紫外-可见分光光度法
合集下载
紫外-可见分光光度法
30.01mg→100ml 5→50ml 浓度为30.01ug/ml
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):
以
E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm
。
在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):
以
E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm
。
在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。
紫外可见分光光度法UltravioletVisible
A1 = 1bc1 A2 = 2bc2 A = 1bc1+ 2bc2
当物质中只有一种吸光组分,则上式简化 为:
A=bc
(3)定义2:若将I/I0称为透光度(亦称:透 射率),用T表示, T=I/I0 则 A= lgI0/I= - lgT= bc
2. 朗伯-比尔定律成立的条件及其偏离该定律 的因素 (1)成立的条件 (a) 适用于极稀的溶液(一般c<0.01molL-1)。 (b) 电磁波辐射和所讨论的吸光成分之间的 相互作用机制只是光被该成分吸收。 (c) 采用“单色光”。 (d) 吸收成分(分子或离子)的行为相互无 关,且不论其数量和种类如何。
iii) 分子络合物内部电荷转移 例如:在乙醇介质中,将醌与氢醌混 合,就可以得到美丽的醌氢醌暗绿色结晶, 它的吸收峰在可见光区。
特点:电荷转移吸收光谱的最大特点 是:吸收强度大,摩尔吸收系数一般超过 104L/ (mol cm)。
(3)两种吸收谱带的区别 这类光谱一般位于可见光区。 电荷迁移吸收带的谱带较宽,吸收强度 大,最大波长处的摩尔吸收系数max可大于 104 L cm-1mol-1。 与电荷迁移跃迁比较,配位场跃迁吸收 谱带的摩尔吸收系数小,一般max< 102L cm-1mol-1。
吸收峰红移,n→*跃迁所产生的吸收峰蓝移。
(3)除上述六种跃迁可产生紫外-可见吸收 谱带外,还有两种跃迁也可产生紫外-可见吸 收谱带,即电荷转移跃迁和配位场跃迁。
综上所述:发生在电磁光谱的紫外和可 见光区内的,由于电子的跃迁或转移而引起 的吸收光谱共有以上八种价电子跃迁类型。
3. 在有机物的紫外-可见谱解析中吸收带的分类 在有机物的紫外-可见谱解析中,通常将吸 收带分为以下四种类型。
而n→*、n→*和→*三种跃迁需要能
当物质中只有一种吸光组分,则上式简化 为:
A=bc
(3)定义2:若将I/I0称为透光度(亦称:透 射率),用T表示, T=I/I0 则 A= lgI0/I= - lgT= bc
2. 朗伯-比尔定律成立的条件及其偏离该定律 的因素 (1)成立的条件 (a) 适用于极稀的溶液(一般c<0.01molL-1)。 (b) 电磁波辐射和所讨论的吸光成分之间的 相互作用机制只是光被该成分吸收。 (c) 采用“单色光”。 (d) 吸收成分(分子或离子)的行为相互无 关,且不论其数量和种类如何。
iii) 分子络合物内部电荷转移 例如:在乙醇介质中,将醌与氢醌混 合,就可以得到美丽的醌氢醌暗绿色结晶, 它的吸收峰在可见光区。
特点:电荷转移吸收光谱的最大特点 是:吸收强度大,摩尔吸收系数一般超过 104L/ (mol cm)。
(3)两种吸收谱带的区别 这类光谱一般位于可见光区。 电荷迁移吸收带的谱带较宽,吸收强度 大,最大波长处的摩尔吸收系数max可大于 104 L cm-1mol-1。 与电荷迁移跃迁比较,配位场跃迁吸收 谱带的摩尔吸收系数小,一般max< 102L cm-1mol-1。
吸收峰红移,n→*跃迁所产生的吸收峰蓝移。
(3)除上述六种跃迁可产生紫外-可见吸收 谱带外,还有两种跃迁也可产生紫外-可见吸 收谱带,即电荷转移跃迁和配位场跃迁。
综上所述:发生在电磁光谱的紫外和可 见光区内的,由于电子的跃迁或转移而引起 的吸收光谱共有以上八种价电子跃迁类型。
3. 在有机物的紫外-可见谱解析中吸收带的分类 在有机物的紫外-可见谱解析中,通常将吸 收带分为以下四种类型。
而n→*、n→*和→*三种跃迁需要能
第二章 紫外-可见分光光度法
入射光通过溶液时,除一部分被吸光粒子吸收
外,还有部分因散射而损失,使透光度减小,
A实。所以往往发生正偏离。 • 化学因素引起的偏离 吸光物质常因离解、缔合而形成新化合物或 互变异构等化学变化而改变其浓度,导致了偏 离。例如 K2Cr2O7在水溶液中存在下列平衡:
2 2CrO4 Cr2O H 2O + 2 H 2 2 7 稀释或增大pH值 浓缩或减小pH值
如图所示,假设有一束强度为I0的单色平行
光,垂直通过一横面积为s的均匀介质。 当光强度为Ix的单色光通过
吸收层(db)后,光强度减弱
了dIx,则厚度为db的吸收
层对光的吸收率为-dIx/Ix,
另一方面,由于db为无限小,所以截面积上所有 吸光质点所占的面积之和(ds)与横截面积(s)之 比(ds/s)可视为该截面积上光子被吸收的几率, 即:-dIx/Ix=ds/s
降低由于单色光不纯造成负偏的方法: • 选择吸收曲线的max作入射光波长。因为吸收 曲线峰值顶部曲线较平坦,入射光谱带内各波长 的值相近。选择max,偏离光吸收定律较小。 只有当干扰物质存在并对待测物质的max产生
吸收时,才选择没干扰的其它波长作入射光波
长。
• 选择高分辨率仪器,使入射光波长范围尽可
5.传播速度c
c=· 单位:cm/s 二.微粒性 光的微粒性特征为:光由光子组成,而光子 具有能量,其能量与波长之间的关系为: E=h· =hc/ h—普朗克常数 6.626×10-34J· s 由上式可知,不同波长的光具有不同的能量, 波长愈长,光的能量愈低;反之,则愈高。
§2-2 分子光谱概述
若干个振动能级;在同一 电子能级和同一振动能级 中,因转动能量不同而分 为若干个转动能级。 若用E电、E振、E转分别表示三个能级, 则三者的关系为:E电>E振>E转。
外,还有部分因散射而损失,使透光度减小,
A实。所以往往发生正偏离。 • 化学因素引起的偏离 吸光物质常因离解、缔合而形成新化合物或 互变异构等化学变化而改变其浓度,导致了偏 离。例如 K2Cr2O7在水溶液中存在下列平衡:
2 2CrO4 Cr2O H 2O + 2 H 2 2 7 稀释或增大pH值 浓缩或减小pH值
如图所示,假设有一束强度为I0的单色平行
光,垂直通过一横面积为s的均匀介质。 当光强度为Ix的单色光通过
吸收层(db)后,光强度减弱
了dIx,则厚度为db的吸收
层对光的吸收率为-dIx/Ix,
另一方面,由于db为无限小,所以截面积上所有 吸光质点所占的面积之和(ds)与横截面积(s)之 比(ds/s)可视为该截面积上光子被吸收的几率, 即:-dIx/Ix=ds/s
降低由于单色光不纯造成负偏的方法: • 选择吸收曲线的max作入射光波长。因为吸收 曲线峰值顶部曲线较平坦,入射光谱带内各波长 的值相近。选择max,偏离光吸收定律较小。 只有当干扰物质存在并对待测物质的max产生
吸收时,才选择没干扰的其它波长作入射光波
长。
• 选择高分辨率仪器,使入射光波长范围尽可
5.传播速度c
c=· 单位:cm/s 二.微粒性 光的微粒性特征为:光由光子组成,而光子 具有能量,其能量与波长之间的关系为: E=h· =hc/ h—普朗克常数 6.626×10-34J· s 由上式可知,不同波长的光具有不同的能量, 波长愈长,光的能量愈低;反之,则愈高。
§2-2 分子光谱概述
若干个振动能级;在同一 电子能级和同一振动能级 中,因转动能量不同而分 为若干个转动能级。 若用E电、E振、E转分别表示三个能级, 则三者的关系为:E电>E振>E转。
紫外可见分光光度法简介
吸光度: 为透光度倒数的对数,用A表示, 即
A=lg1/T=lgI0/It
二、朗伯-比尔定律 朗伯-比尔定律:当一束平行单色光通过含有 吸光物质的稀溶液时,溶液的吸光度与吸光 物质浓度、液层厚度乘积成正比,即
A= κ cl 式中比例常数κ与吸光物质的本性,入射光 波长及温度等因素有关。c为吸光物质浓度,l 为透光液层厚度。
子时,可引起吸收峰的位移和吸收强度的改变,这些基团称为助 色团。如苯环的一个氢原子被一些基团取代后,苯环在254nm处 的吸收带的最大吸收位置和强度就会改变。
化合物 苯 氯苯 溴苯 苯酚 苯甲醚
取代基
max / nm 254
Cl 264
Br 262
OH 273
OCH3 272
m ax
300 320 325 1780 2240
1.定性分析 每一种化合物都有自己的特征光谱。测出未
知物的吸收光谱,原则上可以对该未知物作出定 性鉴定,但对复杂化合物的定性分析有一定的困 难。
2.纯度的鉴定 用紫外吸收光谱确定试样的纯度是比较方便
的。
如蛋白质与核酸的纯度分析中,可用 A280/A260的比值,鉴定其纯度。
3.结构分析 紫外-可见吸收光谱一般不用于化合物的
光源不是点光源,比色皿光径长度不一 致,光学元件的缺陷引起的多次反射等,均 造成光径不一致,从而与定律偏离。
紫外-可见分光光度计
一、主要部件的性能与作用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
结构分析,但利用紫外吸收光谱鉴定化合物 中的共轭结构和芳环结构还是有一定价值。
A=lg1/T=lgI0/It
二、朗伯-比尔定律 朗伯-比尔定律:当一束平行单色光通过含有 吸光物质的稀溶液时,溶液的吸光度与吸光 物质浓度、液层厚度乘积成正比,即
A= κ cl 式中比例常数κ与吸光物质的本性,入射光 波长及温度等因素有关。c为吸光物质浓度,l 为透光液层厚度。
子时,可引起吸收峰的位移和吸收强度的改变,这些基团称为助 色团。如苯环的一个氢原子被一些基团取代后,苯环在254nm处 的吸收带的最大吸收位置和强度就会改变。
化合物 苯 氯苯 溴苯 苯酚 苯甲醚
取代基
max / nm 254
Cl 264
Br 262
OH 273
OCH3 272
m ax
300 320 325 1780 2240
1.定性分析 每一种化合物都有自己的特征光谱。测出未
知物的吸收光谱,原则上可以对该未知物作出定 性鉴定,但对复杂化合物的定性分析有一定的困 难。
2.纯度的鉴定 用紫外吸收光谱确定试样的纯度是比较方便
的。
如蛋白质与核酸的纯度分析中,可用 A280/A260的比值,鉴定其纯度。
3.结构分析 紫外-可见吸收光谱一般不用于化合物的
光源不是点光源,比色皿光径长度不一 致,光学元件的缺陷引起的多次反射等,均 造成光径不一致,从而与定律偏离。
紫外-可见分光光度计
一、主要部件的性能与作用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
结构分析,但利用紫外吸收光谱鉴定化合物 中的共轭结构和芳环结构还是有一定价值。
第一章 紫外-可见分光光度法
➢ *跃迁:可以发生在任何具有不饱和键的 有机化合物分子中,其最大摩尔吸光系数max 很大。
➢ n*跃迁:发生在含有杂原子(O、N、S、P 、卤素等)的不饱和化合物中,其最大摩尔吸 光系数max 比较小。
二、常用术语
➢ *生色团:分子中可以吸收光子产生电子跃迁的基团 。含有键的不饱和基团
➢ *助色团:有些基团本身没有生色作用,但却能增强 生色团的生色能力,即它们与生色团相连时,会使其 吸收带最大吸收波长发生红移,并且增加其强度。通 常是带有非键电子对的杂原子的饱和基团,如-OH、 -NH2、-OR、-SH、-SR、-Cl、-Br、-I等。
不需参比液(消除了由于参比池的不同和制备空白溶液等产生 的误差)、克服了电源不稳而产生的误差,灵敏度高。
(4)光多道二极管阵列检测分光光度计
具有快速扫描的特点
可在0.1秒内获得190~ 820nm范围的全光光谱。 用于追踪化学反应的反应 动力学研究。 操作简单,只需将样品放 入无盖开放式样品室,并 点击“开始”即可。
音:
1 暗噪音:检测器与放大电路等各部件不确定性引起。
2 讯号噪音:亦称讯号散粒噪音 电子跃迁的不相等性
测量光强的不确定性
c 0.434K 1 1 c lgT T
➢ 当相对误差 c/c 最小时,求得T=0.368 或 A=0.4343。即当 A=0.4343 时,误差最小!
➢ 通常可通过调节溶液浓度或改变光程l 来控制 A 的读数在 0.2~0.7 范围内。
2. 杂散光 从单色器得到的单色光中与所需波长相 隔较远的光。
3. 散射光与反射光 使透光强度减弱 ,吸光度值偏高。
4. 非平行光 使l 增大影响测量值
(三)透光率测量误差T
由于光源不稳定性、读数不准等带来的误差。
紫外可见分光光度法
ΔT =1%, 溶液浓度相对误差Δc/c 与其透光度T 的关系曲线如右图。
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性
第十一章 紫外-可见分光光度法
返回
example
分子中价电子能级及跃迁示意图
*
反键
*
反键
→* →* n→* n→*
En
上一内容 下一内容 回主目录
非键 成键
成键
返回
轨道和轨道示意图
+ –+ +++
+
– *
+
+
–
C
C
–
+
+
+
C
C
–
–
上一内容 下一内容 回主目录
+
–
CC
*
–
+
+
CC
–
返回
共轭双键的离域作用
4
*
3
*
最高空轨道
E>E →跃迁几率↑→↑ ; E↓→↑
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
11.1.2 紫外-可见吸收光谱中的常用术语
• 吸收光谱的特征 • 生色团和助色团 • 红移与蓝(紫)移 • 增色效应和减色效应 • 强带和弱带 强带(strong band) max>104
弱带(weak band) max<102
上一内容 下一内容 回主目回录主目录
返回
吸收光谱(absorption spectrum)的特征
吸收峰 末端吸收A(end abso↓rption)
谷
肩峰(shoulder peak)
↓
吸收峰
↓ 谷
↓
min max sh
上一内容 下一内容 回主目回录主目录
min max λ
第四章紫外-可见分光光度法
3. 红移和紫移:吸收带的最大吸收波长发生移动, 向长波方向移动称为红移,向短波方向移动称为 紫移。
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm
紫外可见分光光度法
E— 吸光系数(absorptivity)
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。
紫外可见光分光光度法
紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。
物质的吸收光谱具有与其结构相关的特征性。
因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。
用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。
紫外-可见分光光度法
单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。 吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
4 检测器 检测器的作用是检测光信号,并将光 信号转变为电信号。现今使用的分光光度 计大多采用光电管或光电倍增管作为检测 器。 5 信号显示系统 常用的信号显示装置有直读检流计, 电位调节指零装置,以及自动记录和数用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光 源有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
2 单色器
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。
4 要点与注意事项 4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。 4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
4.3 测定时,禁止将试剂或液体物质放在 仪器的表面上,如有溶液溢出或其它原因 将样品槽弄脏,要尽可能及时清理干净。 4.4 如果仪器不能初始化,关机重启。 4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2.1.2 按数字[1]键进入%T/ABS(透过率/吸 光度测定)子菜单,选中对应的数字键来 设定测定条件:①NUM WL(设定测试波长 的数目,最多可设定6个不同波长);②WL Setting (设定测试波长具体数值)③ Data Mode( 选择测定吸光度或透光率 ) ,设定完 毕后点击 [Enter] 键确定,所有项目设定完 毕后按数字[0] 键确定,等待仪器调整至准 备状态。
第二章 紫外-可见分光光度法
1、光源
作用:供给符合要求的入射光。 (1)可见光光源 常见的可见光光源有:钨丝灯和卤钨灯。 (2)紫外光光源 常见的紫外光光源有:氢灯和氘灯。 •另外,为了使光源发出的光在测量时稳定,光 源的供电一般都要用稳压电源,即加有一个稳 压器。
2、单色器
作用:把光源发出的连续光谱分解成单色光,并 能准确方便地“取出”所需要的某一波长的光, 它是分光光度计的心脏部分。 组成:单色器一般由狭缝、色散元件(棱镜和光 栅)、透镜系统组成。 (1)棱镜单色器 •玻璃棱镜:可吸收紫外光,只能用于可见光区域。 •石英棱镜:用于紫外、可见和近红外三个光区域。 (2)光栅单色器 •可用于紫外、可见及红外光区域,目前生产的紫外可见分光光度计大多采用光栅作为色散元件。
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
四、分光光度计的维护 1、仪器对工作环境的要求
•稳固、温度15~28℃、干燥、无腐蚀性气体、 光线不宜过强
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
2、紫外-可见分光光度计——双光束
•/vlabcq/flash/分光光度计/分光光度 计.html
二、紫外-可见分光光度计的类型及特点 1、按使用的波长范围分
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
紫外可见分光光度法
模块二
紫外-可见分光光度法
第一节 紫外-可见吸收光谱 第二节 朗伯-比尔定律 第三节 紫外-可见分光光度计 第四节 分析条件的选择
第五节 测定方法
概
述
紫外可见分光光度法(Ultraviolet-Visible Spectrophotometry),又称:紫外-可见分子 吸收光谱法(Ultraviolet-Visible Molecular Absorption Spectrometry)是利用被测物质 对光的吸收特征和吸收强度对物质进行定 量和定性的分析方法。
形成的溶液具有良好的化学和光化学稳定性;
在样品的吸收光谱区无明显吸收;
如果要与标准品的吸收光谱相比较,须用相同的溶剂。
5.pH值的影响
很多化合物都具有酸性或碱性可解离基团,在不同 pH的溶液中,分子的解离形式可能发生改变,其 吸收光谱的形状、λmax和吸收强度可能不一样。
OH O-
OHH+
λmax 210.5nm ,270nm
完全透过
无色
吸收黄色光
2014-12-23
蓝色
13
课堂互动
1.紫外-可见光的波长范围是 A.200~400nm B.400~780nm C.200~780nm D.360~800nm 2.下列叙述错误的是 A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈 C.物质对光的吸收有选择性 D.光的能量与其频率成反比
2mg/ml的溶液,在1cm吸收池中,于310nm处测
定吸光度A。规定A≤0.05。
(三)、结构分析
有机化合物的紫外吸收光谱 可以推定分子骨架,判断发色团之间的共轭关系
和估计共轭体系中取代基的种类、位置和数目 。
1.饱和碳氢化合物 只产生ơ→ơ*跃迁,所需能量很大, 200-400nm没有吸收,常作为溶剂。
紫外-可见分光光度法
第一节 紫外-可见吸收光谱 第二节 朗伯-比尔定律 第三节 紫外-可见分光光度计 第四节 分析条件的选择
第五节 测定方法
概
述
紫外可见分光光度法(Ultraviolet-Visible Spectrophotometry),又称:紫外-可见分子 吸收光谱法(Ultraviolet-Visible Molecular Absorption Spectrometry)是利用被测物质 对光的吸收特征和吸收强度对物质进行定 量和定性的分析方法。
形成的溶液具有良好的化学和光化学稳定性;
在样品的吸收光谱区无明显吸收;
如果要与标准品的吸收光谱相比较,须用相同的溶剂。
5.pH值的影响
很多化合物都具有酸性或碱性可解离基团,在不同 pH的溶液中,分子的解离形式可能发生改变,其 吸收光谱的形状、λmax和吸收强度可能不一样。
OH O-
OHH+
λmax 210.5nm ,270nm
完全透过
无色
吸收黄色光
2014-12-23
蓝色
13
课堂互动
1.紫外-可见光的波长范围是 A.200~400nm B.400~780nm C.200~780nm D.360~800nm 2.下列叙述错误的是 A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈 C.物质对光的吸收有选择性 D.光的能量与其频率成反比
2mg/ml的溶液,在1cm吸收池中,于310nm处测
定吸光度A。规定A≤0.05。
(三)、结构分析
有机化合物的紫外吸收光谱 可以推定分子骨架,判断发色团之间的共轭关系
和估计共轭体系中取代基的种类、位置和数目 。
1.饱和碳氢化合物 只产生ơ→ơ*跃迁,所需能量很大, 200-400nm没有吸收,常作为溶剂。
4紫外-可见分光光度法
在进行光度测量时,调节仪器的零点,消除由于吸收池壁及溶剂对 入射光的反射和吸收带来的误差,有时还可以扣除干扰的影响
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分 紫外-可见吸收光谱法的应用
{
一、定性分析
通常根据吸收光谱的形状、吸收峰的数目以及最大吸收 波长的位置和相应的摩尔吸收系数进行定性鉴定。 一般采用比较光谱法:即在相同的测定条件下,比较待 测物与已知标准物的吸收光谱曲线,如果它们的吸收光谱曲 线完全等同,则可认为是同一物质。
在进行定性鉴定时,需要注意: 1.测试溶剂:应当对标准物和待测物有良好的溶解度,本身在测 定的波长内无光的吸收,有良好的稳定性。 2.测试的条件:标准物和待测物测试条件要完全相同,如溶剂、 PH、离子强度、温度及所用仪器等。 3.更改测试条件:为了防止测试数据的假象,要对现有某些条件 进行适当的变换,改变其中的某些测定条件,然后看标准物 和待测物的吸收光谱是否仍然完全相同。
(一)按仪器使用波长分类:
①真空紫外分光光度计(0.1-200 nm); ②可见分光光度计(350-700 nm); ③紫外-可见分光光度计(190-1100 nm); ④紫外-可见-红外分光光度计(190-2500 nm);
(二)按仪器使用的光学系统分类:
①单光束分光光度计; ②双光束分光光度计 ③双波长分光光度计 ④动力学分光光度计
Aλ1 = Aλx1 + Aλy1 = k x bc + k y bc λ1 x λ1 y
A X
Y
Aλ 2 =
x Aλ 2
y = k x bc + Aλ 2 λ 2 x
+ kλy2bc y
λ1 λ2 λ
k 为物质的特征参数,可通过配 制标准溶液测得。 解联立方程,可求得Cx , Cy
A
k λ1
x
k λ2
定性分析与定量分析的基础
定性分析基础
AБайду номын сангаас
B A
物质对光的选择吸收
物质的电子结构不同,所能 吸收光的波长也不同,这就 构成了物质对光的选择吸收 基础。
λmax(A) λmax(B) λ
A C
吸收曲线
定量分析基础
在一定的实验条件下, 物质对光的吸收与物质 的浓度成正比。
增 大 λ
★同一种物质对不同波长光的吸光度不同。吸光度最大 处对应的波长称为最大吸收波长λmax。 ★同一物质的浓度不同时,光吸收曲线形状相同,最大 吸收波长不变,只是相应的吸收度大小不同。 ★物质不同,其分子结构不同,则吸收光谱曲线不同, 最大吸收波长也不同。 所以可以根据吸收光谱曲线对物质进行定性鉴定 和定量分析。
(1)单光束分光光度计
经单色器分光后的一束平行光,轮流通过参比溶液和样品溶 液,以进行吸光度的测定。 简单,价廉,适于在给定波长处测量吸光度或透光度,一般 不能作全波段光谱扫描,要求光源和检测器具有很高的稳定 性。 参比池
样品池
(2)双光束分光光度计
经单色器分光后经反射镜分解为强度相等的两束光,一 束通过参比池,一束通过样品池。光度计能自动比较两束光 的强度,此比值即为试样的透射比,经对数变换将它转换成 吸光度并作为波长的函数记录下来。 自动记录,快速全波段扫描。可消除光源不稳定、检测 器灵敏度变化等因素的影响,特别适合于结构分析。仪器复 杂,价格较高。
4. 检测器 利用光电效应将透过吸收池的光信号变成可测的电信号,常用 的有光电管、光电倍增管、光电二极管、光电摄像管等。 要求灵敏度高、响应时间短、噪声水平低、稳定性好的优点。 5. 显示器 将监测器输出的信号放大并显示 出来的装置。 常用的液晶数字指示窗口和计算 控制显示。
二、紫外-可见分光光度计的分类及特点
光源
单色器
样品池
检测器
显示器
1.光源 在整个紫外光区或可见光区可以发射连续光 谱,具有足够的辐射强度、较好的稳定性、较长的 使用寿命。 可见光区常用的光源是钨灯或碘钨灯,波长范 围是350-1000 nm。 在紫外区常为氢灯或氘灯,发射的连续波长范 围是180-360 nm。
2.单色器 单色器是将光源辐射的复合光分成单色光的光学装置。它是 分光光度计的心脏部分。单色器一般由狭缝、色散元件及透镜系 统组成。关键是色散元件,最常见的色散元件是棱镜和光栅。 狭缝:将单色器的散射光切割成单色光。直接关系到仪器的分辨 率。狭缝越小,光的单色性越好。分为入射狭缝和出射狭缝。 棱镜:玻璃350~3200 nm,石英185~4000 nm。 光栅:波长范围宽,色散均匀,分辨性能好,使用方便。
{
二、结构分析
判断所含官能团、有机化合物的同分异构体。 (例如:某一化合物在250-300nm有强吸收带,则表示存在苯 环的特征吸收;若在210-350nm有强吸收带,则可能含有两 个双键的共轭单位。)
{
三、纯度鉴定
根据在吸收光谱最大吸收峰的位置和峰形状、数量判断该物质 的纯度。
{
四、定量分析
根据朗伯—比尔定律,物质在一定波长处的吸光度与它的浓度 呈线性关系。所以通过测定溶液对一定波长入射光的吸光度, 便可求得溶液的浓度和含量。紫外可见分光光度法不仅用于测 定微量成分,而且用于常量组分和多组分混合物的测定。
Cs(x)
x
(二)双波长分光光度法
不需空白溶液作参比;但需要两个单色器获得两束 单色光(λ1和λ2);以参比波长λ1处的吸光度Aλ1作为 参比,来消除干扰。 对于多组分混合物、浑浊试样分析及存在背景干扰 或共存组分吸收干扰的情况,利用双波长分光光度法灵 敏度、选择性、测量精密度等方面都比单波长法有所提 高。
三、紫外吸收光谱与分子结构的关系
有机化合物的紫外吸收光谱常被用作结构分析的依据: 饱和有机化合物 不饱和脂肪族有机 化合物 饱和烃及其取代衍生物 不饱和烃及共轭烯烃、 羟基化合物 苯及其衍生物
芳香化合物 不饱和杂环化合物
第二部分 紫外—可见分光光度计
一、紫外-可见分光光度计的基本构造
基本构造主要由光源、单色器、吸收池、检测器和显 示器五大部分组成。
物质对光的吸收特征,可以用吸收曲线来描 述。以入射光的波长λ为横坐标,溶液的吸光度A 为纵坐标作图,得到的曲线即为该物质的紫外-可 见吸收曲线或吸收光谱。 吸收曲线表明了物质对不同波长的入射光的 吸收能力。
(一)单波长分光光度法
1.单组分物质的定量分析
{
(1)比较法:在相同的条件下配制样品溶液和标准溶液(与 待测组分的浓度近似),在相同的实验条件和最大波长处分 别测得吸光度Ax和As,然后进行比较,求得样品溶液中待测 组分的浓度,Cx= Cs×(Ax/As)。 (2)标准曲线法:首先配制一系列已知浓度的标准溶液,在 最大吸收波长处分别测得标准溶液的吸光度,然后,做A-c的 校正曲线(理想的曲线应为经过原点的直线)。在完全相同 的条件下测出试液的吸光度,并从曲线上求得相应的试液的 浓度。
二、光的吸收定律:
{
1.朗伯—比尔定律:A=kbc。 一定温度下,一定波长的单色光通过均匀的、非散射的溶液时, 溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。 入射光 I0 透射光 It
A=kbc 式中: A:吸光度;描述溶液对光的吸收程度; k:摩尔吸光系数,单位 L·mol-1·cm-1; b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位 mol·L-1;
参比池
M1
M3
M2
样品池
M4
岛津UV-2450
(3)双波长分光光度计
由同一光源发出的光被分成两束,分别经过两个单色 器,得到两束不同波长(λ1和λ2)的单色光;通过折波器 以一定的频率交替通过同一样品池,然后由检测器交替接 收信号,最后由显示器显示出两个波长处的吸光度差值 ΔA。 无需参比池。△A就是扣除了背景吸收的吸光度。
4
2
5
1 3
1.入射狭缝 2.准直透镜 3.棱镜 4.聚焦棱镜 5.出射狭缝
3.吸收池 用于盛装试液的装置。吸收材料必须能够透过所测光谱范 围的光。一般可见光区使用玻璃吸收池,紫外光区使用石英 吸收池。 规格有0.5、1.0、2.0、5.0cm 等。 在高精度的分析测定中(紫外区尤其重要)吸收池要挑选 配对,因为吸收池材料的本身吸光特性以及吸收池的光程长 度的精度等对分析结果都有影响。
{
2.摩尔吸光系数:(A=kbc)
(1) k与入射波长、溶液的性质以及温度有关。 (2)吸收物质在特定波长和溶剂条件下的特征常数; (3)不随浓度c 和光程长度b的改变而改变。在温度和 波长等条件一定时,k仅与吸收物质本身的性质有关; (4)是物质吸光能力的量度,可作为定性鉴定的参数;
(5)同一物质在不同波长下的 k 值是不同的。在 最大吸收波长λmax处的摩尔吸光系数,常以 kmax 表示。K max表明了该吸收物质最大限度的吸光能 力,也反映了光度法测定该物质可能达到的最大灵 敏度。 (6)kmax越大表明该物质的吸光能力越强,用光度 法测定该物质的灵敏度越高。 (7)k在数值上等于浓度为1mol/L、液层厚度为1cm 时该溶液在某一波长下的吸光度。
(三)紫外-可见分光光度计主要技术指标
1.波长范围:表示仪器能测定的波长范围。波长范围越 大,仪器越好,这与仪器使用的灯有关。 2.波长精度:表示仪器单色器波长误差程度。波长误差 越小,仪器精度越高,这与仪器使用的单色器有关。 3.杂散光:表示单色光的纯度,这与制作单色器的材料 和加工工艺有关。
4.光度的测量精度:表示仪器每次测定显示读数的精 确度,即仪器能准确读小数点后几位。位数越多, 仪器精度越高,这与仪器使用的检测系统有关。 5.光度测量的重现性:每次A读数的重现性,这与仪 器使用的检测器的质量有关。 6.分辨率:表示仪器分辨吸收光谱微细结构的能力, 即指仪器对于紧密相邻的峰可分辨的最小波长间 距,这是衡量仪器性能的一个综合指标。
测得的吸光度相当于普通法中待测溶液与标准溶液的 吸光度之差ΔA。 吸光度与Δc呈直线关系。由标准曲线上查得相应的 Δc值,则待测溶液浓度 Cx = Cs +Δc