高等数学(函数与极限)测试题目及答案
函数与极限习题与答案计算题(供参考)
高等数学二、计算题(共 200 小题,)1、设xxx f +=12)(,求)(x f 的定义域及值域。
2、设x xx f -+=11)(,确定)(x f 的定义域及值域。
3、设)ln(2)(22x x xx x f -+-=,求)(x f 的定义域。
4、的定义域,求设)(sin 512arcsin )(x f x x x f π+-=。
5、的定义域,求设⎪⎭⎫⎝⎛++-=x f x f x x x f 1)(22ln )(。
6、的定义域求函数22112arccos)(x x xxx f --++=。
7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。
8、的定义域,求设 )(16sin )(2x f x x x f -+=。
9、的定义域,求设)(12)(2x f xx x f --=。
10、设,求的定义域f x x xf x ()lg ()=+256。
11、设,求的定义域f x x xf x ()arctan ()=-+2512。
12、13、,55lg )(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。
14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。
15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中c b a ,,是给定的常数。
16、)1()11(1)(2-≠+-+=x x xf xx x f ,求设。
17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。
18、)()0( )11()1(2x f x x x xf ,求 设>++=。
函数、极限与连续测试卷带答案
函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。
(完整版)函数与极限习题与答案
(完整版)函数与极限习题与答案第⼀章函数与极限(A )⼀、填空题 1、设x x x f lg lg 2)(+-=,其定义域为。
2、设)1ln()(+=x x f ,其定义域为。
3、设)3arcsin()(-=x x f ,其定义域为。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为。
6、432lim23=-+-→x kx x x ,则k= 。
7、函数xxy sin =有间断点,其中为其可去间断点。
8、若当0≠x 时,xxx f 2sin )(= ,且0)(=x x f 在处连续,则=)0(f 。
9、=++++++∞→)21(lim 222nn nn n n n n Λ。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的条件。
11、=++++∞→352352)23)(1(lim xx x x x x 。
12、3)21(lim -∞→=+e nknn ,则k= 。
13、函数231x1是⽐3-+x 15、当0→x 时,⽆穷⼩x --11与x 相⽐较是⽆穷⼩。
16、函数xe y 1=在x=0处是第类间断点。
17、设113--=x x y ,则x=1为y 的间断点。
18、已知33=??πf ,则当a 为时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设??>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在,则a= 。
20、曲线2sin 2-+=xxx y ⽔平渐近线⽅程是。
21、114)(22-+-=x x x f 的连续区间为。
22、设??>≤+=0,cos 0,)(x x x a x x f 在0=x 连续,则常数a= 。
⼆、计算题1、求下列函数定义域(1)211xy -= ;(2)x y sin = ;(3)x2、函数)(x f 和)(x g 是否相同?为什么?(1)x x g x x f ln 2)(,ln )(2 == ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ;(2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数(1)22,sin ,x v v u u y === ;(2)21,x u uy +==;5、计算下列极限(1))2141211(lim n n ++++∞→Λ;(2)2)1(321lim nn n -++++∞→Λ;(3)35lim 22-+→x x x ;(4)112lim 221-+-→x x x x ;(5))12)(11(lim 2x x x -+∞→;(6)2232) 2(2lim -+→x x x x ;(7)x x x 1sin lim 20→;(8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→;6、计算下列极限(1)xwx x sin lim 0→;(2)x x→;(4)xx xx )1(lim +∞→;(5)1)11(lim -∞→-+x x x x ;(6)x x x 10)1(lim -→;7、⽐较⽆穷⼩的阶(1)32220x x x x x --→与,时;(2))1(21112x x x --→与,时;8、利⽤等价⽆穷⼩性质求极限(1)30sin sin tan lim x x x x -→;(2)),()(sin ) sin(lim0是正整数m n x x m n x →;9、讨论函数的连续性。
高三数学函数极限试题答案及解析
高三数学函数极限试题答案及解析1.已知定义在上的函数满足.当时.设在上的最大值为,且数列的前项和为,则 . (其中)【答案】【解析】依题意可得函数.所以,,,…,.所以数列是一个首项为1,公比为的等比数列.所以.所以.【考点】1.函数的性质.2.数列的通项.3.函数的最值.4.极限问题.2.若存在,则实数的取值范围是_____________.【答案】【解析】我们知道存在的充要条件是,故本题中有,解之即得结论.【考点】存在的充要条件.3.若存在,则不可能为()A.;B.;C.;D.;【答案】B【解析】如果f(x)=|x|,则,所以不存在.所以不可能为.4.函数在点处的切线方程为,则等于()A.B.C.D.【答案】D【解析】∵函数在点处的切线方程为,∴,∴,故选D5.函数在处的极限是()A.不存在B.等于C.等于D.等于【答案】A【解析】分段函数在x=3处不是无限靠近同一个值,故不存在极限.[点评]对于分段函数,掌握好定义域的范围是关键。
6.已知,则_______【答案】-2【解析】得,所以-2.7.若展开式的第项为,则________【答案】 2【解析】略8.=" " .【答案】2【解析】略9.若,则的值为A.0B.C.1D.【答案】B【解析】略10._________________【答案】-1【解析】略11.___________【答案】【解析】略12.= 。
【答案】3【解析】略13.函数f (x)=在点x=1和x=2处的极限值都为0,而在点x=-2处不连续,则x·f(x)<0的解集是()A.(-2,0)∪(1,2)B.(-2,2)C.(-∞,-2)∪(1,2)D.(-2,0)∪(2,+∞)【答案】A【解析】略14.(理)的值等于()()()0 ()()不存在【答案】略【解析】略15.= .【答案】-1【解析】略16.已知,则的值为()A.a B.2a C.3a D.9a【答案】D【解析】则17.=A.—1B.—C.D.1【答案】B【解析】=18._______________.【答案】【解析】略19. ( )A.0B.1C.2D.3【答案】C【解析】本题主要考查极限的运算,故原式,故选C20.如图,函数的图象是折线段,其中的坐标分别为,则;.(用数字作答)【答案】 2 -2【解析】 f(0)=4,f(4)=2;由导数的几何意义知-2.。
(完整版)高等数学测试题及解答(分章)
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高三数学函数极限试题答案及解析
高三数学函数极限试题答案及解析1.已知定义在上的函数满足.当时.设在上的最大值为,且数列的前项和为,则 . (其中)【答案】【解析】依题意可得函数.所以,,,…,.所以数列是一个首项为1,公比为的等比数列.所以.所以.【考点】1.函数的性质.2.数列的通项.3.函数的最值.4.极限问题.2.计算:= .【答案】【解析】这属于“”型极限问题,求极限的方法是分子分母同时除以(的最高次幂),化为一般可求极限型,即.【考点】“”型极限3.计算:=_________.【答案】3【解析】这种极限可先把待求极限式变形,然后观察是哪种展开式的极限再选用相应的方法,.【考点】“”型极限.4.若,则.【答案】【解析】由已知可得,所以,解得.【考点】极限的计算5.函数在处的极限是()A.不存在B.等于C.等于D.等于【答案】A【解析】分段函数在x=3处不是无限靠近同一个值,故不存在极限.[点评]对于分段函数,掌握好定义域的范围是关键。
6.等差数列,的前n项和分别为,则【答案】【解析】解:7.已知,则_______【答案】-2【解析】得,所以-2.8.若展开式的第项为,则________【答案】 2【解析】略9.设,求的最大值【答案】【解析】略10.___________【答案】【解析】略11.函数在点处可导,则,b=【答案】【解析】略12.极限存在是函数在点处连续的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】B【解析】略13.函数f (x)=在点x=1和x=2处的极限值都为0,而在点x=-2处不连续,则x·f(x)<0的解集是()A.(-2,0)∪(1,2)B.(-2,2)C.(-∞,-2)∪(1,2)D.(-2,0)∪(2,+∞)【答案】A【解析】略14.()A.B.0C.D.不存在【答案】A【解析】略15.= .【答案】-1【解析】略16.已知,则的值为()A.a B.2a C.3a D.9a【答案】D【解析】则17. .【答案】【解析】略18.=A.—1B.—C.D.1【答案】B【解析】=19.已知,则的值为 .【答案】-8【解析】略20. ( )A.0B.1C.2D.3【答案】C【解析】本题主要考查极限的运算,故原式,故选C。
高等数学试题(含答案)
高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
高中数学函数的极限与连续练习题及参考答案2023
高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
《高等数学》函数与极限测试卷
《高等数学》函数与极限测试卷班级 学号 姓名一、选择题(本大题共10 题,每小题2分,共 20分,请将正确答案 填入下面相应的方格中)1、当0→x 时,下列变量中是无穷小量的有( )A 、x 1sinB 、xxsin C 、12--x D 、x ln2、设xe x x xf cos sin )(⋅=,则在),(+∞-∞内,)(x f 是( )A 、有界函数;B 、 单调函数;C 、周期函数;D 、 偶函数.3、设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( ) A 、 n n b a <对任意n 成立 B 、n n c b <对任意n 成立 C 、 极限n n n c a ∞→lim 不存在 D 、 极限n n n c b ∞→lim 不存在4、下列等式中成立的是( )A 、e n nn =⎪⎭⎫ ⎝⎛+∞→21lim B 、e n n n =⎪⎭⎫⎝⎛++∞→211limC 、e n n n =⎪⎭⎫ ⎝⎛+∞→211lim D 、e n nn =⎪⎭⎫ ⎝⎛+∞→211lim5、下列极限计算正确的是( )A 、e x x x =+→)11(lim 0B 、11sin lim =∞→x x xC 、11sin lim 0=→xx x D 、1sin lim=∞→x x x 6、下列命题肯定正确的是( )A 、若)(lim 0x f x x →存在,)(lim 0x g x x →不存在,则)]()([lim 0x g x f x x +→必不存在B 、)(lim 0x f x x →与)(lim 0x g x x →不存在,则)]()([lim 0x g x f x x +→必不存在C 、若)(lim 0x f x x →存在, )(lim 0x g x x →不存在,则)]()([lim 0x g x f x x →必不存在D 、若)(lim 0x f x x →不存在,则|)(|lim 0x f x x →必不存在7、当0→x 时,x cos 1-与x x sin 相比较( ) A 、是低阶无穷小量 B 、是同阶无穷小量 C 、是等阶无穷小量 D 、是高阶无穷小量8、设10()00x f x xx -≠⎪=⎨⎪=⎩,则0x =是函数()f x 的( ) A 、可去间断点 B 、无穷间断点 C 、连续点 D 、跳跃间断点9、函数()3sin x x f x xπ-=的可去间断点的个数为n ,则=n ( )A 、1B 、2C 、3D 、无穷多个10、设函数,11)(1-=-x xex f 则( ) A 、1,0==x x 都是)(x f 的第一类间断点 B 、1,0==x x 都是)(x f 的第二类间断点C 、0=x 是)(x f 的第一类间断点,1=x 是)(x f 的第二类间断点D 、0=x 是)(x f 的第二类间断点,1=x 是)(x f 的第一类间断点二、填空题(本大题共4 题,每小题3分,共12分)1、n →∞= ;2、如果0x →时,要无穷小量(1cos )x -与2sin 2xa 等价,则a = ; 3、设⎪⎩⎪⎨⎧>≤+=0,sin 0,)(2x xbx x bx a x f 在0=x 处连续,则a 与b 应满足的关系是 ;4、已知25lim 232n an bn n →∞++=+,则a =________,b =________;三、计算题(本大题共9题,15-21题每小题6 分,22题每 小题8 分,共58 分)15、计算1)1232(lim +∞→++x x x x . 16、计算0arcsin 3lim 6321x x x x x x→--+.17、求2221321lim()12n n n n n n n n n→∞-++++++++. .18、求x x x x x x -++-+→20sin 1sin 1tan 1lim .19、已知lim (5)2x x →+∞=, 求常数a 和b .20、.其中.计算)0( 2323lim 11>>++++∞→b a b a b a n n nn n21、确定,a b 的值,使()322ln 10011ln 01ax x f x bx x x x x x x ⎧+<==⎨⎪-+⎪>++⎪⎩在0x =处连续.22、讨论函数x x x x f nn n -+-=∞→11lim )(22的连续性, 若有间断点, 判别其类型.四、证明题(本大题共1题,每小题10分,共10分)23、设()f x 在[0,2]a 上连续,且(0)(2)f f a =,证明在[0,]a 内至少存在一点ξ,使得()()f f a ξξ=+.。
函数与极限测试题及答案一
函数与极限测试题(一)一、 填空题 二、1、若1ln 11ln x f x x+⎛⎫=⎪-⎝⎭,则()f x =_____。
三、2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。
四、3、若0x →时,无穷小221ln 1x x -+与2sin 2a 等价,则常数a =_____。
五、4、设()()21lim 1n n x f x nx →∞-=+,则()f x 的间断点为x =_____。
六、 单选题七、 1、当0x →时,变量211sinx x是( ) 八、A 、无穷小B 、无穷大九、 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 十、2、设函数()bx xf x a e=+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( )十一、 A 、0,0a b << B 、0,0a b >> 十二、 C 、0,0a b ≥< D 、0,0a b ≤> 十三、 3、设()232xxf x =+-,则当0x →时( )十四、 A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 十五、 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小十六、 4、设对任意的x ,总有()()()x f x g x ϕ≤≤,且()()lim 0x g x x ϕ→∞-=⎡⎤⎣⎦,则()lim x f x →∞为( )十七、 A 、存在且等于零 B 、存在但不一定等于零十八、 C 、一定不存在 D 、不一定存在 十九、 例:()()()11,,221x x f x x g x x x x ϕ==+=+++ 二十、 求下列极限 二十一、1、2241limsin x x x x x+-+、()221212lim 1xx x x x -→⎛⎫ ⎪+⎝⎭二十二、确定,a b 的值,使()322ln 101tan 1sin 011ln 01ax x x x f x bx x x x x x x ⎧+⎪<+-+⎪⎪==⎨⎪-+⎪>++⎪⎩在(),-∞+∞内连续。
高数函数与极限练习题
高数函数与极限练习题一、函数的基本概念1. 判断下列函数的单调性:(1) f(x) = 3x + 4(2) g(x) = 2x^2 + 5x + 1(3) h(x) = e^x x2. 求下列函数的定义域:(4) f(x) = √(x^2 9)(5) g(x) = 1 / (x 2)(6) h(x) = ln(x^2 4)3. 判断下列函数的奇偶性:(7) f(x) = x^3 3x(8) g(x) = sin(x) + cos(x)(9) h(x) = e^x e^(x)二、极限的计算4. 计算下列极限:(10) lim(x→0) (sin(x) / x)(11) lim(x→1) (x^2 1) / (x 1)(12) lim(x→+∞) (1 / x^2 1 / x)5. 讨论下列极限的存在性:(13) lim(x→0) (sin(1/x))(14) lim(x→0) (x^2 / sin(x))(15) lim(x→+∞) (x ln(x))6. 计算下列极限:(16) lim(x→0) (e^x 1) / x(17) lim(x→+∞) (x^2 + x + 1) / (2x^2 + 3x 1)(18) lim(x→∞) (x^3 + 3x^2 + 2x + 1) / (x^4 + 4x^3 + 3x^2)三、无穷小与无穷大7. 判断下列表达式的无穷小性质:(19) sin(x) x(20) 1 cos(x)(21) e^x 1 x8. 判断下列表达式的无穷大性质:(22) 1 / (x 1)(23) ln(1 / x)(24) x^2 e^x (x > 0)四、连续性与间断点9. 讨论下列函数的连续性:(25) f(x) = |x 1|(26) g(x) = { x^2, x < 0; 1, x ≥ 0 }(27) h(x) = { sin(x), x ≠ 0; 1, x = 0 }10. 求下列函数的间断点:(28) f(x) = 1 / (x^2 1)(29) g(x) = √(1 cos(x))(30) h(x) = ln|x^2 4|五、综合题11. 设函数f(x) = x^2 2x + 3,求lim(x→+∞) f(x)。
(完整)高等数学函数的极限与连续习题精选及答案
1、 函数f xx 2x 1与函数错误 ∵当两个函数的定义域和函数关系相同时,x 31g x相同.x1 则这两个函数是相同的。
x 31函数关系相同, 但定义域不同, x1所以 f x 与 g x 是不同的函数。
M (M 为一个常数) ,则 f fx 根据无穷大的定义,此题是错误的。
3、如果数列有界, 错误 如:数列 2、如果 错误 4、 lim an错误 如:数列5、如果 x 为无穷大. 则极限存在. n1 n 是有界数列,但极限不存在 x na n lim ann n 1 , lim ( 1) nA , 1,但 lim ( 1)n 不存在。
n 当x 时, lim f x x正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果为无穷小). 正确 7、当 正确8、 错误 9、 错误 ,则 ∵ lim 1 ,是 ∴ lim lim 10 ,即 的高阶无穷小量。
20时, 1 cosx 与 x 2是同阶无穷小. 1 cosx ∵lim x0 2sin2 x l x im 0 x 2 2 l x im 02 x sin 2 x lim xsin 1 x 0 x 1 ∵ lim sin 不存在,∴不可利用两个函数乘积求极限的法则计算。
x l x im 0 lim sin 1 x 0 x 0. lim 1 0 10、点 错误 e . ∵ lim 1 x x 0 是函数 ylimx 0 0x∴点 11、函数 f xlimx 0 0x的无穷间断点.x 0 是函数1必在闭区间x1 , limx 0 0xx lim1x 0 0x的第一类间断点.xa,b 内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质, 1f x 在 x 0 处不连续x1 ∴函数 f x 在闭区间 a,b x内不一定取得最大值、最小值二、填空题: 1、设 y (1) fx xfe 的定义域是 0,1 ,则 的定义域是( ( ,0) );2) 2 sin 2 x 的定义域是( xx,x (k Z));(3) f lg x 答案:( 1)∵ 0 0 0 2)∵ 3)∵ 的定义域是( x e12 1 sin lg x 2、函数 f x 3、设 f x 2 sin x (1,10) ).1, 的定义域是2,4).2sin x).4、 lim nsin x =(n n ).∵ lim nsin x nlim nx sin n 1 lim nx sin nx xx5、设 fcos2 x1,则 lim fx 1 0), lim f10 ).∵ lim x 1 0lim (1 x 1 0 x) lim x 1 0 fx lim x 1 0 x1 1 cosx 6、设 f x 0, 0 如果 f x 在 x 0处连续, ).∵ lim 1 cosx x0 1, 2 7、设 x 0 是初等函数 f x 定义区间内的点,则 lim f x x x 0 lim f x x x 0 如果 f x 在 x 0 处连续,则 lim x0 ∵初等函数 f x 在定义区间内连续, 8、函数 y 2当x1时为无穷大,当 1 cosx xf0).f x 0 )时为无穷小.2m12mlim x2 x 1 ax limx22x2 x 1 ax b x2 x 1 ax bx2 x 1 ax b10、11、12、lim xlimxx2xx21 ax b2欲使上式成立,令上式化简为limx1,函数f xfx若limxax blimx2 2 21 a2 x2 1 2ab x 1 b22xx 1 ax1 2aba20 ,1 b2x2x 1 ax2ab 0 ,1的间断点是(2x2x24x 3 ax2sinxx2的连续区间是2 ,则aax 2sinxlimx2sinx13、lim sin x),limx1x∴alimx0,xlimx1,1 2ab1 b21xsinx11mlix∵ lim sin x lim 1 sin x 0 x x x x1x1 l x im0 1 ( x) x( 1)).,1,1,3, 3,).),).∴ae k ).lim xsin 1xlimx1sinx1limxkxlimx(1limx1x)x x1 2ab1a14、limsin (arctan x)(x三、选择填空:1、如果lim x n a ,则数列x n是(na.单调递增数列b.有界数列不存在 ),lim sin(arccot x) xb)c.发散数列1 32、函数 f x a .奇函数 log a x x 21 b .偶函数是( a )c .非奇非偶函数 log a x( x)21 log axx 2 13、当 x 0 时, log a xxe1 是 x 的(2cfxa .高阶无穷小b .低阶无穷小 4、如果函数 f x 在 x 0 点的某个邻域内恒有 a .极限存在 b .连续 5、 函数 f 1在 xc ) 6、 7、 8、 9、 a . x 设函数 a .1 sinx ∵ lim x 0 0 xsin x sin x lim x0 lim x 0 0 x 根据极限存在定理知: 如果函数 f a .有定义 f x 当 x 数列1,1, b . x ,则 l x im 0 f b .-1 sin x 0x lim sin x1 x 0 0 c .等价无穷小 fx 条件下趋于 sin x limx 0 0 xM (M 是正数) c .有界 c . x 1 0c .不存在 ,则函数 f x 在该邻域内 ( c ) x lim f x0x 0时极限存在,则函数 无定义 不存在。
高等数学函数的极限与连续习题及答案
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.
高数 上 习题及答案 极限
x +1
⎞ ⎟ ⎟ ⎟
⎝ 2x ⎠
3
=
lim
x→∞
⎛⎜1 ⎝ ⎛⎜⎝1
+ +
3 2x 1 2x
x +1
⎞ ⎟ ⎠
x +1
⎞ ⎟⎠
3
⎡
⎤ 2x 2
=
lim
⎢⎢⎢⎣⎛⎜⎝ 1 +
3 2x
⎞ ⎟ ⎠
3
⎥
⎥ ⎥⎦
⎛⎜ 1 + ⎝
3 2x
⎞ ⎟ ⎠
x→∞
1
⎡⎢⎢⎣⎛⎜⎝1
+
1 2x
2
⎞ ⎟ ⎠
x
⎤ ⎥ ⎥⎦
ln lim y = ln e0 , lim y = 1
x→π
x→π
2
2
5
解: lim sin xln x
lim xsin x = lim esin xln x = ex→0+
x→0+
x→0+
ln x
lim sin xln x = lim
x→0+
1 x→0+
sin x
1
= lim
x→0+
x⋅
−cos x sin2 x
⎛⎜1
+
⎠⎝
3 n
⎞ ⎟ ⎠
=1
(18) lim sin 5x = ( )
x→π sin 3x
(a) − 4 (b)-1 (c)1
3 分析:lim sin 5x = lim 5cos5x = 5
x→π sin 3x x→π 3cos 3x 3
(d) 5
3
(22) lim x2 +1 − 3x = ( )
函数与极限练习题
函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。
[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。
[ ]4、定义在(∞+∞-,)上的常函数是周期函数。
[ ]5、任一周期函数必有最小正周期。
[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。
[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。
[ ] 8、f(x)=1+x+2x 是初等函数。
[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。
(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。
(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。
1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。
(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。
高等数学第一章函数与极限试题有答案
高等数学第一章函数与极限试题有答案一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A ) lim 0+→x )x1 +1(x=1 B ) lim 0+→x )x1+1(x=eC ) lim ∞→x )x1 1-(x=-e D ) lim ∞→x )x1 +1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1;B.∞;C.3ln ;D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( )A.1;B.∞;C.2-e ;D.2e7.极限:∞→x lim 332xx +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim 0-+→=( ) A.0; B.∞; C21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( ) A.0; B.∞; C.2; D.21.10.极限: xx x x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sinlim 2+∞→x xx x = . 12. lim 0→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f xx =_______________;14. =→xxxx 5sin lim 0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x()()x x x x f 25lg 12-+-+=其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→ 28.求它的定义域。
高等数学练习册及答案
x,− ∞ < x < 1;
4、 设f
(x)
=
x
2,1 ≤
x
≤
4;
则f
( x)的反函数φ ( x)=
2 x,4 < x < +∞.
解: 当 − ∞ < x < 1时,y = x,即x = y −∞ < y < 1
当1 ≤ x ≤ 4时,y = x 2 , ∴ x = y 1 ≤ y ≤ 16.
12; C.1; D.e−
1
2.
§7 无穷小的比较
一、单项选择题
1、x→0 时,1—cosx 是 x2 的 B
。
(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小
2、当 x→0 时,(1—cosx)2 是 sin2x 的 A
。
(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小
xn
=
0;
(B) lim n→∞
xn
= 10−7 ;
0, n为奇数,
(C) lim n →∞
xn
=
10
−7
,
; n为偶数
(D)
lim
n→∞
xn不存在
3、数列有界是数列收敛的 B
。
(A)充分条件;
(B)必要条件;
(C)充分必要条件; (D)既非充分又非必要条件。
4、下列数列 xn 中,收敛的是 B
6
7、设f
(x)
=
tan kx x
,x
>
0,且 lim
f
( x)存在,则k的值为[
(完整版)函数极限习题与解析
函数与极限习题与解析(同济大学第六版高等数学)一、填空题1、设x x x f lg lg 2)(+-= ,其定义域为 。
2、设)1ln()(+=x x f ,其定义域为 。
3、设)3arcsin()(-=x x f ,其定义域为 。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。
6、432lim 23=-+-→x k x x x ,则k= 。
7、函数xx y sin =有间断点 ,其中 为其可去间断点。
8、若当0≠x 时 ,x x x f 2sin )(=,且0)(=x x f 在处连续 ,则=)0(f 。
9、=++++++∞→)21(lim 222nn n n n n n n 。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。
11、=++++∞→352352)23)(1(lim x x x x x x 。
12、3)21(lim -∞→=+e n kn n ,则k= 。
13、函数23122+--=x x x y 的间断点是 。
14、当+∞→x 时,x1是比3-+x15、当0→x 时,无穷小x --11与x 相比较是 无穷小。
16、函数x e y 1=在x=0处是第 类间断点。
17、设113--=x x y ,则x=1为y 的 间断点。
18、已知33=⎪⎭⎫ ⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x x xx f x 若)(lim 0x f x →存在 ,则a=。
20、曲线2sin 2-+=x xx y 水平渐近线方程是 。
21、114)(22-+-=x x x f 的连续区间为 。
22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。