等式0得10x -≠,解得1x ≠,故答案为1x ≠. 【考点】函数自变量的取值范围. 9.【答案】34x <<【解析】先求出不等式组中每一个不等式的解集,它们的公共部分就是不等式组的解集.即1228x x ->⎧⎨<⎩①,②,由①得3x >,由②得4x <,则不等式组的解集是34x <<,故答案为34x <<. 【考点】解一元一次不等式组. 10.【答案】352【解析】三月份销售各种水笔的支数比二月份增长了10%,即三月份销售的水笔支数是二月份的()110%+,由此得出三月份销售各种水笔()320110%320 1.1352⨯+=⨯=(支),故答案为352. 【考点】解应用题,列出算式解决问题. 11.【答案】1k <【解析】∵关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,∴0∆>,即()22410k --⨯⨯>,解得1k <,∴k 的取值范围为1k <,故答案为1k <. 【考点】一元二次根的判定式. 12.【答案】26【解析】如图,由题意得斜坡AB 的1:2.4i =,10AE =(米)AE BC ⊥,∵12.4AE i BE ==,∴24BE =(米),∴在Rt ABE △中,26AB =(米),故答案为26.数学试卷 第11页(共22页)数学试卷 第12页(共22页)【考点】解直角三角形的应用——坡度问题.13.【答案】13【解析】初三(1)(2)(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,恰好抽到初三(1)班的概率是13,故答案为13.【考点】概率公式的应用.14.【答案】1y x =-(答案不唯一)【解析】对于反比例函数ky x=,当0k >时,在每一个象限内,函数值y 随自变量x 的增大而减小;当0k <时,在每一个象限内,函数值y 随自变量x 增大而增大.根据题意只要令0k <即可,可取1k =-,则反比例函数的解析式是1y x =-,故答案是1y x =-.【考点】反比例函数的性质.15.【答案】23a b -【解析】∵3,AB EB AB a ==,∴2233AE AB a ==,∵在平行四边形ABCD 中,BC b =,∴AD BC b ==,∴23DE AE AD a b =-=-,故答案是23a b -.【考点】平面向量. 16.【答案】乙【解析】数据波动越小,数据越稳定,根据图形可得乙的乘积波动最小,数据最稳定,则三人中成绩最稳定的是乙,故答案为乙. 【考点】方差,折线统计图. 17.【答案】9-【解析】∵从第三个数起0,前两个数依次为,a b ,紧随其后的数就是2a b -,∴7223y ⨯-=,解得9y =-,故答案为9-. 【考点】数字的变化规律. 18.【答案】7 / 11【解析】如图,连接BD ',由翻折的性质得CE C E '=,∵2BE CE =,∴2BE C E '=, 又∵90C C '∠=∠=︒,∴30EBC '∠=︒.∵90FD C D ''∠=∠=︒,∴=60BGD '∠︒, ∴60FGE BGD '∠=∠=︒,∴AD BC ∥,∴60AFG FGE ∠=∠=︒,∵()()11180180606022EFG AFG ∠=︒-∠=︒-︒=︒,∴EFG △是等边三角形,∵AB t =,∴EF t ==,∴EFG △的周长3==,故答案为.【考点】翻折变换的性质. 19.【解析】原式22=+ 【考点】实数的综合运算能力. 三、解答题20.【答案】解:去分母,整理得20x x +=. 解方程,得121,0x x =-=.经检验:11x =-是增根,舍去;20x =是原方程的根. 所以原方程的根是0x =. 【考点】解分式方程.21.【答案】解:(1)设y 关于x 的函数解析式为()y kx b k =+≠0.由题意,得 4.235,8.240.k b k b +=⎧⎨+=⎩解得5,4119.4k b ⎧=⎪⎪⎨⎪=⎪⎩ 所以y 关于x 的函数解析式为511944y x =+. (2)当 6.2x =时,37.5y =. 答:此时该体温计的读数为37.5℃.数学试卷 第15页(共22页)数学试卷 第16页(共22页)【考点】待定系数法求一次函数的解析式,根据自变量的值求函数值的运用. 22.【答案】(1(2)3【解析】解:(1)∵在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线,∴22AB CD BD ==,所以DCB B ∠=∠.∵AH CD ⊥,∴90AHC CAH ACH ∠=∠+∠=︒.又∵90DCB ACH ∠+∠=︒,∴CAH DCB B ∠=∠=∠.∴ABC CAH ~△△.∴AC CHBC AH =. 又∵2AH CH =,∴2BC AC =.可设,2AC k BC k ==, 在Rt ABC △中,AB ==∴sin AC B AB ==. (2)∵2,AB CD CD ==AB =. 在Rt ABC △中,sin 2AC AB B =⋅===. ∴24BC AC ==.在Rt ACE △和Rt AHC △中,1tan 2CE CH CAE AC AH ∠===. ∴112CE AC ==,∴3BE BC CE =-=. 【考点】解直角三角形,直角三角形斜边上的中线.24.【答案】(1)证明:∵四边形ABCD 是梯形,,AD BC AB DC =∥,∴ADC DAB ∠=∠. ∵AD BE ∥,∴ADC DCE ∠=∠,∴DAB DCE ∠=∠. 在ABD △和CDE △中,,,,DAB DCE AB CD ABD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD CDE ≅△△,∴AD CE =.又∵AD CE ∥,∴四边形ACDE 是平行四边形.(2)证明:∵四边形ACED 是平行四边形,∴FC DE ∥. ∴DF CEDB BE =. ∵AD BE ∥,∴DG ADGB BE=.9 / 11又∵AD CE =,∴DG DFGB DB=. 【考点】比例的性质,平行四边形的判定及其应用. 24.【答案】(1)1x = (2)()1,4 (3)5【解析】(1)∵点()1,0A -和点()0,2C -在抛物线223y x bx c =++上, ∴210,32,b c c ⎧⨯-+=⎪⎨⎪=-⎩ 解得4,32.b c ⎧=-⎪⎨⎪=-⎩ ∴该抛物线的表达式为224233y x x =--,对称轴为直线1x =. (2)∵点E 为该抛物线的对称轴与x 轴的交点,∴()1,0E . ∵四边形ACEF 为梯形,AC 与y 轴交于点C , ∴AC 与EF 不平行,在AF CE ∥.∴FAE OEC ∠=∠.在Rt AEF △中,90,tan EFAEF FAE AE ∠=︒∠=, 同理,在Rt OEC △中,tan OC OEC OE ∠=,∴EF OCAE OE=. ∵2,1,2OC OE AE ===,得4EF =. ∴点F 的坐标是()1,4.(3)该抛物线的顶点D 的坐标是81,3⎛⎫- ⎪⎝⎭,点B 的坐标是()3,0.由点(),0P t ,且3t >,得点P 在点B 的右侧(如下图).数学试卷 第19页(共22页)数学试卷 第20页(共22页)()18434233BOD S t t =⨯-⨯=-△ ()1812111121232323CDP S t t t =⨯+⨯-⨯-⨯⨯=+△.∵BOD CDP S S =△△,∴414133t t -=+.解得5t =.即符合条件的t 的值是5.【考点】待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用. 25.【答案】(1)5 (2)74(3【解析】(1)过点A 作AH BC ⊥,垂足为点H .连接AC .在Rt AHB △中,90AHB ∠=︒,4cos ,55BH B AB AB ===, ∴4BH =.∵8BC =,∴AH 垂直平分BC . ∴5AC AB ==.∵圆C 经过点A ,∴5CP AC ==. (2)过点C 作CM AD ⊥,垂足为点M . 设圆C 的半径长为x .∵四边形ABCD 是平行四边形, ∴,,AB DC AD BC B D ==∠=∠ 可得4,3DM CM ==.在Rt EMC △中,90EMC ∠=︒,EM ==又∵点F 在点E右侧,∴4DE EM DM =+=∴4AE AD DE =-=-由,AD BC AP CG ∥∥,得四边形APCE 是平行四边形.∴AE CP =,即4x -=.解得258x =.11 / 11经检验:258x =是原方程的根,且符合题意.∴78EM == 在圆C 中,由CM EF ⊥得724EF EM ==. ∴当AP CG ∥时,弦EF 的长为74. (3)设圆C 的半径长为x ,则CE x =,又∵点F 在点E的右侧,∴4DE =.∵四边形ABCD 是平行四边形,∴AB DC ∥.∴AGE DCE △△由AGE △是等腰三角形,可得DCE △是等腰三角形.①若GE GA =,即CE CD =,又∵CD CA =,∴CE CA = 又∵点,A E 在线段AD 的垂直平分线CM 的同侧,∴点E 与点A 重合,舍去.②若AG AE =,即DC DE =45=.解得x =x =不符合题意,舍去.∴x =③若GE AE =,即CE DE =4x =. 解得258x =,不符合题意,舍去. 综上所述,当AGE △是等腰三角形时,圆C【考点】相似三角形的判定与性质,勾股定理,锐角三角函数关系.。

2014年上海市中考数学试卷与答案(Word版)

2014年上海市中考数学试卷与答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算2 3 的结果是().(A) 5 ;(B)6;(C)2 3; (D)3 2.2.据统计, 2013 年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608 ×10 8;(B) 60.8 ×10 9;(C) 6.08 ×10 10;(D) 6.08 ×10 11.3.如果将抛物线y= x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y= x2+1;(C)y=( x-1)2;(D)y=( x+1)2.4.如图,已知直线a、 b 被直线 c 所截,那么∠1 的同位角是().(此题图可能有问题)(A)∠2;(B)∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75,50, 37, 50, 40,这组数据的中位数和众数分别是().(A)50 和 50;(B)50和40;(C)40和50;(D)40和 40.6.如图,已知AC、BD是菱形 ABCD的对角线,那么下列结论一定正确的是().(A) △ABD与△ABC的周长相等;(B) △ABD与△ABC的面积相等;(C) 菱形的周长等于两条对角线之和的两倍;(D) 菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题 4 分,共 48 分)【请将结果直接填入答题纸的相应位置】7.计算:a( a+ 1) =____________ .8.函数y1的定义域是_______________.x 19.不等式组x 12,的解集是 _____________ .2 x810.某文具店二月份销售各种水笔320 支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程 x2-2x+k=0( k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10 米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、( 2)、( 3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三( 1)班的概率是 __________ .14.已知反比例函数y ky 的值随着 x 的值的增大而( k 是常数, k≠0),在其图像所在的每一个象限内,x增大,那么这个反比例函数的解析式是________________ (只需写一个).15.如图,已知在平行四边形中,点E 在边AB上,且=3 .设 AB a , BC b ,那么 DE =ABCD AB EB _______________ (结果用 a 、 b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数: 2, 1 , 3 ,x, 7 ,y, 23 ,, ,满足“从第三个数起,前两个数依次为a、 b,紧随其后的数就是2-”,例如这组数中的第三个数“ 3”是由“ 2×2-1”得到的,那么这组数中y 表示的数为a b____________ .18.如图,已知在矩形中,点E 在边上,= 2 ,将矩形沿着过点E的直线翻折后,点、D分别落ABCD BC BE CE C 在边 BC下方的点 C′、 D′处,且点 C′、 D′、 B 在同一条直线上,折痕与边AD交于点 F, D′F 与 BE交于点 G.设 AB=t ,那么△ EFG的周长为________(用含 t 的代数式表示)三、解答题:(本题共 7 题,满分78 分)1119.(本题满分 10 分)计算: 1283 2 3 .320.(本题满分 10 分)解方程:x121.x1x2 1x121.(本题满分10 分,第( 1)小题满分7 分,第( 2)小题满分 3 分)已知水银体温计的读数y(℃)与水银柱的长度x( cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x 4.2,8.29.8(cm)体温计的读数y35.0,40.042.0(℃)(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2 cm,求此时体温计的读数.22.(本题满分10 分,每小题满分各 5 分)如图,已知Rt△ABC中,∠ ACB=90°, CD是斜边 AB上的中线,过点A作 AE⊥ CD,AE分别与 CD、 CB相交于点 H、 E, AH=2CH.(1)求sinB的值;(2)如果CD= 5 ,求BE的值.23.(本题满分 12 分,每小题满分各 6 分)已知:如图,梯形中,//,=,对角线、相交于点,点E 是边延长线上一点,且ABCD AD BC AB DC AC BD F BC∠CDE=∠ ABD.24.(本题满分 12 分,每小题满分各 4 分)在平面直角坐标系中(如图),已知抛物线y2x2bx c 与x轴交于点A( - 1,0) 和点B,与y轴交于点3C(0,-2).( 1)求该抛物线的表达式,并写出其对称轴;( 2)点E为该抛物线的对称轴与x 轴的交点,点 F 在对称轴上,四边形 ACEF为梯形,求点 F 的坐标;( 3)点D为该抛物线的顶点,设点P( t , 0),且 t >3,如果△ BDP和△ CDP的面积相等,求t 的值.25.(本题满分 14 分,第( 1)小题满分 3 分,第( 1)小题满分 5 分,第( 1)小题满分 6 分)如图 1,已知在平行四边形中,= 5,= 8,=4,点P是边上的动点,以为半径的ABCD AB BC cosB5BC CP 圆C与边 AD交于点 E、 F(点 F 在点 E 的右侧),射线 CE与射线 BA交于点 G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP// CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1备用图2014 年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、 B;2、 C;3、C;4、 A;5、 A;6、B二、填空题7、a2 a ;8、x 1 ;9、3x 4 ;10、352;11、k 1;12、26;13、1; 14、y1(k0即可);15、2 a b ;16、乙;17、 -9 ;18、2 3t.3x3三、解答题19、解:原式23 320、x0; x1(舍)21、 (1)y 1.25 x 29.75 ,(2)37.522、CD5;AB 2 55BC 2 5 cos B4; AC2 5 sin B 2BDCBCAE, sinB sinCAE5CE AC tanCAE1BE BC CE323、( 1)求证:四边形ACED是平行四边形;ABCD为等腰梯形, ADB DACABD DCA,=ABD CDEDCA CDE,AC / /DE AD / /CE,ADEC 为(2)联结AE,交BD于点G,求证:DG DF.GB DBAD / /BC,DG AD ;DF ADGBBE FB BC DFADDF ADFB ,DF FB AD BCBC ADEC 为 , AD CE;AD BC BE DFADDF AD DF FB AD BC DBBEDG DF GB DB24、25、。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算的结果是( ).(A); (B);(C); (D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B)60.8×109; (C) 6。

08×1010; (D) 6。

08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( ).(A)y=x2-1; (B)y=x2+1; (C)y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题) (A) ∠2;(B)∠3; (C)∠4; (D)∠5.5.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;1(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数的定义域是_______________.9.不等式组的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014年上海中学自招数学试卷

2014年上海中学自招数学试卷

数学姓名 班级 学号答案请写在答题纸上本卷满分150分,时间为60分钟一、填空题(本部分共8道题,每题9分,共72分) 1. 已知ac zc b y b a x -=-=-,则=++z y x 。

2. 已知二次函数c bx ax y ++=2的图像如图所示,则下列6个代数式:b a b ac b a c b a ac ab -++-++22,,,,,中,其值为正的式子有个。

3. 已知△ABC 的三边长分别为18128,,,△DEF 中有两边长分别为1812,,则当第三条边长=时,△ABC 与△DEF 相似但不全等。

4. 将22328y xy x --写成两个整系数多项式的平方差,有=--22328y xy x 。

5. 已知正整数a 是一个小于610的完全平方数,且a 是12的倍数,这样的a 有 个? 6. 在坐标平面上,把横、纵坐标都为整数的点叫做整点。

对于任意的n 个整点,其中一定有两个整点,它们的连线的中点仍为整点,那么n 的最小值为 。

7. 如右图,从A 到B (方向只能左→右,或下→上,或左下→右上)有 种不同的路线?8. 设][x 表示不超过x 的最大整数,如3]6.3[=,2]2.1[-=-。

则方程6][3=-x x 的解为=x。

二、解答题(本部分共五道题,其中前两题每题15分,后三题每题16分,共78分,要求写出必要的解题步骤。

) 9. 是否存在两个既约分数cda b ,(其中d c b a ,,,均为整数,且22≥≥c a ,),使它们的和与积都为整数?证明你的结论。

10. 设100321a a a a ,,,, 都是正整数,且12a a >,12323a a a -=,98991002342323a a a a a a -=-=,, ,求证:981002>a 。

11. 如图,在以C ∠为直角的ABC Rt ∆中,,,43==AC BC 点I 是其内心。

''B 'C A 、、分别是C B A 、、关于点I 的对称点,求△ABC 和△'''C B A 所围成公共部分图形的面积。

2014高中自主对外招生数学试卷和答案

2014高中自主对外招生数学试卷和答案

高中自主招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,22小题,试卷共4页,另有答题卡;2.答案一律写在答题卡上,否则不能得分.一.选择题(本题有6个小题,每小题4分,共24分.每小题只有一个选项是正确的.) 1. 如果1-=ab ,那么两个实数a ,b 一定是( )A .互为倒数B .-1和+1C .互为相反数D .互为负倒数 2.下列运算正确的是( ) A .()b a ab 33= B .1-=+--ba ba C .326a a a =÷ D .222)(b a b a +=+3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .平均数是9B .中位数是9C .众数是5D .极差是5 4.长方体的主视图、俯视图如右图所示, 则其左视图面积为( )A .3B .4C .12D .16 5.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、双曲线、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( ) A .16 B .13 C .12 D .236.如图,已知⊙O 的半径为r ,C 、D 是直径AB 的同侧圆周上的两点,100AOC ∠=,D 是BC 的中点,动点P 在线段AB 上,则PC +PD 的最小值为 ( ) A .r Br CDr CPDO BA(第6题)二.填空题(本题有8个小题,每小题5分.共40分) 7. 实数b a ,满足0132=+-b a ,则ba 的值为 .9. 在同一坐标系中,图形a 是图形b 向上平移3个单位长度,再向左平移2个单位得到,如果图形a 中A 点的坐标为(4,-2),则图形b 中与A 点对应的A '点的坐标为___ ____. 10.如图,在四边形纸片ABCD 中,∠A =130°,∠C =40°,现将其右下角向内折出∆FGE ,折痕为EF ,恰使GF ∥AD ,GE ∥CD ,则∠B 的度数为 .11.对于实数a 、b ,定义运算⊗如下:=⊗b a ⎪⎩⎪⎨⎧≠≤≠>-)0,()0,(a b a a a b a a b b, 例如1612424==⊗-. 计算 [][]=⊗-⨯⊗2)3(23 .13.已知直线1y x =,213y x =+,633+-=x y 的图象如图所示,无论x 取何值,当y 总取1y 、2y 、3y 中的最小值时, y 的最大值为14. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩恰好有三个整数解,则关于x 的一次函数14y x a=- 的图像与反比例函数32a y x+=的图像的公共点的个数为 . (第12题)G FE DCBA(第10题)三、解答题(本题有8个小题,共86分,解答应写出文字说明,证明过程或推演步骤.) 15.(本题满分7分)计算01( 3.14)(sin30)4cos 45π︒-︒-++-16.(本题满分9分)已知2)2()]2()()[(22=-÷-++--y y x y y x y x .求228242x x y x y---的值.17.(本题满分10分) 如图,直线AB 交双曲线()y 0kx x=>于A ,B 两点, 交x 轴于点C (4,0)a , AB =2BC ,过点B 作BM ⊥x 轴于点M , 连结OA ,若OM =3MC ,S △OAC =8,则k 的值为多少?18. (本题满分10分)如图,在菱形ABCD 中,AB =23,∠A =60°,以点D 为圆心的⊙D 与AB 相切于点E ,与DC 相交于点F . (1)求证:⊙D 与BC 也相切;(2)求劣弧EF 的长(结果保留π).19.(本小题满分12分)某商家计划从厂家采购A ,B 两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)求A 产品的采购数量与采购单价的函数关系式;(2)该商家分别以1760元/件和1700元/件的销售单价出售A ,B 两种产品,且全部售完,在A 产品的采购数量不小于11且不大于15的条件下,求采购A 种 产品多少件时总利润最大,并求最大利润.(第18题)(第17题)ABCCDDEE FFA20.(本小题满分12分)如图,在△ABC 中,∠CAB =90°,D 是斜边BC 上的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF .(1)若AB =AC ,BE +CF =4,求四边形AEDF 的面积。

上海中学自招真题解析

上海中学自招真题解析

ABCDEF 的相似比为1: 3 ,因此面积比为1: 3 .因为 ABCDEF 的面积是 6cm2 ,所以阴影部分的面积为 6 3 2(cm2 ) .
10、已知 y1 2x2 4 m x 4 m 与 y2 mx 在 x 取任意实数时, y1 , y2 至少有一个是正
数,m 的取值范围是________. 【答案】 m 4 . 【解析】取 x 0 ,则 y1 4 m , y2 0 , 4 m 0 , m 4,
,解得 3
m n
3 2 3 2
,另一解与
O
重合,舍去.因此 C(3 2
,
3). 2
7、一张矩形纸片 ABCD , AD 9 , AB 12 ,将纸片折叠,使 A 、 C 两点重合,折痕长是

【答案】 45 . 4
【解析】由题意知折痕是线段 AC 的中垂线,设它与 AB , CD 分别交于 M , N .设 MB x ,
上海中学自主招生试题
1、因式分解: 6x3 11x2 x 4

【答案】 x 13x 42x 1 .
【解析】容易发现 x 1是方程 6x3 11x2 x 4 0 的解,因此原式可以提出因式 (x 1) ,
得到 (x 1)(6x2 5x 4) ,对 (6x2 5x 4) 用十字相乘可以得到原式等于 (x 1)不相等的实数,x 是任意实数,化简:
a
x a2 ba
c
c
x b2 ba
b
c
x c2 ac
b
________.
【答案】1.
【解析】令
f
x
a
x a2 ba
c
c
x b2 ba
b
c
x c2 ac

上海自主招生试题整理(中考(高清))

上海自主招生试题整理(中考(高清))

精品文档,欢迎下载!上海自主招生试题整理(中考)一、格致(一)(格致分5门科目:综合(类似语文政治社会结合)、数学、英语、物理、化学)综合:老师要听你发表自己的见解,比较礼貌可以加分。

数学:5道题目==都是不细心错的.英语:还可以,表达流利一点就很好了。

物理:拓展的题目.给你一个故事,然后让你于这些故事中找出学过的物理知识。

还有个就是跑车上的某装置的作用,是很活的题目。

化学:比较提高的题目.=================================经验总结(对即将自荐的和下一届想去推格致的)1.一定要有礼貌2.不能猴急,想好了慢慢做,他们会问你解题的思路3.要有充分的准备(二)B卷综合:我也忘记进去说老师好了==结果走的时候说了句老师再见...伤心啊看了一篇阅读然后回答问题。

还有两张图,问你看法老师抽着问的。

她问了我个怎么当个受人欢迎的人数学:错了2题。

一题漏了个负号、一题不会...个人觉得还是数学老师比较耐心啊英语:口头的两篇作文。

一篇是电脑游戏、一篇是食品包装感觉一般般吧物理:1.测地窖二氧化碳浓度怎么样的方法2.测食用油密度这个我是在乱说的...化学:那位老师也问我有没有参加竞赛。

我那张考的是化学实验较多礼貌果然很重要。

二、延安(一)今天的笔试怪:语文:有几题实在不知道,数学:有几题也是无解了,英语:倒是蛮简单的,理化:物理的电路图令人发指。

电脑:推理测试也怪,特别是最后几道,我基本只有二分之三的题目有把握面试:比想象的简单,有两位同学走时竟然忘记把椅子推进去了,我一跃而起,感到自己捡到钱包了一样帮他们把椅子放好,但愿监考老师能看到。

延安是重男轻女的。

(二)我小孩考的结果:数理化:都做出来了,英语:基本可以,语文:有些难可能跟平时文学知识欠缺有关。

电脑:综合测试只要逻辑思维好是不难的。

面试:是有关创新主题。

三、进才(一)早上最好进去地早些,不然路上是非常堵滴!从8:30开始两个小时的考试,内容主要是:语文:课外积累——错别字,一些小知识点;数学:学过奥数的,再次体验一下吧~英语:文章好长呀(在来不及的时候,相对比较来看,英语的题目最难)物理和化学、逻辑等等:都蛮简单的哦~然后我们再次用11路回到礼堂,和校长一起谈谈学校。

上海市2014年中考数学试题(含答案)

上海市2014年中考数学试题(含答案)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1B).(A) (B) (C) ;(D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(C).(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(C).(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是(A).(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是(A).(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(B).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=2a a+.8.函数11yx=-的定义域是1x≠.9.不等式组12,28xx->⎧⎨<⎩的解集是34x.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是1k.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是13.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是1(0y kx=-即可)(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=23a b-(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为-9.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为(用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分101382-+.=20.(本题满分10分)解方程:2121111x x x x +-=--+.0;1(x x ==舍)21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域); 1.2529.75y x =+(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.37.522.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;,sinB sinCAE B DCB CAE ∠=∠=∠∴==(2)如果CD BE 的值.5;cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1) 求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DACA CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF ADDF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A); (B); (C);(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B)60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( ).(A) y=x2-1;(B)y=x2+1;(C) y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C)∠4;(D)∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么=_______________(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.317.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1"得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x4.2 …8。

上海中学自招数学真题(含答案)

上海中学自招数学真题(含答案)

上海中学自主招生试题1、因式分解:326114x x x -++=.【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a ba b+=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b aba b ab+==-.由于0a b +>,0a b ->,所以a ba b+=-3、若210x x +-=,则3223x x ++=.【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b ca+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+, 代入()()()24b c a b c a -=--中得()24m n mn +=, ()20m n ∴-=,m n ∴=,即a b c a -=-,即2a b c =+,2b ca+∴=.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是 .【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=.6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ===.因此折痕长为454.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________. 【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形ABCDEF的相似比为1:3.因为ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________. 【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <, 此时函数1y 的对称轴404mx -=-<, 则对任意0x ≥总有10y >,只需考虑0x <; 若04m ≤<,此时20y ≤, 则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<;若0m <,此时20y >对0x <恒成立; 综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.【答案】133t -≤≤-.【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理. 12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-,133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤,()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=; 球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值; 问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩.【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.。

2014年上海市中考数学试题及答案(word版).doc

2014年上海市中考数学试题及答案(word版).doc

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1 B ).(A) ; (B) ; (C) (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(C ).(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( C ).(A) y =x 2-1; (B) y =x 2+1; (C) y =(x -1)2; (D) y =(x +1)2.4.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是( A ).(此题图可能有问题)(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是(A ).(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( B ).(A)△ABD 与△ABC 的周长相等;(B)△ABD 与△ABC 的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a (a +1)=2a a +.8.函数11y x =-的定义域是1x ≠. 9.不等式组12,28x x ->⎧⎨<⎩的解集是34x .10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是1k.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是13.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是1(0y kx=-即可)(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=23a b-(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为-9.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分)1382--+-.=20.(本题满分10分)解方程:2121111xx x x+-=--+.0;1(x x==舍)21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应(1)求y关于x的函数关系式(不需要写出函数的定义域); 1.2529.75y x=+(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.37.522.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE 分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;,sinB sinCAE5B DCB CAE∠=∠=∠∴==(2)如果CD ,求BE的值.5;cos4;25sin2tanCAE13CD ABBC B AC BCE ACBE BC CE=∴=∴====∴==∴=-=23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;,//DE//,,ABCD ADB DACA CDE ABDCDE ACAD CE ADECBD DCADCA∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BC DF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图。

2014上海中学自主招生数学试题(带答案)

2014上海中学自主招生数学试题(带答案)

(卷一) 2014年上海中学“创新素养培育项目”数学测试卷 一、填空题(8×9=72)1.已知111a b a b +=+,则b a a b +=___________.【变式】已知:114a b a b +=+,则b a a b +=___________. 【变式】已知:114a b a b -=+,则b a a b -=___________.【变式】已知:22114ab a b +=+,则22b a a b +=___________.1b =+=___________.2.有________个实数x.【变式】x 为1,2,3,……,2014x 有_______个. 【变式】x 为1,2,3,……,2014为有理数的x 有_______个. 【变式】有________个整数x.3.如图,在ABC ∆中,AB AC CD BF BD CE ===,,,用含A ∠的式子表示EDF ∠,应为EDF ∠=_____________.FEDCBA【变式】如图,在等腰直角ABC ∆中,90,A ∠=AB AC CD BF BD CE ===,,,则EDF ∠=_____________.FEDCBA【变式】如图,在等腰直角ABC ∆中,0901A AB AC ∠===,,DEF 、、分别是边BC CA AB 、、上的点,且CD BF BD CE ==,,则DEF S ∆面积最大值为__________.FEDCBA4.在在直角坐标系中,抛物线223(0)4y x mx m m =+->与x 轴交于A B 、两点,若A B 、两点到原点的距离分别为OA OB 、,且满足1123OB OA -=,则m =_________.5.定圆A 的半径为72,动圆B 的半径为r ,72r <且r 是一个整数,动圆B 保持内切于圆A 且沿着圆A 的圆周滚动一周,若动圆B 开始滚动时切点与结束时的切点是同一点,则r 共有______个可能的值.6.学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有________人.7.对于各数互不相等的正整数组()12n a a a ,,,(n 是不小于2的正整数),如果在i j <时有i ja a >,则称ia 与ja 是该数组的一个“逆序”,例如数组()2,3,1,4中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其逆序数为4,现若各数互不相同的正整数组()123456a a a a a a ,,,,,的逆序数为2,则()654321a a a a a a ,,,,,的逆序数为___________.8.若n 为正整数,则使得关于x 的不等式11102119n x n <<+有唯一整数解的n 的最大值为______.【变式】若n 为正整数,则使得关于x 的不等式11102119n x n <<+有唯一整数解的n 的最小值为______.二、选择题(4×10=40)9.已知212x ax +-能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数为( )A. 3个B. 4个C. 6个D. 8个10.如图,D E 、分别为ABC ∆的底边所在直线上的两点,DB EC =,过A 作直线l ,作//DM BA 交l 于M ,作//EN CA 交l 于N ,设ABM ∆面积为1S ,ACN ∆面积为2S ,则( )A. 12S S > B.12S S = C.12S S < D.1S 与2S 的大小与过点A 的直线位置有关11.设1212p p q q ,,,为实数,12122()p p q q =+,若方程,甲:2110x p x q ++=,乙:2220x p x q ++=,则 ( )A .甲必有实根,乙也必有实根 B. 甲没有实根,乙也没有实根 C .甲、乙至少有一个有实根 D. 甲、乙是否总有一个有实根不能确定12.设2222222212310071231007,13520133572015a b =++++=++++,则以下四个选项中最接近a b -的整数为( )A .252 B.504 C. 1007 D. 2013三、解答题(38分,13题18分,14题20分)13.直角三角形ABC 和直角三角形ADC 有公共斜边AC (B D 、位于AC 的两侧),M N 、分别是AC BD 、的中点,且M N 、不重合, (1)线段MN 与BD 是否垂直?证明你的结论.(2)若030BAC ∠=,045,4CAD AC ∠==,求MN 的长.N MD CB A14.是否存在m个不全相等的正数12(7) ma a a m,,,,使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m值,若不存在,说明理由.。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A)(C);(D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6。

08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1;(C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题)(A) ∠2;(B) ∠3; (C)∠4;(D) ∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年上海中学“创新素养培育项目”数学测试卷
一、填空题(8×9=72)
1.已知111a b a b +=+,则
b a a b +=___________. 【变式】已知:114a b a b +=+,则b a a b +=___________. 【变式】已知:114a b a b -=+,则b a a b -=
___________.
【变式】已知:22114a b a b +=+,则2
2b a a b +=___________.
1b =
b =___________.
2.有________个实数x
.
【变式】x 为1,2,3,……,2014
x 有_______个.
【变式】x 为1,2,3,……,2014
为有理数的x 有_______个.
【变式】有________个整数x
.
3.如图,在ABC ∆中,AB AC CD BF BD CE ===,,,用含A ∠的式子表示EDF ∠,应为EDF ∠=_____________.
F
E
D
C
B
A
【变式】如图,在等腰直角ABC ∆中,
90,A ∠=AB AC CD BF BD CE ===,,,则 EDF ∠=_____________.
F
E
D
C
B
A
【变式】如图,在等腰直角ABC ∆中,0
901
A A
B A
C ∠===,,
D
E
F 、、分别是边BC CA AB 、、上的点,且CD BF BD CE ==,,则DEF S ∆面积最大值为__________.
F
E
D
C
B
A
4.在在直角坐标系中,抛物线223
(0)
4y x mx m m =+->与x 轴交于A B 、两点,若A B 、两点到原点的距离分别为OA OB 、,且满足1123OB OA -=
,则m =_________.
5.定圆A 的半径为72,动圆B 的半径为r ,72r <且r 是一个整数,动圆B 保持内切于圆A 且沿着圆A 的圆周滚动一周,若动圆B 开始滚动时切点与结束时的切点是同一点,则r 共有______个可能的值.
6.学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有________人.
7.对于各数互不相等的正整数组()12n a a a ,,,(n 是不小于2的正整数),如果在i j <时有
i j a a >,则称i a 与j a 是该数组的一个“逆序”,例如数组
()2,3,1,4中有逆序“2,1”,“4,3”,“4,1”,
“3,1”,其逆序数为4,现若各数互不相同的正整数组()1
23456a a a a a a ,,,,,的逆序数为2,

()654321a a a a a a ,,,,,的逆序数为___________.
8.若n 为正整数,则使得关于x 的不等式11102119n x n <<
+有唯一整数解的n 的最大值为______.
【变式】若n 为正整数,则使得关于x 的不等式11102119n x n <<
+有唯一整数解的n 的最小值为
______.
二、选择题(4×10=40)
9.已知2
12x ax +-能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数为( )
A. 3个
B. 4个
C. 6个
D. 8个
10.如图,D E 、分别为ABC ∆的底边所在直线上的两点,DB EC =,过A 作直线l ,作
//DM BA 交l 于M ,作//EN CA 交l 于N ,设ABM ∆面积为1S ,ACN ∆面积为2S ,则
( )
A. 12S S >
B. 12S S =
C. 12S S <
D. 1S 与2S 的大小与过点A 的直线位置有关
11.设1212p p q q ,,,为实数,12122()p p q q =+,若方程,甲:2
110x p x q ++=, 乙:
2220x p x q ++=,则 ( ) A .甲必有实根,乙也必有实根 B. 甲没有实根,乙也没有实根
C .甲、乙至少有一个有实根 D. 甲、乙是否总有一个有实根不能确定
12.设
22222222
12310071231007,1352013357
2015a b =+++
+=++++
,则以下四个选项中最接
近a b -的整数为( )
A .252 B.504 C. 1007 D. 2013
三、解答题(38分,13题18分,14题20分)
13.直角三角形ABC 和直角三角形ADC 有公共斜边AC (B D 、位于AC 的两侧),M N 、分别是AC BD 、的中点,且M N 、不重合, (1)线段MN 与BD 是否垂直?证明你的结论.
(2)若0
30BAC ∠=,
045,4CAD AC ∠==,求MN 的长. N
M
D
C
B
A
14.是否存在m 个不全相等的正数12(7)
m a a a m ≥,,,,使得它们能全部被摆放在一个圆周
上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m 值,若不存在,说明理由.
答案:1. ()2
1
,1,a b a b ab a b ab ++=⇒=+
()()2
2
2222121
a b ab a b b a a b a b ab ab ab +-+++===-=-=-.
事实上,这道题是一道错题:()2
1,1,a b a b ab a b ab ++=⇒=+注意了,()24a b ab +≥,已知条
件就错了,同样结果也错了,2
b a b a a b a b +=+≥=.
2.11,
3.EDF ∠=90°12A
-∠.
4.2,
5.11,
6.44,
7.13.
8. 220, 9.C
10.B , 11 C.12.B.13.(1)MN BD ⊥
(2).
14.【解析】设
1234567811,,,
y x
a x a y a a a a a x a y x x y y =======
=,,,,,,显然是
一个周期为6的数列,
(1) 当0(mod6)m ≡,121100
1m
m m x x y x a a a y y a a a x x x y
y y -⎧
=⋅>⎧⎪=⋅⎧⎪⎪⇒⇒>⎨⎨⎨=⋅⎩⎪⎪=⋅≠⎩⎪⎩;
(2) 当1(mod6)m ≡,12111m m m x y x
a a a x y x x x a a a y -=⋅⎧=⋅⎧⎪
⇒⇒==⎨
⎨=⋅=⋅⎩⎪⎩与不全相等矛盾;
(3) 当2(mod6)m ≡,12111m m m a a a x y y x y a a a y x x -=⋅=⋅⎧⎧⇒⇒==⎨
⎨=⋅=⋅⎩⎩与不全相等矛盾;
(4) 当3(mod6)m ≡,12111m m m y x y a a a x x y a a a y x y
x -⎧
=⋅⎪=⋅⎧⎪⇒⇒==⎨
⎨=⋅⎩⎪=⋅⎪⎩与不全相等矛盾; (5) 当4(mod6)m ≡,1211111m m m x y a a a x x y a a a y x x x -⎧=⋅⎪=⋅⎧⎪⇒⇒==⎨⎨
=⋅⎩⎪=⋅
⎪⎩与不全相等矛盾;
(6) 当
5(mod6)
m≡,
12
11
1
1
11
m
m m
x y
a a a y
x y
a a a
x
y x
-

=⋅

=⋅
⎧⎪
⇒⇒==
⎨⎨
=⋅
⎩⎪=⋅
⎪⎩
与不全相等矛盾;
综上所述,当
0(mod6)
m≡,7
m>时,存在m个不全相等的正数12(7)
m
a a a m ≥
,,,

使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积.。

相关文档
最新文档