中考数学的解题思路和技巧
数学中考答题技巧(集锦13篇)
数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。
首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是“先高后低”。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。
中考数学复习技巧掌握解题思路的四个步骤
中考数学复习技巧掌握解题思路的四个步骤数学作为一门重要的学科,对于中考来说是必考的科目之一。
想要在考试中取得好成绩,不仅需要熟悉各种数学知识点,还需要掌握解题思路。
本文将介绍中考数学复习技巧,帮助同学们掌握解题的四个步骤。
第一步:理解题意,分析问题在解题之前,首先要仔细阅读题目,充分理解题目的要求。
在理解题意的基础上,我们要学会分析问题。
具体来说,可以采用以下方法:1. 用自己的话复述题目:通过自己的语言描述题目,可以更好地理解题目的意思,避免出现理解偏差。
2. 提取关键信息:在题目中找出与解题有关的关键信息,例如已知条件、要求等。
将这些关键信息提取出来,可以为后续解题提供指导。
3. 拆解分析:对于较长或复杂的问题,可以将问题拆解成几个较小的部分,分别分析,然后集中思路进行综合。
通过以上步骤,我们可以更清晰地把握问题,为解题提供方向和思路。
第二步:寻找解题方法和策略在理解问题的基础上,我们需要针对具体问题寻找解题方法和策略。
不同类型的数学题目可能有不同的解题思路,因此需要根据题目的特点选择合适的方法。
以下是一些常见的解题方法和策略:1. 运用公式和定理:数学中有很多公式和定理,例如勾股定理、平均值不等式等,我们需要在解题中灵活运用这些工具。
2. 归纳法和递推法:对于一些数列、图形等问题,可以通过归纳法和递推法找出规律,从而解决问题。
3. 分析比较法:有时需要通过比较不同对象的特点来解决问题,例如比较两个数的大小、比较两个图形的面积等。
在选择解题方法和策略时,需要结合具体题目的要求和限制条件,找出适合的方法来解决问题。
第三步:进行具体计算和推导在确定解题方法和策略后,我们需要进行具体计算和推导。
具体计算步骤的要求可以根据题目的具体要求进行调整。
有些题目需要进行多步计算和推导,而有些题目则可以直接得出结果。
在进行计算和推导的过程中,需要注意计算的准确性和逻辑的清晰性。
要准确运用所学的数学知识,注意运算的顺序和精确度。
中考数学备考6种方法复习
中考数学备考6种方法复习中考数学备考6种方法复习一、过滤题目法一张数学练习卷共50道题,学霸首先会浏览整个卷面,过滤掉自己非常熟悉的题目,留下自己不熟悉的题目重点攻克,并且反复练习类似题型,让这类题烂熟于心。
这就是那些经常不写作业,喜欢抄作业的同学,每次考试却拿高分的真正原因。
二、提升效率法如果一道数学题你花了10分钟还没法解决,请直接看答案或请教老师。
再之后花更多的时间来归纳总结,反复练习此类题目,做到融会贯通。
归纳总结才是真正的目的,而不是用一节课的时间自己去做一道不会的题目,浪费时间和精力。
三、高水平重复法如果遇见一道不熟悉的题目,你需要做好几遍甚至更多遍,攻克陌生题,把它们转化为简单题。
久而久之,高水平的重复会让你逐渐地把所有知识点都掌握于心。
四、归纳总结法归纳总结对学数学来说太重要了。
学霸们做一道比较难的数学题10分钟,然后会拿出20分钟来进行归纳总结,书写解题笔记。
这么做无形提高了对解题关键的敏感度,见到此类题目,能迅速做出条件反射,找到解题突破口,这就是高手的必修课,解题联想。
五、会必做对法很多学生在做数学题的时候,容易因粗心大意等原因把分丢在会做的题目上。
考试的时候,一定要练习稳的能力,就是说会做的题,坚决不能丢分,这才是考高分的基础和关键。
六、进入中考模式法各种模拟考试,很难找到中考的感觉。
所以,中考之前一定要做真题,要找到身临其境参加中考的感觉,做多了真题,中考的时候你就没有了那种好奇感,心态平静才能更好地发挥。
中考数学备考策略●回归课本,夯实基础数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。
回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。
要提高复习效率,必须使自己的思维与老师的思维同步。
而认真完成作业则是达到这一目的的重要途径。
没有认真完成作业就听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而认真完成作业之后,再听老师讲课,就会把重点放在自己还未掌握的内容上,提高学习效率。
九年级数学难题解题思路和方法
九年级数学难题解题思路和方法1.九年级数学难题解题思路和方法篇一1.规划好答题时间在考试的时候要分配好不同题型的答题时间,对于比较难的题目可以分配更多的时间,但是也不能完全把时间花在思考难题上,要在确保简单的题都能够做正确的情况下才去把时间用在难题上。
2.先易后难进行答题先解容易的题再做难题是任何考试都可以采取的方法之一,对于初三数学考试更是如此。
对于暂时不会的题目要迅速跳过,可以先把简单的题做完之后,再回过头来解答这些难题。
不能将时间耽误在很难的题目上,尤其是最开始答题的时候,遇到难题要及时跳过。
3.认真仔细审题在考试的时候最容易出现的问题不是不知道怎么答题,而是没有看清楚题目就开始答题,这是考试丢分的主要原因。
因此,在作答的时候一定要仔细认真审题,不能不看清楚题目就开始答题。
4.拿满该得的分数拿满该得的分数是考试成功的关键之一,首先要保证基础题拿满分,把这些分数先拿到。
其次是力争中档题不丢分,在有限的时间里做好基础题,然后把中档题也完成,争取争取不丢分。
最后是争取附加题能得分,附加题是最难的部分,在做完其他题目的时候,争取在附加题是得到分数。
5.做完题后仔细检查养成做完题后再仔细检查是参加任意考试必不可少的重要环节。
做初三数学题也是如此,如果有时间的话还可以把答题内容现在草稿纸上写出来,检查完毕之后再填写到试卷上。
2.九年级数学难题解题思路和方法篇二1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
3、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
中考数学应用题解题思路
中考数学应用题解题思路中考数学中的应用题是对数学知识在实际问题中的应用和运用。
解题思路包含理解问题、寻找关键信息、建立数学模型、运用数学知识解题、检查解答的过程。
下面将详细介绍解题的具体步骤和方法。
一、理解问题理解问题是解题的第一步,需要仔细阅读题目,确保对问题要求的理解准确。
关注问题中涉及的各种条件、要求和约束,并提取出关键信息。
二、寻找关键信息在问题中找出关键信息是解题的关键。
关键信息通常是问题中的数值、数据、条件等与问题结果相关的内容。
通过找出关键信息,可以搭建起解题的框架。
三、建立数学模型建立数学模型是解题的关键环节。
通过分析问题的特点,把实际问题转化为数学模型。
数学模型是抽象的数学描述,能够捕捉问题的本质和关键特征。
四、运用数学知识解题在建立数学模型的基础上,运用具体的数学知识进行计算和推理,解答问题。
根据问题的性质和要求,可以使用各种数学方法、公式、定理等进行解题。
五、检查解答解答问题后,需要对答案进行检查,确保解答的准确性和合理性。
可以通过反向推算、逻辑推理、验算等方法对解答进行验证,排除错误和漏洞。
六、案例分析下面通过几个具体的中考数学应用题案例,来演示解题的思路和方法。
案例一:甲乙丙三人合作建房,甲一天能干2/5的工程量,乙能干3/5的工程量,丙能干全工程的1/4,问他们三人共用多长时间能完成这个工程?解题思路:1. 问题分析:甲、乙、丙三人合作建房,需要求出他们共用的时间。
2. 关键信息:甲一天能干2/5的工程量,乙能干3/5的工程量,丙能干全工程的1/4。
3. 建立数学模型:假设整个工程量为1,那么甲的一天工程量为2/5,乙的一天工程量为3/5,丙的一天工程量为1/4。
设甲、乙、丙共用的时间为t天,则有:2/5t + 3/5t + 1/4t = 1。
4. 求解方程:将方程2/5t + 3/5t + 1/4t = 1进行化简,得到15/20t +12/20t + 5/20t = 1,即32/20t = 1。
中考数学答题技巧通用13篇
中考数学答题技巧通用13篇数学中考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”,踩上知识点就得分,踩得多就多得分。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。
这一点。
对于解答题尤为重要。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在其中一过渡环节上是常见的。
这时,我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实步之后,继续有……”一直做到底。
也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。
若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。
如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。
总之,退到一个你能够解决的问题。
为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。
这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。
实质性的步骤未找到之前,找辅助性的步骤是明智之举。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。
答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。
中考数学做题技巧及方法3篇
中考数学做题技巧及方法3篇有些同学天天趴在那里做题,但解出的题量多,花的时间却很多。
这到底是什么原因呢?其中的原因之一,就是解题速度太慢。
下面是小编给大家带来的中考数学做题技巧及方法,欢迎大家阅读参考,我们一起来看看吧!中考数学备考:中考数学做题技巧及方法中考数学做题技巧一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。
有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。
这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
三、熟悉基本的解题步骤和解题方法。
解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
否则,走了弯路就多花了时间。
四、认真做好归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
五、先易后难,逐步增加习题的难度。
中考数学解题方法及技巧最新5篇
中考数学解题方法及技巧最新5篇中考数学常见解题技巧方法总结篇一1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。
2.数学家存在的主要理由就是解决问题。
因此,数学的真正的组成部分是问题和解答。
“问题是数学的心脏”。
3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。
问题就是矛盾。
对于学生而言,问题有三个特征:(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。
(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。
4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。
5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:(1)问题解决是心理活动。
面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。
(2)问题解决是一个探究过程。
把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。
这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。
(3)问题解决是一个学习目的。
“学习数学的主要目的在于问题解决”。
因而,学习怎样解决问题就成为学习数学的根本原因。
此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。
(4)问题解决是一种生存能力。
重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。
6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。
中考数学22题解题技巧
中考数学22题解题技巧中考数学22题解题技巧技巧一:先分解再运算•题目给出的数学问题通常可以通过分解成多个小问题来解决。
•注意题目中的关键词,根据这些关键词进行分解并找出解题思路。
技巧二:利用等式性质•等式可以通过交换、加减乘除等运算进行变形。
•利用等式性质进行变形可以简化计算过程,得出更简洁的结果。
技巧三:巧用代入法•对于一些复杂的公式或方程,可以考虑先代入一些特殊值,进而得出结论。
•特殊值可以是0、1、-1等,根据题目要求灵活选择。
技巧四:注意小数和分数的运算•小数和分数的运算需要注意保留有效数字和化简的要求。
•需要注意使用适当的近似值或要求精确到多少位。
技巧五:找到规律或数学模型•有些问题可以通过找到规律或建立数学模型来求解。
•规律可能是数列、等差数列或者等比数列等,需要根据题目自行判断。
技巧六:审题认真,多思考•题目中包含的信息可能与其他题目有相似之处,需要认真审题并将各个问题联系起来思考。
•不要在想当然的情况下得出结论,要多思考,不要放过任何可能求解问题的线索。
技巧七:多练习,多总结•只有在不断的实践中才能提高解题能力。
•遇到难题不要放弃,多总结解题经验,形成自己独特的解题方法。
以上是中考数学解题的一些技巧和方法,希望对大家的数学考试备考有所帮助!技巧八:注意符号的运用•在解题过程中,要注意符号的运用和理解,尤其是正负号的计算。
•特别留意负数的运算,可以通过化简方式避免或简化计算过程。
技巧九:利用图形和图表•题目中可能包含图形和图表,可以通过观察图形和图表来得出结论。
•注意读取和理解图形和图表上的数据。
技巧十:灵活运用整数性质•整数的性质可以帮助我们解决一些复杂的问题。
•利用整数的性质进行变换、约分等运算,简化计算过程。
技巧十一:查漏补缺•在解题过程中,要注意查漏补缺,确保计算过程中没有遗漏或错误的步骤。
•对于复杂的题目,可以借助计算器或其他工具来验证答案的正确性。
技巧十二:注重语言表达•在写解题过程时,注重语言表达的准确性和清晰度。
中考数学注意事项及答题技巧
中考数学注意事项及答题技巧一、考试时要达到最大限度得分的目的。
①试卷发下后,不要急于做题,应先按要求在指定位置填写准考证号、姓名、学校等,然后仔细阅读考试说明及注意事项,接着浏览一下试卷的页码、题数和题型和答题卡,避免试卷缺页缺题,答题卡不规范不完整等,做到心中有“卷”。
②遇到不会做的题,就先跳过去,通过先做会做的题,稳定情绪,建立信心。
如果复习得比较好,那些一时不会做的题实际是会做的,一定能答上。
即使回头发现真的不会做,也要把能想到的都答到卷子上。
一定要做到,会的题都得分。
③不要把答案写在答题卡方框外。
④理化生综合卷题量较大,许多学生心慌是因为不知道自己能否做完,所以做题时不认真思考,怕耽误了时间做不了后面的题,于是没看清题就匆忙作答,结果造成能得分的题没得到分,所以一定不要毛躁,要静下心来,先求准,再求快。
⑤切不可为省时间对一看就会的题草草作答,这样容易使会做的题丢分,不会做的题也得不到分。
二、要认真审题它是快速,准确解答试题的重要环节。
仔细研读题目,把题目中的关键字眼做记号。
审题时要统观全局,看完整个题,找全已知条件再答。
有时问题里也隐含已知条件,不要漏审。
审题时咬文嚼字、弄清楚语意,不要错审,如问“能源”,却答成“资源”;“防锈方法”答成“除锈方法”。
关键字往往是解题的切入口,它可以在题干中,也可以在问题中。
关键字多与化学学科有关,也有看似与化学无关的。
选择题目中的关键词有:物质(包括化学式等),数据(包括等质量),化学反应方程式,微粒符号(包括示意图),及要求选择的选项是正确的是,不正确的是,错误的是……,而选项中注意的关键词有:足量的xx、过量的xx,适量的xx,或一定是、不一定是……等。
填空题中的关键词有:足量的、过量的,适量的,充分反应(不等于恰好完全反应),恰好完全反应;而答题要求中的关键词有:填写物质化学式,物质名称(使溶液一定要写溶液名称),溶质化学式,溶质名称,元素符号,元素名称,序号,及阴、阳离子符号、从小到大、从大到小等。
中考数学解决实际问题技巧
中考数学解决实际问题技巧数学作为一门学科,既具有抽象性又具有实用性。
在中考数学中,解决实际问题是一个重要的考察点。
解决实际问题不仅要依靠我们的数学知识,还需要一定的技巧。
本文将为大家介绍一些中考数学解决实际问题的技巧。
技巧一:理清问题思路解决实际问题首先需要理清问题的思路。
我们可以从以下几个方面入手:1.明确问题的要求:仔细阅读问题,理解问题所要求解决的具体内容,明确我们需要得到什么样的答案。
2.找到问题的关键信息:问题中会给出大量的条件和信息,我们需要辨别出哪些是重要的,哪些是无关的,并将这些重要的信息进行梳理和整理。
3.建立数学模型:根据问题的要求和给出的信息,可以尝试建立数学模型,将实际问题转化为数学问题,从而更好地进行求解。
技巧二:画图辅助解题画图在解决实际问题中起到了非常重要的作用,它可以帮助我们更好地理解问题,并找出解题的思路和方法。
具体来说,画图有以下几点好处:1.形象直观:通过画图,我们可以将问题中的信息直观地展示出来,更好地理解问题的含义。
2.发现规律:画图可以帮助我们观察问题中的规律和特点,从而找到解决问题的突破口。
3.辅助计算:在一些几何问题中,画图可以帮助我们推导出一些关键的等式或者几何关系,从而更方便地进行计算。
技巧三:灵活运用知识点解决实际问题的过程中,我们需要将所学的数学知识灵活运用。
具体来说,我们应该注意以下几点:1.结合多个知识点:实际问题往往是多个数学知识点的综合运用,我们需要将这些知识点结合起来,形成一个整体的解题思路。
2.运用实际概念:数学知识是抽象的,但在解决实际问题中,我们可以将概念转化为实际意义,更好地理解问题,并运用到解题中。
3.举一反三:在解决实际问题的过程中,我们要善于举一反三,将所学知识扩展到其他类似的问题中,提高解题的能力。
技巧四:反复思考与检验解决实际问题,并不是一蹴而就的过程。
在解题的过程中,我们需要不断地反复思考问题,并对解答过程进行检验。
中考数学最后三道大题解题技巧
中考数学最后三道大题解题技巧中考数学最后三道大题解题技巧1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
初三数学复习攻略答题技巧与解题思路
初三数学复习攻略答题技巧与解题思路初三数学复习攻略——答题技巧与解题思路一、写在前面初三数学复习是为了备战中考,为了顺利完成数学试卷中的各种题型,我们需要掌握一些答题技巧并培养解题思路。
本文将为大家介绍几种常见题型的解题技巧,并提供一些建议来帮助大家在初三数学考试中取得更好的成绩。
二、选择题选择题是初三数学试卷中的常见题型,正确率往往是决定最终得分的重要因素。
下面是几种常见的选择题解题技巧:1. 仔细审题:通读题目,理解问题的意思。
注意关键词和条件限制,避免因为粗心而出错。
2. 排除法:先排除明显错误的选项,缩小范围后再仔细比较。
常见的排除方法有比较法、代入法等。
3. 过滤法:根据各选项的特点和条件,筛选出符合题意的选项。
常见的过滤方法有奇偶性判断、单位换算等。
三、填空题填空题要求我们根据条件填写适当的数值或运算符号,下面是几种常见的填空题解题技巧:1. 利用已知条件:仔细阅读题目,寻找已知条件,并根据条件进行推导和计算,找到合适的答案。
2. 变量代换:将未知数用字母表示,建立方程,通过解方程求解出未知数的数值。
3. 利用特殊性质:填空题中经常涉及到数的性质和规律,我们可以利用这些性质和规律来求解。
比如利用等差数列或等比数列的性质。
四、解答题解答题是初三数学试卷中的较为复杂的题型,需要综合运用所学的知识和解题技巧。
下面是几种常见的解答题解题思路:1. 分析问题:仔细阅读题目,理解问题的要求。
结合已知条件,分析问题的性质和特点,并采取相应的解题思路。
2. 建立模型:将问题抽象为数学模型,利用已知条件和题目要求建立等式或方程,进行求解。
常见的模型有几何模型、代数模型等。
3. 逻辑推理:通过观察和逻辑推理寻找问题的规律和解题思路。
例如利用归纳法、演绎法等进行推理,帮助我们找到解题的方法和步骤。
五、巩固练习在提高数学解题能力的过程中,巩固练习是非常重要的。
通过大量的练习,我们可以更好地掌握解题技巧和思路,提高解题能力。
中考数学超常发挥的八个技巧
中考数学超常发挥的八个技巧保定十三中数学组李永强同学们现在要经历各式各样、大大小小的考试,中考可以说是你们人生的一个转折点,充分利用好各种条件,正确把握住有利时机,天时、地利、人和,对你们来说,至关重要。
那么同学们在中考考场上应该如何应对呢?一、先调整再做题考试刚开始时,由于在陌生的环境,加上心理负担重、怕失误等各种因素影响,心情一般较紧张,考试动笔前做做深呼吸,稳定情绪。
感到有很强的答题欲望,同时头脑又很清晰时,再开始动笔。
考试时最大的禁忌就是状态没调好就动笔答题。
二、巧用考前10分钟充分利用考前十分钟,通览全卷,把握全局。
中考中规定:“提前十分钟发卷,让考生填写准考证号、座位号、姓名、填涂答题卡等,但不能作答。
”考生可利用这段时间,将试卷浏览一遍,把握试卷全局,大致了解题量、题型及分值的分布,了解试题的难易度,对试题进行难易排序,只有做到心中有数,才能举措对路。
巧用这10分钟,能为答卷开个好头。
三、跳跃答题,由易到难中考就像一场体育比赛,在比赛时要想有一个良好的状态,先应做一些准备活动,这一过程称之为“热身”。
中考试卷都是由简单到复杂的顺序安排题目的,一开始的题目并不难。
如2012中考第一题是“3(1)等于()”,做开始的简单题目就是一个“热身”过程,进入状态以后,对于难做的题你才会有灵感;反之,如果一开始就做最后一道题,而最后一道题是所谓的“压轴题”,难度比较大,一但做不出来或被卡住了,你将失去解答其他题的信心和勇气,这种答题方式是不可取的。
四、题目做不出,回顾平时训练对每个考生而言,中考答卷都难一帆风顺。
中考试题会设置一定的“爬坡题”,这类题难以一眼看出结果或解题方法。
中考遇到这类题时,先是回顾平时训练的同类题,看平时训练所用的解题方法能否能用,老师平时训练难以猜中爬坡题原题,但同类型题目不少,解题思路和技巧有共通之处。
中考遇到难题,千万不能慌张,不妨回忆平时训练,会有所启发。
五、做数学难题要会杀“回马枪”遇到难以解决的问题时,你可以先跳过难题,做其他题或检查。
中考数学备考技巧
中考数学备考技巧中考数学备考技巧(10篇)中考数学备考技巧1【一、概念理解】老师们发现,新初一出现的最严重的问题之一,是概念理解。
很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
那么概念理解出问题该如何加强呢?首先,要帮助孩子建立起重视概念理解的意识。
因为很多问题的产生,都是理解不到位引起的。
其次,注意孩子理解的情况,是与哪一种他以前学习的概念或者相似概念混淆的,比如把乘法和乘方弄混,要仔细讲解这二者从形式上到计算结构上的差别。
帮助孩子建立,看到什么形式要用什么样处理方法的“条件反射”。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
再者,因为这个时候孩子还不能很好地自己做总结,所以我们要帮着孩子总结课本上的重要概念,及概念运用的经典案例,发现错误及时纠正,引导孩子及时复习,直到最终在脑海中建立正确的概念。
因为刚上初中,新的概念还不多,所以一开始家长能盯得紧一点,孩子进入正轨之后,就能够比较好了。
【二、习惯】老师们发现,新初一出现的最严重的问题之一,是概念理解。
很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。
中考数学秒杀技巧
中考数学秒杀技巧是指在中考数学考试中迅速解答问题的技巧。
以下是一些常见的中考数学秒杀技巧:
1. 熟悉重要知识点:重点掌握重要的数学知识点,例如:数与式、方程与不等式、平面几何与立体几何等。
2. 掌握运算技巧:熟练掌握加减乘除运算,同时掌握较快的心算技巧,例如:乘法口诀、快速计算百分数等。
3. 答题顺序:根据个人的实际情况,选择适合自己的答题顺序。
一般来说,可以先做自己擅长的题目,快速得分,然后再解答较难的题目。
4. 省略计算:在解题过程中,尽量省略冗长的计算步骤,只计算必要的步骤,以节省解题时间。
5. 及时放弃:如果遇到一道题无法解答或者花费了过多的时间,可以放弃这道题,转移到下一道题目上。
不要浪费过多时间在一道题上。
6. 制定解题计划:在考试前,制定一个解题计划,合理安排时间,尽量完成所有的题目,确保得到更多的分数。
7. 复习做题:考前,多进行模拟题,了解考试题型和难度,熟悉解题步骤和思路,提高解题速度和准确性。
8. 题目分析:在做题时,要仔细阅读题目,理解题目要求,分析解题思路,避免因为没看清题而导致错误。
9. 小技巧应用:掌握一些常见的解题技巧,例如:巧用图形画图、巧用求最小值最大值的方法等,能够快速解答相关题目。
10. 专心与细心:在考试过程中,保持注意力集中,避免粗心大意导致错误,尽量避免漏写、误写等情况。
这些技巧只是帮助你在中考数学考试中快速答题的方法,但更重要的是平时的学习和巩固基础知识。
如果能够在考试前进行系统的复习和练习,更能提高解题速度和准确性。
试析中考数学压轴题中的数学思想及解题思路
试析中考数学压轴题中的数学思想及解题思路
中考数学压轴题是考试中最难的一道题,其难度和复杂程度相对于其他题目较高,需要考生具备一定的数学思想和解题思路才能够解答出来。
以下是对中考数学压轴题的数学思想及解题思路进行分析。
数学思想:
1. 数形结合的思想
数形结合是一种数学思想,指的是通过几何图形来解决数学问题。
在数学压轴题中,考生需要通过画图、构建模型等方式将问题转化成几何图形问题,然后再求解。
2. 数量关系的思想
数量关系是指数学中各种量之间的联系和变化规律。
在数学压轴题中,考生需要通过建立各种量之间的关系,从而解决问题。
3. 分析与综合的思想
分析与综合是人类思维的特点之一,指的是将一个整体拆分成几个部分,对每个部分进行分析,最后将各个部分综合起来,形成一个完整的结论。
在数学压轴题中,考生需要通过分析和综合,找到问题的本质和解决办法。
解题思路:
1. 理清题意
数学压轴题往往涉及多个概念和知识点,考生需要认真读题,理清题意,把握问题的核心和难点,避免在解题过程中出现误解。
2. 分析数据
在理清题意之后,考生需要分析数据,找到其中的规律和特点,将数据转化为数学模型或形式化表示,并用数学方法进行计算和分析。
4. 检查答案
最后,考生需要对答案进行检查,确保计算的准确性和解决方案的可行性。
在此过程中,考生需要回顾一遍题意,确认自己的计算步骤和结果是否符合题目要求。
综上所述,中考数学压轴题需要考生具备数形结合、数量关系、分析与综合等数学思想,并遵循理清题意、分析数据、综合分析、检查答案的解题思路,才能够完成高难度的数学问题。
中考数学24题解题技巧
中考数学24题解题技巧
以下是 6 条关于中考数学 24 题解题技巧:
1. 嘿,你知道吗,仔细审题那可是关键啊!就像在黑暗中找到那盏明灯一样。
比如那道让很多人头疼的几何题,你得瞪大眼睛把题目里的每个条件都挖出来呀!别放过任何一个小细节,不然就像在大海里没了方向的小船啦!
2. 哎呀呀,合理运用公式定理那绝对不能忘!这就好比有了一把万能钥匙。
像算那道复杂的函数题时,突然想起某个公式,一下子不就豁然开朗啦!
3. 喂喂喂,思路要清晰呀!别像无头苍蝇一样乱撞。
比如说遇到一个证明题,你就得有条理地分析,一步一步来,别一下子跳到十万八千里之外去,那样能做对才怪呢!
4. 嘿,别忘了多尝试几种方法呀!别在一棵树上吊死。
拿那道要找规律的题来说,你可以试着用列举法呀,画图法呀,说不定哪种方法就突然把答案给你蹦出来啦!
5. 哇塞,检查也很重要好不好!就像给自己的成果再上一道保险。
你做完题后,回头看看,说不定就会发现之前犯下的小错误呢,难道要因为粗心丢分吗,那多可惜呀!
6. 哈哈,保持冷静的心态最重要啦!遇到难题别着急上火。
就好像在爬山时遇到陡峭的地方,不能慌呀,静下心来慢慢想,总会找到路的,你说是不?
我觉得呀,掌握这些解题技巧,中考数学 24 题就没那么可怕啦,反而会变得有趣起来呢!。
中考数学解难地的题目技巧
中考数学解难题技巧:调理大脑思绪提前进入数学情境中考复习是每个准中考生必经的阶段,那么如何在备考复习阶段更好的把每个学科都复习到位呢?下面介绍一下数学不怕被难倒的解题方法(一)。
方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
中考数学解难题技巧:集中注意消除焦虑怯场中考复习是每个准中考生必经的阶段,那么如何在备考复习阶段更好的把每个学科都复习到位呢?下面介绍一下数学不怕被难倒的解题方法(二)。
方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
中考数学解难题技巧:沉着应战确保旗开得胜中考复习是每个准中考生必经的阶段,那么如何在备考复习阶段更好的把每个学科都复习到位呢?下面介绍一下数学不怕被难倒的解题方法(一)。
方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
中考数学解难题技巧:“六先六后”因人因卷制宜中考复习是每个准中考生必经的阶段,那么如何在备考复习阶段更好的把每个学科都复习到位呢?下面介绍一下数学不怕被难倒的解题方法(四)。
试析中考数学压轴题中的数学思想及解题思路
试析中考数学压轴题中的数学思想及解题思路中考数学压轴题,是指在中考数学试卷中,较为难度较大、考查学生数学思想和解题能力的题目。
通常这些题目不仅要求学生熟练掌握基本的数学知识和技巧,更重要的是要求学生具备较高的数学思维能力和解题能力。
下面将试析中考数学压轴题中的数学思想及解题思路。
一、数学思想1. 抽象思维中考数学压轴题往往涉及到抽象的数学概念和思维,需要学生具备较强的抽象思维能力。
比如在代数与方程题型中,学生需要将具体的问题抽象成代数表达式或方程式,然后通过对数学概念的把握和理解,得出结论或解决问题。
这就要求学生能够灵活运用代数符号和运算规则,进行变量代换和整理化简,从而找到问题的解决方法。
2. 推理与证明中考数学压轴题中,常常出现需要学生进行推理和证明的题目。
这类题目往往需要学生对数学定理或性质有深入的理解,然后运用逻辑推理进行证明。
这就要求学生在解题过程中,要清晰地把握定理的前提条件和结论,进行逻辑推理,找出合适的思路和方法,合理地推演出证明过程,得出结论。
3. 综合思维中考数学压轴题通常是综合性较强的题目,需要学生将所学的数学知识和技巧进行整合和应用。
这就要求学生能够在解题过程中,将数学概念、方法和技巧进行有效地组合和运用,找出解决问题的最佳路径。
这就需要学生具备较强的综合思维能力,能够跨学科、跨知识领域进行思考和解决问题。
二、解题思路1. 深入理解题目在面对中考数学压轴题时,首先要深入理解题目所描述的情境和问题,明确题目所要求解决的核心内容。
这就要求学生要具备较强的数学直觉和分析能力,能够迅速抓住问题的关键点,确定解题的思路和方法。
2. 运用数学知识和技巧在确立解题思路后,就需要学生灵活运用所学的数学知识和技巧,对题目进行分析和处理。
比如在几何题型中,需要学生结合几何图形的特点和性质,应用几何定理和公式,求解几何问题;在代数与方程题型中,需要学生根据问题的描述,建立代数模型,列出方程式,然后运用解方程的方法,得出问题的解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在中考数学解题的时候,经常会碰到一些困难的题目,而往往很多考生在这些难题中浪费了大量的时间,导致中考分数低。
所以,我们在中考的时候,就需要掌握一些中考的解题技巧,来解决这些事情。
中考的解题技巧还是很多的,下面我们就来看看其中一些比较重要的。
首先,审题时注意力要集中,思维应直接指向试题,力争做到眼到、心到、手到。
审题时,应弄清已知条件、所求结论,同时在短时间内汇集有关概念、公式、定理,用综合法、或分析法、或两头凑的方法,探索解题途径。
特别注意已知条件所设的陷阱,仔细审题,认真分析是否该分类讨论,以免丢解。
其次,在答题顺序上,应逐题进行解答,由易到难。
要正确迅速地完成选择题和填空题,有效利用时间,为顺利完成中档题和压轴题奠定基础。
在逐题进行解答时,遇到一时解不出的题应先放下(别忘了做记号,以免落题),把会解的题目都做完后,再回来把留下的疑难逐一解决。
第三,遇到平时没见过的题目,不要慌,稳定好情绪。
题目貌似异常,其实都出自原本。
要冷静回想它与平时见过的题目、书本中的知识有哪些关联。
要相信自己的功底,多方寻找思路,便能豁然得释。
切忌对着题发呆不敢下手,有时动笔做一做或者画一画,就图形进行相应地分析,也就做出来了。
尽可能解答一步是一步,不放过多得一分的机会。
第四,解综合题时,应步步为营,稳扎稳打,否则前面错了,后面即使方法对了,也得分甚少。
最后,注意认真检查,如感觉某题答错了,不能盲目去改,要十分冷静地重新审题,仔细研究,确定此时思路正确,再动笔去改,因为此时易把正确的改错了,尽量减少失误。
检查在数学考试中尤为重要,它是减少失误的最有效途径。
另外,面对冲刺中考,本文为大家准备了中考数学答题的指导方法。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法
是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一
5、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命
题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中
的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法.。