高中数学导数知识点归纳总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导 数 知识要点
1. 导数(导函数的简称)的定义:即)(0'x f =x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f
(x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。
2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:
⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义:
就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:
''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒
''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数)
)0(2'''
≠-=
⎪⎭
⎫
⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+
=,x
x x g 2
cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.
5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.
6. 函数单调性:
⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;
如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数.
注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.
②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.
7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,
①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.
也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.
②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.
8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
注:函数的极值点一定有意义. 9. 几种常见的函数导数:
I.0'=C (C 为常数) x x cos )(sin '
= 2
'
11)(arcsin x x -=
1')(-=n n nx x
x x sin )(cos '-= 2
'11)(arccos x
x --
=
II. x x 1)(ln '=
e x x a a log 1
)(log '= 1
1)(arctan 2'+=x x x x e e =')(
a a a x x ln )('= 1
1)cot (2
'+-
=x x arc
III. 求导的常见方法: ①常用结论:x
x 1
|)|(ln '=
.②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两
边同取自然对数,可转化求代数和形式.
③x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得
x x x x x y y x y y x
x x y y +=⇒+=⇒⋅+=ln ln 1
ln '''.