高中数学导数知识点归纳总结

合集下载

导数性质知识点总结

导数性质知识点总结

导数性质知识点总结导数性质知识点总结「篇一」导数的定义:当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

一般地,我们得出用函数的导数来判断函数的增减性(单调性)的.法则:设y=f(x )在(a,b)内可导。

如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。

如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。

所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值求导数的步骤:求函数y=f(x)在x0处导数的步骤:① 求函数的增量Δy=f(x0+Δx)—f(x0)② 求平均变化率③ 取极限,得导数。

导数公式:① C'=0(C为常数函数);② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数③ (sinx)' = cosx; (cosx)' = — sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1)(arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)导数的应用:1.函数的单调性(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。

(完整版)高中数学导数与函数知识点归纳总结

(完整版)高中数学导数与函数知识点归纳总结

高中导数与函数知识点总结归纳一、基本概念1.导数的定义:设x 0是函数y =f (x )定义域的一点,如果自变量x 在x 0处有增量∆x ,则函数值y 也引起相应的增量∆y =f (x 0+∆x )-f (x 0);比值率;如果极限lim ∆y f (x 0+∆x )-f (x 0)称为函数y =f (x )在点x 0到x 0+∆x 之间的平均变化=∆x ∆xf (x 0+∆x )-f (x 0)∆y 存在,则称函数y =f (x )在点x 0处可导,并把这个极限叫做=lim ∆x →0∆x ∆x →0∆x y =f (x )在x 0处的导数。

f (x )在点x处的导数记作y 'x =x=f '(x 0)=lim∆x →0f (x 0+∆x )-f (x 0)∆x2导数的几何意义:(求函数在某点处的切线方程)函数y =f (x )在点x 0处的导数的几何意义就是曲线y =f (x )在点(x 0,f (x ))处的切线的斜率,也就是说,曲'线y =f (x )在点P (x 0,f (x ))处的切线的斜率是f (x 0),切线方程为y -y 0=f (x )(x -x 0).'3.基本常见函数的导数:n①C '=0;(C 为常数)②x ()'=nx x x n -1;③(sin x )'=cos x ;④(cos x )'=-sin x ;⑤(e )'=e ;⑥(a )'=a ln a ;⑦(ln x )'=x x 11;⑧(l o g ax )'=logae .xx二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:⎡'⎣f (x )±g (x )⎤⎦=f '(x )±g '(x )法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:⎡'=f '(x )g (x )+f (x )g '(x )f x ⋅g x ⎤()()⎣⎦常数与函数的积的导数等于常数乘以函数的导数:(Cf (x ))'=Cf '(x ).(C为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎡f (x )⎤'f '(x )g (x )-f (x )g '(x )g (x )≠0)。

导数知识点总结大全高中

导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。

函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。

当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。

2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。

当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。

3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。

导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。

4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。

二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。

函数在某一点可导的条件是函数在这一点存在切线。

2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。

3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。

三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。

高中常用导数公式大全

高中常用导数公式大全

高中常用导数公式大全导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

在高中数学学习中,导数公式是必须掌握的知识点。

本文将为大家总结高中常用的导数公式大全,希望能够帮助大家更好地理解和掌握这一部分知识。

1. 常数函数的导数。

对于常数函数 f(x) = C,其中 C 为常数,其导数为 f'(x) = 0。

这是因为常数函数的图像是一条水平直线,斜率恒为零,即变化率为零。

2. 幂函数的导数。

幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

例如,f(x) = x^2 的导数为 f'(x) = 2x。

3. 指数函数的导数。

指数函数 f(x) = a^x(其中 a 为常数且 a>0, a≠1)的导数为 f'(x) = a^x ln(a)。

这是指数函数导数的特殊性质。

4. 对数函数的导数。

对数函数 f(x) = log_a(x)(其中 a 为常数且 a>0, a≠1)的导数为 f'(x) = 1 / (xln(a))。

对数函数的导数也是其特殊的性质。

5. 三角函数的导数。

常见的三角函数包括正弦函数 sin(x)、余弦函数 cos(x)、正切函数 tan(x) 等,它们的导数分别为 cos(x)、-sin(x)、sec^2(x)。

这些导数公式是高中数学中需要牢记的知识点。

6. 反三角函数的导数。

反三角函数包括反正弦函数 arcsin(x)、反余弦函数 arccos(x)、反正切函数arctan(x) 等,它们的导数分别为 1 / √(1-x^2)、-1 / √(1-x^2)、1 / (1+x^2)。

这些导数公式也是高中数学中的重要内容。

7. 基本导数法则。

在求导数时,我们需要掌握基本的导数法则,包括常数倍法则、和差法则、乘积法则、商数法则等。

这些法则是求导数过程中的基础,也是高中数学中的重点内容。

8. 链式法则。

对于复合函数,我们需要使用链式法则来求导数。

lxl-高中数学导数知识点归纳总结

lxl-高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇.2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件.可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续.事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 0000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→ ).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x y ,故xy x ∆∆→∆0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义函数的单调性函数的极值函数的最值 常见函数的导数导数的运算法则在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数) )0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e xx a a log 1)(log '= x x e e =')( a a a x x ln )('=III. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式. ③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''. 导数知识点总结复习经典例题剖析考点一:求导公式。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。

也就是说,导数描述了函数在某一点处的变化率。

如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。

2. 导数的代数定义设函数y=f(x),在点x0处可导。

如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。

这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。

二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。

不过反之不成立。

2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。

高中导数知识点总结大全

高中导数知识点总结大全

高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。

那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

高中导数知识点总结大全

高中导数知识点总结大全

高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。

那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

高中导数知识点总结大全

高中导数知识点总结大全

高中导数知识点总结大全目录高中导数知识点总结高中数学的学习方法如何提升高中数学成绩高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a 即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中导数复习资料一、基本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中导数复习资料一、基本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

重点高中数学导数知识点归纳总结

重点高中数学导数知识点归纳总结

重点高中数学导数知识点归纳总结高中数学中的导数是一个重要的知识点,它是微积分的基础,也是日后学习数学和理工科学科的必备知识。

下面将对高中数学中的导数相关知识进行归纳总结。

一、导数的定义与基本性质1. 导数的定义:设函数y=f(x),在x=a处可导,那么函数f(x)在x=a处的导数定义为:f'(a)=lim┬(△x→0)⁡(f(a+△x)-f(a))/(△x)。

2.函数连续与可导的关系:如果函数f(x)在x=a处可导,则函数f(x)在x=a处连续。

3.导数的几何意义:函数y=f(x)在x=a处的导数f'(a)表示了函数在该点处切线的斜率。

4.导数的性质:(1)常数函数的导数为0,即(f(x)=c,c为常数时,f'(x)=0)。

(2) 任意一次幂函数的导数为对应的幂次函数的导函数,即(f(x)=x^n,n为常数时,f'(x)=nx^(n-1))。

(3)任意两个函数的和(差)的导数等于这两个函数的导数之和(差)。

(f(x)±g(x))'=f'(x)±g'(x)。

(4)任意两个函数的积的导数等于这两个函数的导数之积加上这两个函数之积的导数。

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

(5) 任意一个函数的常数倍的导数等于它的导数的常数倍,即(cf(x))' = cf'(x),c为常数。

二、常见函数的导数1.常数函数f(x)=c的导数为f'(x)=0。

2. 幂函数f(x)=x^n,n为常数时,导数为f'(x)=nx^(n-1)。

3. 指数函数f(x)=a^x,a>0且a≠1时,导数为f'(x)=a^xlna。

4. 对数函数f(x)=logₐx,a>0且a≠1时,导数为f'(x)=1/(xlna)。

5. 正弦函数f(x)=sinx的导数为f'(x)=cosx。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的基础1. 导数的定义- 导数表示函数在某一点的切线斜率。

- 符号表示:$f'(x)$ 或 $\frac{df}{dx}$。

2. 极限表达- 导数可以用极限表达:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。

3. 几何意义- 导数的几何意义是曲线在某一点的切线斜率。

二、导数的计算1. 基本导数公式- 常数函数:$(C)' = 0$。

- 幂函数:$(x^n)' = nx^{n-1}$(其中n为实数)。

- 指数函数:$(a^x)' = a^x \ln(a)$(其中a > 0且a ≠ 1)。

- 对数函数:$(\ln(x))' = \frac{1}{x}$。

- 三角函数:- $(\sin(x))' = \cos(x)$- $(\cos(x))' = -\sin(x)$- $(\tan(x))' = \sec^2(x)$2. 导数的运算法则- 和/差的导数:$(u \pm v)' = u' + v'$。

- 乘积的导数:$(uv)' = u'v + uv'$。

- 商的导数:$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$。

3. 链式法则- 如果有一个复合函数$g(f(x))$,则其导数为:$(g(f(x)))' = g'(f(x)) \cdot f'(x)$。

三、高阶导数1. 高阶导数的定义- 第二导数:函数的导数的导数,表示为$f''(x)$。

- 更高阶导数:同理,可以计算第三导数、第四导数等。

2. 高阶导数的计算- 通过重复应用导数的基本运算法则来计算。

四、导数的应用1. 切线问题- 利用导数求曲线在某一点的切线方程。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

导数主要内容导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.②以知函数定义域为,的定义域为,则与关系为.2. 函数在点处连续与点处可导的关系:⑴函数在点处连续是在点处可导的必要不充分条件.可以证明,如果在点处可导,那么点处连续.事实上,令,则相当于.于是⑵如果点处连续,那么在点处可导,是不成立的.例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4. 求导数的四则运算法则:(为常数)注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设,,则在处均不可导,但它们和在处均可导.5. 复合函数的求导法则:或复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x) = 0,同样是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x)在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.(为常数)()II.III. 求导的常见方法:①常用结论:.②形如或两边同取自然对数,可转化求代数和形式.③无理函数或形如这类函数,如取自然对数之后可变形为,对两边求导可得.。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结1.导数的定义-函数f在a点可导的充分必要条件是:存在一个常数k,使得当自变量趋于a时,函数值与f(a)之差与自变量与a之差的比值的极限等于k。

这个常数k就是函数f在a点的导数。

- 导数的定义公式为:f'(x) = lim (f(x + △x) - f(x))/△x(△x→0)2.导数的基本运算法则- 常数法则:如果c是常数,那么dc/dx = 0-乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-除法法则:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g(x)^2- 链式法则:如果y = f(u)且u = g(x),那么dy/dx = dy/du *du/dx3.导数与函数的关系-函数f在点x=a处可导,则函数f在点x=a处连续。

-可导函数必定在其可导区间内连续,但是连续函数未必可导。

-导数存在的充分必要条件是函数在该点连续且有极限。

4.常见函数的导数- 幂函数:y = x^n,则y' = nx^(n-1)- 指数函数:y = a^x,则y' = a^x * ln(a)- 对数函数:y = ln(x),则y' = 1/x- 三角函数:sin x的导数是cos x,cos x的导数是-sin x,tan x 的导数是sec^2x5.导数的几何意义-导数表示函数在其中一点上的切线的斜率。

-导数的绝对值表示函数在该点的变化速率,正表示增加,负表示减小。

6.导数的应用-求函数的极值点:对导数函数进行分析,找到其零点。

-求函数的单调区间:根据导数的正负性,确定函数在哪些区间上是增函数或减函数。

-求函数的最大值最小值:结合极值点和边界点来进行判断。

-求曲线的切线和法线:根据导数和函数在其中一点上的数值来确定切线和法线的斜率。

7.高阶导数和导数的计算-高阶导数表示对函数的导数进行多次求导的结果。

高中数学导数知识点总结归纳

高中数学导数知识点总结归纳

高中数学导数知识点总结归纳高中数学导数知识点总结归纳如下:1. 导数的定义:导数表示函数在某一点上的变化率,即函数曲线在该点的切线的斜率。

导数的定义为:f'(x) = lim[Δx->0] [(f(x+Δx) - f(x)) / Δx]2. 导数的计算:a. 基本函数的导数:- 常数函数的导数为0:(c)' = 0- 幂函数的导数:(x^n)' = n*x^(n-1) (n为常数)- 指数函数的导数:(a^x)' = a^x * ln(a) (a为常数)- 对数函数的导数:(log_a(x))' = 1 / (x * ln(a))b. 导数运算法则:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 乘法法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)- 除法法则:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2- 复合函数法则:(f(g(x)))' = f'(g(x)) * g'(x)c. 高级运算法则:- 反函数法则:如果y=f(x)在某一点上可导,且f'(x) ≠ 0,则其反函数x=f^(-1)(y)在对应点上也可导,且有(f^(-1))'(y) = 1 / f'(x)- 链式法则:若y=f(g(x)),且g(x)在某一点上可导,f(u)在u=g(x)的点上可导,则复合函数y的导数为:(f(g(x)))' = f'(g(x)) * g'(x)- 隐函数法则:如果方程F(x, y) = 0确定了一个隐函数y = f(x),则该函数在某一区间上可导,且有(dy/dx) = -F_x(x, y) / F_y(x, y) (F_x和F_y分别表示F关于x和y 的偏导数)3. 导数的几何意义:a. 导数表示函数曲线在某一点上的切线斜率,即函数在该点上的瞬时变化率。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结高中数学导数是数学分析的一个重要内容,是研究函数变化率的工具。

在高中数学的学习中,导数是一个重要的知识点,对于理解函数的性质和计算变化率有重要作用。

下面对高中数学导数的知识点进行归纳总结。

一、导数定义导数定义是高中数学导数的基础,也是理解导数的关键。

函数f(x)在点x=a处的导数定义如下:f'(a)=lim[(f(x)-f(a))/(x-a)], x→a二、导数的计算1. 常数函数的导数为0,即d/dx(c)=0。

2. 幂函数的导数:d/dx(x^n)=nx^(n-1),其中n是任意实数。

3. 三角函数的导数:d/dx(sin(x))=cos(x),d/dx(cos(x))=-sin(x),d/dx(tan(x))=sec^2(x),其中sec(x)表示secant函数。

4. 指数函数的导数:d/dx(e^x)=e^x。

5. 对数函数的导数:d/dx(ln(x))=1/x。

三、导数的基本性质1. 导数的和差法则:若函数f(x)和g(x)都可导,则(f(x)+g(x))'= f'(x) + g'(x),(f(x)-g(x))' = f'(x) - g'(x)。

2. 导数的乘法法则:若函数f(x)和g(x)都可导,则(f(x)g(x))' =f'(x)g(x) + f(x)g'(x)。

3. 导数的链式法则:若函数y=f(g(x)),其中f是可导函数,g是可导函数,则dy/dx=f'(g(x))g'(x)。

四、高阶导数高阶导数是指对函数进行多次求导得到的导数。

函数f(x)的n阶导数表示为f^n(x),有以下性质:1. 若函数f(x)的n阶导数存在,则它的(n+1)阶导数也存在。

2. 函数f(x)的n阶导数存在不意味着它的n+1阶导数存在。

五、导数的应用1. 函数的极值:对于函数f(x),若导数f'(x)满足以下条件,则f(x)在x=a处取极大值或极小值:a) f'(a)=0b) f'(a)不存在c) f'(a)>0, x<a和f'(a)<0, x>ad) f'(a)<0, x<a和f'(a)>0, x>a2. 函数的单调性:对于函数f(x),若导数f'(x)具有以下性质,则f(x)在相应的区间上单调递增或递减:a) f'(x)>0,函数f(x)单调递增。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

§14.导数知识要点1.导数(导函数的简称)的定义:设X 。

是函数y f(x)定义域的一点,如果自变量X 在X 。

处 有增量 x ,则函数值y 也引起相应的增量 y f (x 0 x) f(x 0);比值 丄 止__x) f(xo)称为函数y 仁刈在点%。

到X 。

x 之间的平均变化率;如果极限 x X lim - lim f(X0 -------------- X)_f (Xo)存在,则称函数y f (x)在点x 。

处可导,并把这个极限叫做x 0 x x 0 x y f (x)在 x 0处的导数,记作 f (x 0)或 y |xX Q,即 f (x 。

)= lim y limf -(X° --- X)_.X 。

x x 。

x注:① X 是增量,我们也称为改变量”,因为X 可正,可负,但不为零.②以知函数y f(x)定义域为A , y f '(x)的定义域为B ,则A 与B 关系为A B.注:①可导的奇函数函数其导函数为偶函数 ②可导的偶函数函数其导函数为奇函数2.函数y⑴函数y 可以证明,如果 事实上,令x f (X)在点X o 处连续与点X o 处可导的关系:X o 处连续是y f (x)在点X o 处可导的必要不充分条件 y f (x)点x 0处连续. o.f (x)在点 y xof(x)在点X o 处可导,那么 X ,则XX o 相当于 是 lim f (x)X X 。

lim X 。

f(x 。

x) lim [ f(xX 。

X 。

) f(x 。

) f(x 。

)] 叫⑵如果y f (X 。

X ) f(x 。

) X f(x)点X o 处连续,f(x 。

)] 那么y例: f(x) |x|在点X o 。

处连续,f(X oX) f(X o ) lim lim f(X o )xx o x of(x)在点X o 处可导,是不成立的.y ,当X X0。

f (X 。

)o f(x 。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导 数 知识要点1. 导数(导函数的简称)的定义:即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。

一般的,函数y=f(x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。

2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义:就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin x x -=1')(-=n n nx xx x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')(a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=.②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.单调性及最值 1答案 A解析 满足f (x 2)-f (x 1)x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选A.2答案 B 解析 对称轴x =1-a ≥4.∴a ≤-3. 3答案 D 4答案 A解析 当x =2时,y =log a (22+2·2-3) ∴y =log a 5>0,∴a >1 由复合函数单调性知单减区间须满足⎩⎪⎨⎪⎧x 2+2x -3>0x <-1,解之得x <-3.5答案 C 解析 由f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C.6答案 C 解析 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1,故选C.7答案 B 解析 ①是幂函数,其在(0,+∞)上为增函数,故此项不符合题意;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因原函数在(0,+∞)上为减函数,故此项符合题意;③中的函数图象是函数y =x -1的图象保留x 轴上方的部分,下方的图象翻折到x 轴上方而得到的,由其图象可知函数符合题意;④中的函数为指数函数,其底数大于1,故其在R 上单调递增,不符合题意,综上可知选择B.8答案 ⎣⎢⎡⎦⎥⎤-12,0与⎣⎢⎡⎭⎪⎫12,+∞ 解析 数形结合9答案 ①④ 10答案 (0,110)解析 因为f (x )为奇函数,所以f (-x )=-f (x ),又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110. 11答案 [-2,+∞) 解析 由h ′(x )=2+kx 2≥0,得k ≥-2x 2,由于-2x 2在[1,+∞)的最大值为-2,于是,实数k 的取值围是[-2,+∞).12解析 (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在(-∞,-2)单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.13答案 (1)略 (2){m |-1<m <43}解 (1)证明:设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)>1. f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0. ∴f (x 2)>f (x 1).即f (x )是R 上的增函数.(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5, ∴f (2)=3,∴原不等式可化为f (3m 2-m -2)<f (2), ∵f (x )是R 上的增函数,∴3m 2-m -2<2,解得-1<m <43,故m 的解集为{m |-1<m <43}. 14答案 A解析 由已知易得⎩⎪⎨⎪⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.15答案 C 解析 由已知得:|1x |>1⇒-1<x <0或0<x <1,故选C. 16答案 (-∞,- 2 ]∪(1, 2 ]几何意义1.解析s′=limΔt→0ΔsΔt=limΔt→018(t+Δt)2-18t2Δt=limΔt→014tΔt+18(Δt)2Δt=limΔt→0(14t+18Δt)=14t.∴当t=2时,s′=12. 答案 C2.解析由2x+y+1=0,得h′(a)=-2<0.∴h′(a)<0.3.解析limΔx→0f(x0-Δx)-f(x0)Δx=-limΔx→0f(x0-Δx)-f(x0)-Δx=-k. 答案-k4.解∵f′(1)=limΔx→0f(1+Δx)-f(1)Δx=4,∴过点(1,2)的切线的斜率为4.设过点(1,2)且与过该点的切线垂直的直线的斜率为k,则4k=-1,k=-14.∴所求的直线方程为y-2=-14(x-1),即x+4y-9=0.6.解析f′(1)=limΔx→0ΔyΔx=limΔx→0a(1+Δx)2-aΔx=limΔx→0(2a+aΔx)=2a.令2a=2,∴a=1. A。

相关文档
最新文档