因式分解 复习 专题 讲义 知识点 典型例题

合集下载

14.3 因式分解(讲+练)【14大题型】

14.3 因式分解(讲+练)【14大题型】

14.3 因式分解因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.题型1:因式分解的概念1.下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2D.x3﹣x=x(x2﹣1)【变式1-1】下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+1【变式1-2】下列各式从左到右的变形中,属于因式分解的是( )A.a(x+y)=ax+ay B.a2−4=(a+2)(a−2)题型2:找公因式2.代数式 15a 3b 3(a−b) , 5a 2b(b−a) , −120a 3b 3(a 2−b 2) 中的公因式是( )A .5a 2b(b−a)B .5a 2b 2(b−a)C .5ab(b−a)D .120a 3b 3(b 2−a 2)提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法。

注意:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.题型3:提公因式法分解因式3.(1)分解因式:a 2-3a ; (2)分解因式:3x 2y-6xy 2.m m题型4:提公因式法与整体思想4.已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.题型5:平方差公式法分解因式5.因式分解:m2(1)a2-9;(2)25−14题型6:完全平方公式法分解因式6.因式分解:(1)x2-4x+4.(2)16m2-8mn+n2.(3)4x2+20x+25;7.因式分解:(1)x2-3x+2;(2)x2-2x-15(3)x2-7x+12.题型8:分组分解法分解因式8.因式分解:(1)x2+4x-a2+4.(2)9-x2+2xy-y2.题型9:利用因式分解简便运算9.计算:(1)2022+202×196+982(2)652-352;10.已知多项式2x-x+m有一个因式(2x+1),求m的值.题型11:利用因式分解求代数式的值11.已知a+b=5,ab=3,求代数式a3b+2a2b2+ab3的值.题型12:利用因式分解解决整除问题12.求证:对于任意自然数n,(n+7)2-(n-5)2都能被24整除.题型13:因式分解与几何问题13.如图,边长为a、b的矩形,它的周长为14,面积为10,计算a2b+2ab+ab2的值.a2+4ab+3b2因式分解.【变式13-2】如图,长为m,宽为x(m>x)的大长方形被分割成7 小块,除阴影A,B 外,其余5 块是形状、大小完全相同的小长方形,其较短一边长为y.记阴影A 与B 的面积差为S.(1)分别用含m,x,y的代数式表示阴影A,B 的面积;(2)先化简S,再求当m=6,y=1 时S的值;(3)当x取任何实数时,面积差S 的值都保持不变,问m 与y应满足什么条件?题型14:因式分解与三角形问题14.△ABC的三边长分别为a,b,c,且2a+ab=2c+bc,请判断△ABC是等边三角形、等腰三角形,还是直角三角形?并说明理由.【变式14-1】若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.【变式14-2】已知在△ABC中,三边长分别为a,b,c,且满足等式a2+bc−ac−b2=0,请判断△ABC的形状,并写出你的理由.【变式14-3】已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.一、单选题1.同学们把多项式2x2−4xy+2x提取公因式2x后,则另一个因式应为( )A.x−2y B.x−2y+1C.x−4y+1D.x−2y−12.下列多项式中不能用公式进行因式分解的是( )A.a2+a+ 1B.a2+b2-2ab C.−a2+25b2D.−4−b243.把多项式3m(x﹣y)﹣2(y﹣x)2分解因式的结果是( )A.(x﹣y)(3m﹣2x﹣2y)B.(x﹣y)(3m﹣2x+2y)C.(x﹣y)(3m+2x﹣2y)D.(y﹣x)(3m+2x﹣2y)4.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )A.2560B.490C.70D.495.计算-22021+(-2)2020所得的结果是( )A.-22020B.-2 2021C.22020D.-26.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是( )A.2B.5C.20D.97.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6B.3C.4D.58.观察下列分解因式的过程:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a,b,c满足a2−b2−ac+bc=0,则以a,b,c为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( )A.围成一个等腰三角形B.围成一个直角三角形C.围成一个等腰直角三角形D.不能围成三角形二、填空题9.下列因式分解正确的是 (填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+1=( 2x+1)210.分解因式:ax2﹣4axy+4ay2= .11.已知:m+n=5,mn=4,则:m2n+mn2= .12.因式分解:1-a2+2ab-b2= .13.边长为a、b的长方形,它的周长为14,面积为10,则a2b+a b2的值为 .14.若△ABC 的三条边a ,b ,c 满足关系式:a 4+b 2c 2﹣a 2c 2﹣b 4=0,则△ABC 的形状是 .15.甲、乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4);乙看错了a ,分解结果为(x +1)(x +9),则多项式x 2+ax +b 分解因式的正确结果为 .三、解答题16.因式分解:(1)a 3−36a(2)14x 2+xy +y 2(3)(a 2+4)2−16a 217.把下列各式因式分解:(1)x 2(y ﹣2)﹣x (2﹣y )(2)25(x ﹣y )2+10(y ﹣x )+1(3)(x 2+y 2)2﹣4x 2y 2(4)4m 2﹣n 2﹣4m+1.18.已知二次三项式x 2+px+q 的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.19.给出三个多项式:12x 2+2x ﹣1,12x 2+4x+1,12x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.四、综合题20.已知 a 2−3a +1=0 ,求(1)a 2+1a 2的值。

因式分解经典例题

因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。

解析:公因式为a,所以ax+ay = a(x + y)。

例2:分解因式3x^2-6x。

解析:公因式为3x,3x^2-6x=3x(x - 2)。

例3:分解因式5a^2b - 10ab^2。

解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。

二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。

解析:x^2-9=x^2-3^2=(x + 3)(x-3)。

例5:分解因式16y^2-25。

解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。

例6:分解因式(x + p)^2-(x + q)^2。

解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。

三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。

解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

例8:分解因式4y^2-20y+25。

解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。

例9:分解因式x^2-4xy+4y^2。

解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。

解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。

例11:分解因式2x^2-8。

解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。

因式分解专题复习讲义

因式分解专题复习讲义

因式分解专题复习【知识回顾】1、下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=- (B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a 2、下列各式从左到右的变形中,是因式分解的是( )A.()21a a a a +=+ B. ()23131a a a a +=++- C.()2242( 2)x y x y x y =+-- D. ()33()a b b a -=--一、提公因式法(1)提公因式法: ()ab ac a b c +=+①提取的公因式应是各项系数的最大公因数(系数都是整数时)与各项都含有的相同字母的最低次幂的积。

②当某一项全部提出时,括号内加1;③当第一项系数为负数时,一般提取此负号。

【例题辨析】1、把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( )A.-8a 2bcB. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 32、20032002)2()2(-+-因式分解后是( ).A.22002B.–2C.–22002D.–13、多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --二、公式法1、平方差公式:2、完全平方公式:【例题辨析】1、下列多项式中,可以用平方差公式分解因式的是( )(A )42+a (B )22-a (C )42+-a (D )42--a2、下列各式中,能用完全平方公式分解因式的是( ).(A )4x 2-1 (B )4x 2+4x+1 (C )x 2-xy +y 2 D .x 2-x +12[ 3、把多项式2288x x -+分解因式,结果正确的是( )A . ()224x -B .()224x -C .()222x -D .()222x + 4、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。

因式分解专题复习及讲解(很详细)

因式分解专题复习及讲解(很详细)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

初中数学专题复习资料-----多项式的因式分解

初中数学专题复习资料-----多项式的因式分解
分解因式要求结果到不能再分解为止。 【例题 7】、把下列各式因式分解:
1、(08 年沈阳)
2、(08 年浙江绍兴)
3、(08 年山东)
【练习】
一、填空题:
1、分解因式 2x2 4x
; 4x2 9
; x2 4x 4

2、分解因式; a(x y)2 b( y x)2 _______________ ;
完 公 因 式 后 , 另 一 因 式 的 项 数 与 原 多 项 式 的 项 数 相 同 ); ③、将多项式写成等于两个因式相乘(公因式与余式的积)的形势。
第1页共4页
【例题 3】、把下列各式因式分解:
1、 14abc 7ab 49ab2c ;
2、 xx y yy x; 3、 mx y2 x y
①确定公因式的系数:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
②确定公因式的字母:公因式的字母取各项都含有的相同的字母(相同的多项式);
③ 确 定 公 因 式 的 指 数 :各 字 母 的 指 数 取 各 项 中 字 母 次 数 最 低 的( 多 项 式 的 次 数 取 最 低 的 )。如
(1) x2 7x 6 ;
(2) x2 13x 36 ;
(3) x2 5x 24 ;
(4) x2 2x 15 ;
(5) x2 xy 6 y2 ;
(6) (x2 x)2 8(x2 x) 12
【例题 6】、把下列各式因式分解:
(1) 12x2 5x 2
(2) 8a 4a2 4;
初中数学专题复习资料-----多项式的因式分解
【知识点归纳 1】 一、因式分解的定义:
把 一 个 多 项 式 化 为 几 个 整 式 的 积 的 形 式 ,这 种 变 形 叫 做 把 这 个 多 项 式 因 式 分 解 ,也 叫 作 分 解 因 式。

因式分解概念讲解及练习题

因式分解概念讲解及练习题

第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.提公因式法因式分解知识点2.公式法因式分解知识点3.十字相乘法法因式分解知识点4.分组分解法法因式分解【方法二】实例探索法题型1.因式分解的概念题型2.用提公因式法分解因式(公因式为单项式)题型3.用提公因式法分解因式(公因式为多项式)题型4.用提公因式法分解因式的简单应用题型5.利用平方差公式分解因式题型6.综合利用提公因式法与平方差公式分解因式题型7.完全平方式题型8.利用完全平方公式分解因式题型9.综合利用提公因式法与完全平方公式分解因式题型10.十字相乘法题型11.十字相乘法的灵活应用题型12.利用分组分解法分解因式题型13.分组分解法的灵活应用【方法三】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.提公因式法因式分解一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.知识点2.公式法因式分解1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a 2﹣b 2=(a +b )(a ﹣b );完全平方公式:a 2±2ab +b 2=(a ±b )2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.知识点4.十字相乘法法因式分解十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p ,满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.知识点5.分组分解法法因式分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【方法二】实例探索法题型1.因式分解的概念1.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.2.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.题型2.用提公因式法分解因式(公因式为单项式)3.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.4.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.5.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.6.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.题型3.用提公因式法分解因式(公因式为多项式)7.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.8.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.【分析】首先把式子变形为:a(a﹣b)﹣b(a﹣b),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a(a﹣b)+b(b﹣a)=a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2.故答案为:(a﹣b)2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.9.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【分析】直接提取公因式a﹣c即可.【解答】解:原式=(a﹣c)(2m﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.10.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.11.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.题型4.用提公因式法分解因式的简单应用12.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.题型5.利用平方差公式分解因式13.(2022秋•徐汇区期末)分解因式:x2﹣=.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣=(x+)(x﹣).故答案为:(x+)(x﹣).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.14.(2022秋•嘉定区校级期中)因式分解:x4﹣16=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b),进行两次分解.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【点评】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2022秋•黄浦区期中)分解因式:﹣(a+b)2+1=.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=[1﹣(a+b)][1+(a+b)]=(1﹣a﹣b)(1+a+b).故答案为:(1﹣a﹣b)(1+a+b).【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.16.(2022•黄浦区校级二模)分解因式:x2﹣4y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.17.(2022秋•上海期末)分解因式:9a2﹣25(a+b)2.【分析】根据平方差公式因式分解即可.【解答】解:9a2﹣25(a+b)2=[3a﹣5(a+b)][3a+5(a+b)]=(﹣2a﹣5b)(8a+5b)=﹣(2a+5b)(8a+5b).【点评】本题考查了公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.18.(2022秋•黄浦区期中)分解因式:25(m+n)2﹣9(m﹣n)2.【分析】直接利用平方差公式分解因式.【解答】解:25(m+n)2﹣9(m﹣n)2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【点评】本题考查了因式分解﹣公式法:掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.题型6.综合利用提公因式法与平方差公式分解因式19.(2022秋•浦东新区校级期末)分解因式:4x2﹣16=.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).故答案为:4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.20.(2022秋•青浦区校级期中)因式分解:3a(a+b)2﹣27ab2.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3a[(a+b)2﹣9b2]=3a(a+b+3b)(a+b﹣3b)=3a(a+4b)(a﹣2b).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型7.完全平方式21.(2022秋•青浦区校级期中)下列多项式中可以用完全平方公式进行因式分解的()A.x2+x+1B.x2﹣2x﹣1C.x2+2x+4D.x2﹣x+【分析】根据完全平方公式的结构特征逐项进行判断即可.【解答】解:A.x2+x+1,不能利用完全平方公式进行因式分解,因此选项A不符合题意;B.x2﹣2x﹣1,不能利用完全平方公式进行因式分解,因此选项B不符合题意;C.x2+2x+4,不能利用完全平方公式进行因式分解,因此选项C不符合题意;D.x2﹣x+=(x﹣)2,能利用完全平方公式进行因式分解,因此选项D符合题意;故选:D.【点评】本题考查了因式分解﹣运用公式法,掌握完全平方公式的结构特征是正确判断的前提.题型8.利用完全平方公式分解因式22.(2022秋•黄浦区期中)因式分解:(x2﹣4x)2+8(x2﹣4x)+16.【分析】直接利用完全平方公式分解因式,进而得出答案.【解答】解:原式=(x2﹣4x+4)2=(x﹣2)4.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题的关键.23.(2022秋•长宁区校级期中)(m+n)2+6(m2﹣n2)+9(m﹣n)2.【分析】首先利用平方差公式分解m2﹣n2,观察发现此题代数式符合完全平方公式,再利用完全平方公式进行分解即可.【解答】解:原式=(m+n)2+6(m﹣n)(m+n)+9(m﹣n)2,=[(m+n)+3(m﹣n)]2,=(4m﹣2n)2,=4(2m﹣n)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.24.(2022秋•长宁区校级期中)分解因式:m(m﹣4)+4.【分析】先运用单项式乘以多项式法则将括号展开,再利用完全平方公式进行因式分解即可.【解答】解:m(m﹣4)+4=m2﹣4m+4=(m﹣2)2.【点评】本题主要考查了因式分解,熟练掌握完全平方公式(a2±2ab+b2=(a±b)2)是解答本题的关键.题型9.综合利用提公因式法与完全平方公式分解因式25.(2022秋•长宁区校级期中)因式分解:=.【分析】先提取公因式,再利用完全平方公式分解因式即可.【解答】解:原式=(m2﹣4m+4)=(m﹣2)2.故答案为:(m﹣2)2.【点评】本题考查的是多项式的因式分解,掌握“利用完全平方公式分解因式”是解本题的关键.26.(2022秋•长宁区校级期中)分解因式:﹣6x2y﹣3x3﹣3xy2.【分析】先提取公因式,再利用完全平方公式.【解答】解:﹣6x2y﹣3x3﹣3xy2=﹣3x(x2+2xy+y2)=﹣3x(x+y)2.【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.27.(2022秋•青浦区校级期中)因式分解:3a2+12ab+12b2.【分析】先提取公因式,再套用完全平方公式.【解答】解:3a2+12ab+12b2=3(a2+4ab+4b2)=3(a+2b)2.【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型10.十字相乘法28.(2022秋•青浦区校级期末)因式分解:2x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.29.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.30.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.31.(2022秋•奉贤区期中)分解因式:ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.32.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.33.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.34.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.35.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.36.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.题型11.十字相乘法的灵活应用37.(2022秋•静安区校级期中)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).38.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.39.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.40.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.41.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.题型12.利用分组分解法分解因式42.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.43.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.44.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.45.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.46.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.47.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.48.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.49.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.50.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.51.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.题型13.分组分解法的灵活应用52.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.53.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.【方法三】成功评定法一、单选题1.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】根据平方差公式逐项分析即可.【详解】解:A.()()x y x y +-22x y =-,故能用平方差公式计算;B.()()x y x y +-+22y x =-,故能用平方差公式计算;C.()()x y x y -+-222()2x y x xy y =--=-+-,故不能用平方差公式计算;D.()()x y x y -+--22x y =-,故能用平方差公式计算;故选:C .【点睛】此题主要考查了乘法公式,熟练掌握公式是解答本题的关键.完全平方公式是()2222a b a ab b ±=±+;平方差公式是()()22a b a b a b +-=-.二、填空题三、解答题【分析】利用平方差公式进行因式分解即可得出答案.【详解】解:224691x y y +--()224961x y y =--+()22431x y --=()()231231x y x y =+--+.【点睛】此题主要考查因式分解,解题的关键是掌握利用平方差公式进行因式分解.22.(2022秋·上海·七年级阶段练习)因式分解:221218a b ab b -+【答案】22(3)b a -.【分析】先提公因式2b ,再利用完全平方公式即可【详解】解:原式()2269=-+b a a 22(3)=-b a .【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握方法是解题的关键23.(2022秋·上海·七年级校考阶段练习)因式分解:()()2222225225m n m n ---【答案】()()()2221m n m n m n +-+【分析】直接利用平方差公式分解因式即可.【详解】原式()()2222222252255225m n m n m n m n =-+---+()()22227733m n m n =-+()()222221m n m n =-+()()()2221m n m n m n =+-+【点睛】本题考查了公式法分解因式,熟练应用平方差公式是解题关键.24.(2022秋·上海·七年级校考阶段练习)因式分解:()()2280x y y x ----【答案】()()810x y x y ---+【分析】利用十字相乘法分解因式即可.【详解】()()2280x y y x ----。

初中数学因式分解法知识点(例题)

初中数学因式分解法知识点(例题)

初中数学因式分解法知识点(例题)
初中数学因式分解法知识点(例题)
因式分解的试题应用:
其实因式分解法就是把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式。

因式分解法
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8
(2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学)
(4)x2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5 x2=-2是方程的解。

x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-3/2是原方程的解。

(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x?=5/2, x?=-10/3 是原方程的解。

(4)解:x2-4x+4 =0
(x-2)(x-2 )=0
∴x1=x2=2是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程通常有两个解。

(完整版)因式分解专题

(完整版)因式分解专题

因式分解专题类型一、整除问题1、5.631)25.2(3175.20531⨯+-⨯+⨯能被35整除吗?2、1991993-能被198整除吗?能被100整除吗?3、若多项式122++px x 能被3+x 整除,求p 的值4、201320142015310343⨯+⨯-能被7整除吗?为什么?5、 已知n 为整数,证明:22)13(n n -+能被13整除。

6、已知158-能被0~10之间的数整除,求这两个数类型二、提公因式法分解因式A 组题1、n n x x 8161-+2、c b ab 2294278+3、)2()2(2a m a m -+-4、2)()(x y x y x xy ---5、332168b a ab -6、xy xy y x 1551022+--7、232234236y x z y x y x --8、n n n x x x 212222793-+-++9、33)(6)(3x y y y x x ---10、23)(6)(4a b b b a a ---11、)()()(y x c x y b y x a -+---12、)()(22m n xy n m y x ---(完整版)因式分解专题B 组题1、)()()(y z x c y x z b z y x a +------+2、)1()1()1(---+--+-a b az b a ay b a ax3、)2)(()2)(())((x y b a z y x b a x y z a b ----+-----类型三、公式法分解因式A 组题一、平方差分解因式1、224)1(b a - 2291)2(b a +- 4161)3(m +-224)32)(4(x y x --819)5(2-x 644)6(2-a2、223)2(3)1(mn y x m --4)3)(2)(2(2-+++x x xbc ac b a ++-22)3(55)4(xy y x - 二、完全平方分解因式1、96)1(2+-a a223291)2(n mn m ++ 44)3(2++n n y y223612)4(y x xy --- 363)5(2++a a2)(9)(124)6(y x y x -+-+B 组题1、)()(2)(223n m m n m m n m +++++2、1)2(2)2(222+-+-x x x x3、2222)(966)(y x y x y x -++-+4、)1()1(2)1(2222-+-+-y y x y x类型三、十字相乘法A 组题1、322--x x2、1272+-m m3、245n n --4、2276y xy x --5、232--s s6、4524+-a a7、4)2(5)2(2+---x x8、m m m 3621323+- 9、322342153ab b a b a +--10、322)(2-+--y x y xB 组题1、48751402+-x x类型四、分组分解法A 组题1、x x x -+-1232、2x xy y x --+3、422+--b a ab4、bx by ay ax 6633+--5、x x -226、22296y y x xy --B 组题1、n n mn m m -+-+2222、11010)(252+-+-x y y x(完整版)因式分解专题3、14422+--m n m4、)()(22x y b y x a -+-5、)4(4)(2++++y x y x6、8)3(2--x x类型五、换元法 1、4)(4)(2+---y x y x 2、36)2(12)2(222++-+x x3、2244)1(4)1(x x x x ++-+4、)1(4)(2-+-+y x y x5、72)3(22)3(222++-+x x x x6、1)22)(2(22++--x x x x7、5)64)(4(22++--x x x x。

八年级因式分解经典题型

八年级因式分解经典题型

八年级因式分解经典题型一、因式分解的概念与方法回顾。

1. 因式分解的定义。

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2. 因式分解的方法。

- 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

例如:ma + mb+mc=m(a + b + c)。

- 公式法。

- 平方差公式:a^2-b^2=(a + b)(a - b)。

- 完全平方公式:a^2±2ab + b^2=(a± b)^2。

二、经典题型及解析。

1. 分解因式x^3-2x^2+x- 解析:首先观察多项式各项都有公因式x,先提取公因式x,得到x(x^2-2x + 1)。

然后对括号内的式子x^2-2x + 1,可以发现它是一个完全平方形式,即(x -1)^2。

所以原式分解因式的结果为x(x - 1)^2。

2. 分解因式9x^2-16y^2- 解析:这个式子符合平方差公式a^2-b^2的形式,其中a = 3x,b=4y。

根据平方差公式可得(3x + 4y)(3x-4y)。

3. 分解因式4x^2+12xy+9y^2- 解析:观察式子,它符合完全平方公式a^2+2ab + b^2的形式,这里a =2x,b = 3y。

所以原式分解因式的结果为(2x+3y)^2。

4. 分解因式x^4-1- 解析:可先利用平方差公式a^2-b^2=(a + b)(a - b),这里a=x^2,b = 1,得到(x^2+1)(x^2-1)。

而x^2-1还可以继续利用平方差公式分解为(x + 1)(x - 1),所以最终结果为(x^2+1)(x + 1)(x - 1)。

5. 分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),然后x^2-4可以利用平方差公式分解为(x + 2)(x - 2),所以原式分解因式的结果为2(x + 2)(x - 2)。

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题【知识梳理】1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

例:13ax +13bx =13x(a +b)因式分解,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

{系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:12a 3b 3c −8a 3b 2c 3+6a 4b 2c 2的公因式是 .解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a 3b 3c,a 3b 2c 3,a 4b 2c 2都含有因式a 3b 2c ,故多项式的公因式是2a 3b 2c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

a.逆用平方差公式:a2−b2=(a+b)(a−b)b.逆用完全平方公式:a2±2ab+b2=(a±b)2c.逆用立方和公式:a3+b3=(a+b)(a2−ab+b2)(拓展)d.逆用立方差公式:a3−b3=(a−b)(a2+ab+b2)(拓展)注意:①公式中的字母可代表一个数、一个单项式或一个多项式。

因式分解经典题目

因式分解经典题目

精心整理【1、分解因式的概念把一个多项式公成几个整式的积的形式,这种变形叫做把这个多项式。

2、分解因式与整式乘法的关系分解因式与整式乘法是的恒等变形。

3.分解因式的一些注意点(1)结果应该是的形式;(2)必须分解到每个因式都不能为止;(3)如果结果有相同的因式,必须写成的形式。

4.公因式多项式中各项都含有的公共的因式,我们把这个因式叫做这个多项式的 .5.提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方示叫做提公因式法.6.确定公因式的方法(1)系数公因式:应取多项式中各项系数为;(2)字母公因式:应取多项式中各项字母为 .1.下列各式从左边到右边的变形 ,哪些是分解因式 ,哪些不是?(1) x2 + x = x2 (1+ 1 ) ;(2) a 2 一 2b = (a + 5)(a 一 5) 一 1x(3) (m + n)(m 一 n) = m2 一 n2 (4) x2 + 4x + 4 = (x + 2)2(5) 3x2 一 2xy + x = x(3x 一 2y) (6) (x 一 3)(x + 1) = x 2一 2x 一 32.把下列各式分解因式(1) 9a2 一 6ab + 3a (2) 一 4x4 y 一 6x2 y3 + 2xy4例 1、把下列各式分解因式(1) 2a(x 一 2y) 一 3b(x 一 2y) (2) 2a(x 一 2y) 一 3b(2y 一 x) 一 4c(x 一 2y)(3) 2a(x 一 2y)2 + b(2y 一 x)3 (4) 15b(3a 一 b)2 + 25(b 一 3a)3(5) (x 一 y)2 一 3(y 一 x)3 + 2(y 一 x)4 (6) (a + x)m+1(b + x)n一1 一 (a + x)m (b + x)n 例 2.利用分解因式计算精心整理299 一 298(1) 2.91234.5 +11.7 1234.5 一 4.61234.5 (2)2100 一 299例 3.已知 a + b = , ab = 2 ,求代数式 a 2 b + 2a 2 b 2 + ab 2 的值。

初二因式分解知识点讲解及习题

初二因式分解知识点讲解及习题

因式分解一、知识点1、定义:把一个多项式化成几个整式的积的形式,这种代数式变形就叫做把这个多项式因式分解,也叫作分解因式。

2、分解时的要点:(1)因式分解的对象是多项式;(2)其结果必须是整式的乘积;(3)不能混淆因式分解和整式乘法;(4)要分解到不能分解为止;(5)因式分解结果的唯一性*因式分解的范围通常都是在有理数域上进行的,即分解的结果里面只能含有有理数。

3、书写时的要点:(1)因式分解的结果中有如果有一个单项式,通常要放在最前面,如:()232-+=-是不符合惯例的;a a a a a442(2)整式的乘积中如有相同的因式,要写成幂的形式,如:()()32-+=--是不符合惯例的;a a a a a a4422(3)首项的系数是负数时,要提出负号置于最前面,如:()()2111-+=---是不符合惯例的。

x x x4、基本方法:提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将一个多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同的字母,而且各字母的指数取次数最低的;(3)取相同的多项式,多项式的次数取最低的;(4)正确找出多项式提出最大公因式后剩余的项;注意:如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号;(一次提净)例:分解因式:2322+-a x abx y acx12615(整体思想)例:分解因式:2233a b x y a b x y+-+2()6()(切勿漏1)例:分解因式:32+-+++(2)(2)(2)x y x y x y随堂练习1.2368a a -2.2318()12()a b a b ---3.223()6()m a b m a b +-+4.322315205x y xy x y +-5.22()()()a a b a b a a b +---6.2(1)(1)(1)x x a x x -+++++7.232()6()4()x y x y x y +++-+8.32226(1)8(1)2(1)p x p x p x -----公式法::如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法包括:平方差公式;完全平方公式;立方和公式;立方差公式;完全立方公式;一些其他重要公式。

因式分解复习(例题版)

因式分解复习(例题版)

因式分解考点知识精讲考点因式分解1.因式分解的定义及与整式乘法的关系(1)把一个多项式化为几个整式的积的形式,这种运算就是因式分解.(2)因式分解与整式乘法是互逆运算.2.因式分解的常用方法(1)提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式.提公因式法用公式可表示为ma+mb+mc=m(a+b+c),其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幂的乘积.②将多项式除以它的公因式从而得到多项式的另一个因式.(2)运用公式法将乘法公式反过来对某些多项式进行分解因式,这种方法叫做公式法,即a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2. 提示:在运用公式法分解因式时,公式中的字母,可以是一个数,也可以是一个单项式,还可以是一个多项式。

3.因式分解的一般步骤(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3)三查:分解因式,必须进行到每一个多项式都不能再分解为止.中考典例精析(2009·太原)(1)下列各式中,能用公式法分解因式的是()A.x2+4y2B.a2+a+1 2C.-x2+4y2D.a2+ab+b2(2)若x2+2(m-3)x+16是完全平方式,则m的值是()A.-5B.7C.-1D.7或-1(3)下列由左到右的变形,是因式分解的是()A.(a+b)(a-b)=a2-b2B.x2+x-2=x(x+1)-2C.x2-2x+1=(x-1)2D.x2+5x+4=x(x+5+4 x)(1)(2010·苏州)分解因式:a2-a=________;(2)(2010·绵阳)分解因式:x3y-xy=________;(3)(2010·莱芜)分解因式:-x3+2x2-x=________;(4)(2009·嘉兴)分解因式:(x+y)2-3(x+y)=________.把下列各式分解因式:(1)(2010·杭州)m3-4m;(2)(2010·哈尔滨)2a2-4ab+2b2;(3)(2009·温州)(x+2)(x+4)+x2-4.举一反三1.分解因式:x-2xy+xy2=.2.在实数范围内分解因式:x4-4=3.分解因式:2x(a-2)+3y(2-a)=4.分解因式:16(a-b)2-4(a+b)2=5.若m-n=6,mn=7,则mn2-m2n的值是6.下列因式分解正确的是()A.2x2-xy-x=2x(x-y-1)B.-xy2+2xy-3y=-y(xy-2x-3)C.x(x-y)-y(x-y)=(x-y)2D.x2-x-3=x(x-1)-37.分解因式:27x2+18x+3.8.分解因式:4x(x+y)+y2.考点训练4一、选择题(每小题3分,共36分)1.(2009中考变式题)把多项式ax2-ay2分解因式,所得结果是()A.a(x2-y2)B.a(x-y)2C.a(x+y)(x-y)D.(ax+ay)(ax-ay)2.(2010·安徽)下列因式分解错误的是()A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.(2009中考变式题)多项式6a3b2-3ab2-18a2b3分解因式时,应提取的公因式是()A.3a2b B.3ab2C.3a3b3D.3a2b24.(2009中考变式题)下列从左到右的变形中,是因式分解的是()A.(x+3)(x-3)=x2-9B.x2-9+x=(x+3)(x-3)+xC.3x2-3x+1=3x(x-1)+1D.a2-2ab+b2=(a-b)25.(2010·眉山)把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2B.m(x+3)(x-3)C.m(x-4)2D.m(x-3)26.(2011中考预测题)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.-2D.-37.(2011中考预测题)如图(1),边长为a的大正方形中剪去一个边长为b的小正方形,小明将图(1)中的阴影部分拼成一个矩形,如图(2).这一过程可以验证()A.a2+b2-2ab=(a-b)2B.a2+b2+2ab=(a+b)2C.2a2-3ab+b2=(2a-b)(a-b)D.a2-b2=(a+b)(a-b)8.(2010·济宁)把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x-3y) B.3x(x2-2xy+y2)C.x(3x-y)2D.3x(x-y)29.(2009中考变式题)如果x2-x-m=(x+n)(x+7),那么m、n的值分别是()A.56,8 B.-56,-8C.-56,8 D.56,-810.(2011中考预测题)因式分解(x-1)2-9的结果是()A.(x+8)(x+1) B.(x+2)(x-4)C.(x-2)(x+4) D.(x-10)(x+8)11.(2011中考预测题)把多项式x3-2x2+x分解因式结果正确的是()A.x(x2-2x) B.x2(x-2)C.x(x+1)(x-1) D.x(x-1)212.(2011中考预测题)若x2-2(m-3)x+1是完全平方式,则m的值为()A.3 B.4 C.2 D.4或2二、填空题(每小题3分,共24分)13.(2010·黄冈)分解因式:x 2-x =______.14.(2010·郴州)分解因式:2a 2-8=____________.15.(2010·宁德)分解因式:ax 2+2axy +ay 2=______.16.(2010·北京)分解因式:a 3b -2a 2b 2+ab 3=______.17.(2010·安徽)分解因式:9x 2-y 2-4y -4=______.18.(2011中考预测题)若x -y =3,xy =-2,则xy 2-x 2y 的值是______.19.(2009中考变式题)9x 2-6x +________=(3x -1)2.20.(2011中考预测题)分解因式:-x 3-2x 2-x =______.三、解答题(共40分)21.因式分解.(每小题4分,共24分)(1)(2010·杭州)m 3-4m ;(2)(2010·宜宾)2a 2-4a +2;(3)(2009中考变式题)x(x +y)(x -y)-x(x +y)2;(4)(2011中考预测题)(a +1)(a -1)-8;(5)(2009中考变式题)a 3+ab 2-2a 2b ;(6)(2011中考预测题)16x 4-81.22.(8分)先分解因式,再计算求值.(1)(2009中考变式题)9x 2+12xy +4y 2,其中x =43, y =-12;(2)(2011中考预测题)(a +b 2)2-(a -b 2)2,其中 a =-18,b =2.23.(8分)(2011中考预测题)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.。

因式分解经典实例及解析50题(打印版)

因式分解经典实例及解析50题(打印版)

12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)

因式分解知识点总结及典型试题

因式分解知识点总结及典型试题

因式分解知识点总结及典型试题因式分解知识点总结及典型试题因式分解的总体思路如下:1.定项(以加减号为准,区分三项以下的和三项以上的两种因式分解)2.三项以下的要观察是否有公因式,有公因式先公因式提再分解。

3.三项以上的要分组,分组后再用公式法分解。

4.用公式法分解(如果是两项用平方差;三项用完全平方或十字相乘法)公因式的确定方法如下:各项中系数取最大公因数,相同字母取最低次幂,乘起来作为公因式。

下面是一些典型试题:1.分解因式m-ma2的结果是:A。

m(1+a)(1-a) B。

m(1+a)2 C。

m(1-a)2 D。

(1-a)(1+a)2.计算-(-2)2015的结果是:A。

B。

C。

- D。

3x3.把代数式ax2-4ax+4a分解因式,正确的结果是:A。

a(x-2)2 B。

a(x+2)2 C。

a(x-4)2 D。

a(x+2)(x-2)4.把代数式3x3-12x2+12x分解因式,正确的结果是:A。

3x(x-2)2 B。

3x(x-4)2 C。

3x(x+2)(x-2) D。

3x(x-2)5.多项式an-a3n+an+2分解因式的结果是:A。

an(1-a3+a2) B。

an(-a2n+a2) C。

an(1-a2n+a2) D。

an(-a3+an)6.代数式3(x+y)3-27(x+y)因式分解的结果正确的是:A。

3(x+y)(x+y+3)(x+y-3) B。

3(x+y)[(x+y)2-9] C。

3(x+y)(x+y+3)2 D。

3(x+y)(x+y-3)27.多项式x2-1与多项式x2-2x+1的公因式是:A。

x-1 B。

x+1 C。

x2-1 D。

(x-1)28.若ab=-3,a-2b=5,则a2b-2ab2的值是:A。

-15 B。

15 C。

2 D。

-89.+3xy2-9x2y的公因式是:A。

-3x B。

3xz C。

3yz D。

-3xy10.下面是两个代数式,它们的因式分解都需要用到公式法:(1) m(a-2)+n(2-a) (2) (y-x)2+2x-2y。

中考数学复习:专题1-9 因式分解在生活中的应用

中考数学复习:专题1-9 因式分解在生活中的应用

专题09 因式分解在生活中的应用【专题综述】利用因式分解不仅能解决许多数学问题,而且在现实生活中也有很多的应用,灵活巧妙地利用因式分解,往往可以对生活中的实际问题起到化繁为简,方便快捷的效果,让我们一起来赏析因式分解在生活中妙用.【方法解读】例1:每一天喝一包鲜牛奶逐渐成了人们的生活习惯.某种鲜牛奶的包装袋上注明了所含的营养成分,其中脂肪≥3.1%,蛋白质≥2.9%,非脂乳固体≥8.1%,钙80-120mg/ml,请你计算一包200ml(大约206克)的牛奶中脂肪和蛋白质的含量至少有多少克?【举一反三】学校为庆祝建国60周年活动,举行了盛大的演出方队,其中一个造型方队中每行每列均是96人,你能很快的算出这个方队一共有多少人吗?例2.:晶晶在暑假期间制作了一个房子模型,如图所示(单位:m),要把其中的这一面墙涂上颜色(4个窗户除外),那么涂色的面积是多少?【举一反三】 如图,是某县城一住房小区,现开发商要在原来小区(正方形)的基础上准备进行扩建,且使扩建后的小区平面仍旧是正方形,如果按土地的成本价是1500元/m 2计算,那么开发商在整个小区的土地成本投资应是多少万元? 新建住房区新建住房区新建住房区原居民区36m 64m【强化训练】1.计算:22014-(-2)2015的结果是( ) A. 24029 B. 3×22014 C. -22014 D. (12)2014 2.如图,边长为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为 .3.在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x =, 10y =时,用上述方法产生的密码不可能...是( ) A. 201030 B. 201010 C. 301020 D. 2030104.分解因式错误!未找到引用源。

初中数学因式分解复习讲义(知识点+例题+练习题)

初中数学因式分解复习讲义(知识点+例题+练习题)

初中数学因式分解复习讲义(知识点+例题+练习题)课时1提公因式法一、基本知识点(1)阐述概念:由m(a+b+c)=ma+mb+mc 得 ma+mb+mc=m(a+b+c) 这样把ma+mb+mc 分解成两个因式积的形式,其中一个因式是各项的公因式m ,另一个因式 (a+b+c)是ma+mb+mc 除以m 所得的商,像这样分解因式的方法叫做提公因式法。

(2)举例说明:232a 2ab+a a(a 2b a )+=++(3) 应用的条件 : 有 公因式(4)方法 把公因式提到括号外面,其余的放到括号里面公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;二、例题例1 公因式是单项式 2ab 2+5a 2b-10b 的公因式是_______练习 1.-3ab 3+6a 2b 2+12a 3b 的公因式____________例2.公因式是多项式找出下面多项式的公因式4q(1-p)3+2(p-1)2______________ 2a(b+c)-3(b+c)______________例3. 公因式是整式4q(1-p)3+2q(p-1)2例4.已知多项式的公因式将另一个因式写在括号内。

① 4a 3b 2-10a 2b 3=2a 2b 2( ) ②30m 3n+25m 2n 2-5m 2n=5m 2n( ) ③-6x 3-10x 2-2x=-2x( ) ④ -15m 3n 4x 2-35m 4n 2x+20m 5n=-5m 3n( )例5.多项式9x 4y 3z 2e-12x 3y 2e-6x 2y 3z 中,各项的公因式( )(A)3x 2y 2ze (B) 3x 2y 3z (C) x 2y 2ze (D) 3x 2y 2例6. (x+2)(x-1)=x 2+x-2是表示( )与( )相乘,其结果是( )运算,x 2+x-2=(x+2)(x-1)是把 多项式( )化为( )与( )的积的形式.这是( ). 例7.提公因式分解因式(1)2a 3b+8a 2b 2+8ab 3 (2)2ax-3x例8. 4q(1-p)3+2(p-1)2三、课堂检测一、填空题1.因式分解是把一个______化为______的形式.2.ax 、ay 、-ax 的公因式是______;6mn 2、-2m 2n 3、4mn 的公因式是______.3.因式分解a 3-a 2b =______.二、选择题4.下列各式变形中,是因式分解的是( )A .a 2-2ab +b 2-1=(a -b )2-1B.)11(22222x x x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)5.将多项式-6x 3y 2 +3x 2y 2-12x 2y 3分解因式时,应提取的公因式是( )A .-3xyB .-3x 2yC .-3x 2y 2D .-3x 3y 36.多项式a n -a 3n +a n +2分解因式的结果是( )A .a n (1-a 3+a 2)B .a n (-a 2n +a 2)C .a n (1-a 2n +a 2)D .a n (-a 3+a n )三、计算题7.x 4-x 3y 8.12ab +6b 9.5x 2y +10xy 2-15xy10.3x (m -n )+2(m -n ) 11.3(x -3)2-6(3-x ) 12.y 2(2x +1)+y (2x +1)2课时2公式法一、基本公式(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;下面再补充几个常用的公式:(1)(a+b)(a 2-ab+b 2) =a 3+b 3 a 3+b 3=(a+b)(a 2-ab+b 2);(2)(a-b)(a 2+ab+b 2) = a 3-b 3 a 3-b 3=(a-b)(a 2+ab+b 2).(3)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(4)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);二、例题类型一:平方差公式(1) 4 x 2-y 2 (2) 2201.094n m - (3) 1998200019992⨯-(4) 200220002001602⨯- (5) 3132-x(6) 216n n x x +-+练习1.22)()32(a b b a +-+2.1422+-y x3.7)833(7)855(22⨯-⨯ 4.1997×19961996-1996×19971997类型二:完全平方公式(1) x 2-4x+4 (2) 22312123xy y x x +-三、课堂检测(1) 22916y x - (2)1252+-x (3)14-x (4)22)(n n m -+(5)22)32()(y x y x -++- (6)()224y x z +- (7)()()22254y x y x +--(8)()()22c b a c b a -+-++(9)2816x x ++ (10)224129x xy y -+-; (11)224x xy y ++(12) 224493m mn n ++(13)(x -2)2+12(x -2)+36 (14) 2)()(69b a b a ++++(15)-4x 3+16x 2-16x ; (16)21ax 2y 2+2axy+2a四、课后练习1.4224168b b a a +- 2.)(2025)(42y x y x +-++ 3.22)2()2)(2()2(41b a b a b a b a -+-+++4.在下列代数式①2x -4x+4②1+62a ③42x +2x+1④2x +xy+2y 中,是完全平方式的是( )A .只有① B.只有③ C. 只有④ D.不包括②5、若22916x mxy y ++是一个完全平方式,那么m 的值是( )A .24 B. -12 C.±12 D. ±246、要使(x+1)(x+3)(x -4)(x -8)+m 为完全平方式,那么m 等于( )A .12 B. 24 C.98 D. 1967、若22(3)16x m x +-+是完全平方式,则m 的值是( )A .5 B. 7 C. -1 D. 7或-18、已知:a --c=2则222a b c ab ac bc ++---的值为( )A .20 B. 15 C. 30 D. 409、已知:2215a b +=,b<0,则a :b=______. 10、下列多项式是完全平方式的是( ) A .244x x -- B.214x x ++ C.224109a ab b -+ D. 269a a --+ 11、已知:a=1996x+1995,b=1996x+1996,c=1996x+1997, 求222a b c ab ac bc ++---的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解复习
一、基础知识
1.因式分解概念:
把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为
将这个多项式分解因式,它与整式乘法互为逆运算。

2.常用的因式分解方法:
(1)提公因式法:把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是
各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因
式的方法叫做提公因式法。

①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

②公因式的构成:系数:各项系数的最大公约数;
字母:各项都含有的相同字母;
指数:相同字母的最低次幂。

(2)公式法:
①常用公式
平方差:)b a )(b a (b a 22-+=-
完全平方:222)b a (b 2ab a ±=+±
②常见的两个二项式幂的变号规律:
22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数)
(3)十字相乘法
①二次项系数为1的二次三项式
q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成
()()()b x a x ab x b a x q px x ++=+++=++22 ②二次项系数不为1的二次三项式c bx ax ++2
中,如果能把二次项系数a 分解成两
个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系
数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。

(4)分组分解法
①定义:分组分解法,适用于四项以上的多项式,例如22
a b a b -+-没有公因式,
又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。

②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分
解。

③有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多
项式正确分解即可。

二、经典例题
【例】将下列各式分解因式:
(1)332636a a a +-=_______; (2)4
1_______a -=; (3)22a b a b ---=_______; (4)22
421a b b -+-=_______。

[错因透视]
因式分解是中考中的热点内容,有关因式分解的问题应防止出现一下常见错误:①公因式没
有全部提出,如332636a a a +-=2(2636)(6)(26)a a a a a a +-=+-;②因式分解不彻底,如4221(1)(1)a a a -=+-;③丢项,如22a b a b ---=()()a b a b +-;④分组不合
理,导致分解错误,22421a b b -+-=22(41)(2)(21)(21)(2)a b b a a b b ---=+---,
无法再分解下去。

基础题:
1.如果
))((2b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b)
2.如果
305)(22--=+++⋅x x b x b a x ,则b 为 ( ) A .5 B .-6 C .-5 D .6
3.多项式a x x +-32
可分解为(x -5)(x -b),则a ,b 的值分别为 ( )
A .10和-2
B .-10和2
C .10和2
D .-10和-2
4.不能因式分解分解的是 ( )
A .22-+x x
B .
x x x 310322+- C .242++x x D .22865y xy x -- 5.分解结果等于(x +y -4)(2x +2y -5)的多项式是 ( )
A .20)(13)(22++-+y x y x
B .
20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .
20)(9)(22++-+y x y x
6.=-+1032x x __________.
7.=--652
m m (m +a)(m +b). a =__________,b =__________.
8.+2x ____=-22y (x -y)(__________).
9.把下列各式分解因式:
(1)a 5-a (2)1162
2-b a (3)a 2 +2ab +b 2 -a -b
(4)3123x x - (5)
21222++x x (6)22)2()2(y x y x +--
(7)(y 2 +3y )-(2y +6)2 (8)16a 2 -9b 2 (9)4x 2
-12x +9
(10)4x 3+8x 2 +4x (11)3m(a -b)3-18n(b -a)3
(12)(x 2+1)2 -4x 2 (13)6x 2+13x +5 (14)4x 2 -12x +5
(15) 9x 2 -35x -4 (16)223x x -- (17) 2
257x x +-
(18)2224)3(x x --; (19)9)2(22--x x ; (20)8)2(7)2(222-+-+x x x x ;
复习提高题:
1.4222++--ab b a
2. 12
3+--x x x
3. ()()()()422223612y x y x y x x y x x +-+++-+
4.已知x 2 +y 2
-4x+6y+13=0,求x,y 的值。

5.已知x +y=4,xy=1.5,求x 3y +2x 2 y 2 +xy 3的值。

6.已知a 、b 、c 是△ABC 的三边,且满足ac bc ab c b a ++=++2
22,求证:△ABC 为等边三角形。

7. 若10m n +=,24mn =,则22m n += .
培优题
1.已知a,b,c 满足a-b=8,ab+c 2 +16=0,求a+b+c 的值 .。

相关文档
最新文档