最新初一数学线段计算题
初一数学线段练习题
初一数学线段练习题初一数学线段练习题数学作为一门科学,无处不在我们的生活中。
它不仅仅是一种学科,更是一种思维方式。
而在初中数学中,线段作为一个重要的概念,被广泛应用于各种问题的解决中。
下面,我们来一起探索一些关于初一数学线段的练习题。
1. 题目一:已知线段AB的长度为5cm,线段AC的长度为3cm,求线段BC的长度。
解析:根据数学中的线段相加原理,我们可以得知线段AB的长度加上线段BC 的长度等于线段AC的长度。
即5cm + BC = 3cm。
通过简单的计算,我们可以得知线段BC的长度为2cm。
2. 题目二:已知线段AB的长度为7cm,线段BC的长度为4cm,求线段AC的长度。
解析:根据数学中的线段相减原理,我们可以得知线段AB的长度减去线段BC 的长度等于线段AC的长度。
即7cm - 4cm = 3cm。
通过简单的计算,我们可以得知线段AC的长度为3cm。
3. 题目三:已知线段AB的长度为x cm,线段BC的长度为6cm,线段AC的长度为12cm,求x的值。
解析:根据数学中的线段相加原理,我们可以得知线段AB的长度加上线段BC 的长度等于线段AC的长度。
即x cm + 6cm = 12cm。
通过简单的计算,我们可以得知x的值为6cm。
4. 题目四:已知线段AB的长度为x cm,线段BC的长度为y cm,线段AC的长度为10cm,若x = 3cm,求y的值。
解析:根据数学中的线段相减原理,我们可以得知线段AB的长度减去线段BC的长度等于线段AC的长度。
即x cm - y cm = 10cm。
代入已知条件x = 3cm,我们可以得到3cm - y cm = 10cm。
通过简单的计算,我们可以得知y的值为-7cm。
5. 题目五:已知线段AB的长度为x cm,线段BC的长度为x + 2 cm,线段AC的长度为12cm,求x的值。
解析:根据数学中的线段相加原理,我们可以得知线段AB的长度加上线段BC的长度等于线段AC的长度。
七年级线段的计算(基础)
七年级线段的计算(基础)1、已知线段AB长度为8cm,点C是AB的中点,点D在CB上且DC=1.5cm,求线段BD的长度。
答案:BD=5.5cm。
2、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若BD=6cm,求AB的长度。
答案:AB=12cm。
3、已知线段AD被点B、C分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长度。
答案:CM=4cm,AD=24cm。
4、已知AB=7,BC=3,点D为线段AC的中点,求线段DB的长度。
答案:DB=2cm。
5、已知M是线段AB的中点,点C在线段AB上,N是AC的中点,且AN=2cm,CM=1cm,求线段AB的长度。
答案:AB=6cm。
6、已知D是AB的中点,E是BC的中点,AC=2cm,BE=求线段DE的长度。
答案:DE=2cm。
7、已知AB=16cm,C是AB上的一点,且AC=10cm,D是AC的中点,E是BC的中点,求线段DE的长度。
答案:DE=8cm。
8、已知点C、D是线段AB上两点,D是AC的中点,若BC=6厘米,BD=10厘米,求线段AB的长度。
答案:AB=22cm。
9、已知点C、D为线段AB的三等分点,点E为线段AC 的中点,若ED=9,求线段AB的长度。
答案:AB=27cm。
10、已知线段AD被点B、C分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长度。
答案:CM=4cm,AD=24cm。
11、已知线段AC=6cm,线段BC=15cm,点M是AC 的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长。
答案:MN=5cm。
12、已知线段AB和CD的公共部分BD=,求AB,CD 的长度。
AB=CD,线段AB、CD的中点E、F之间距离是10cm。
答案:AB=CD=20cm。
13、已知A、B、C在同一条线段上,M是线段AC的中点,N是线段BC的中点,且AM=5cm,CN=3cm,求线段AB的长度。
七年级数学线段有关的计算题
七年级数学线段有关的计算题【典型例题】[例1] 填空如图,把线段AB 延长到点C ,使BC=2AB ,再延长BA 到点D ,使AD=3AB ,则DC=_____AB=_____BC ② DB=_____CD=_____BC[例2] 填空 如图,点M 为线段AC 的中点,点N 为线段BC 的中点ABCM N若AC=2cm ,BC=3cm ,则MN=_____cm ② 若AB=6cm ,则MN=_____cm③ 若AM=1cm ,BC=3cm ,则AB=_____cm ④ 若AB=5cm ,MC=1cm ,则NB=_____cm[例3] 根据下列语句画图并计算(1)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段BC 的中点,若AB=30cm ,求线段BM 的长(2)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段AC 的中点,若AB=30cm ,求线段BM 的长[例4] 如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。
ABCDE[例5] 如图,AE=21EB ,点F 是线段BC 的中点,BF=51AC=1.5,求线段EF 的长。
ABCEF[例6] 点O 是线段AB=28cm 的中点,而点P 将线段AB 分为两部分AP:PB=32:154,求线段OP 的长。
[例7] (1)如图,分别在线段AB 和BA 的延长线上取BD=AE=1.5cm ,又EF=5cm ,DG=4cm ,GF=1cm ,若GF 的中点为点M ,求线段AM 和BM 的长度。
(2)若线段a 、b 、c ,满足:a:b:c=3:4:5,且a+b+c=60,求线段2c -3a -51b 的长。
ABFM G练习:1. 已知点C 是线段AB 的中点,现有三个表达式: ① AC=BC ② AB=2AC=2BC ③ AC=CB=21AB 其中正确的个数是( ) A. 0 B. 1 C.2 D. 32. 如图,C 、B 在线段AD 上,且AB=CD ,则AC 与BD 的大小关系是( )ACB DA. AC>BDB. AC=BDC. AC<BDD. 不能确定3. 点A 、B 是平面上两点,AB=10cm ,点P 为平面上一点,若PA+PB=20cm ,则P 点( )A. 只能在直线AB 外B. 只能在直线AB 上C. 不能在直线AB 上D. 不能在线段AB 上4. 已知线段AB=5.4,AB 的中点C ,AB 的三等分点为D ,则C 、D 两点间距离为( )A. 1.2B. 0.9C.1.4D. 0.75. 已知线段AB ,延长AB 到C ,使BC=AB ,在线段AB 的反向延长线上截取AD=AC ,则有DB:AB=_________,CD:BD=___________。
初一难点突破“线段的计算”50道(含详细解析)
试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。
北师大版七年级数学上册线段的有关计算专题训练题及答案[001]
北师大版七年级数学上册线段的有关计算专题训练题及答案专题训练(五) 线段的有关计算类型1直接计算线段的长度1.如图,线段AB=2,线段AC=5,延长BC到D,使BD=3BC,求AD的长.2.如图,线段AB=22 cm,C是AB上一点,且AC=14 cm,O是AB的中点,求线段OC的长度.类型2运用方程思想求线段的长度3.如图,线段AB被点C、D分成了3∶4∶5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.类型3运用整体思想求线段的长度4.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=10 cm,AM=3 cm,求CN的长;(2)如果MN=6 cm,求AB的长.5.如图,C为线段AB上一点,D是线段AC的中点,E为线段CB的中点.(1)如果AC=6 cm,BC=4 cm,试求DE的长;(2)如果AB=a,试求DE的长度;(3)若C在线段AB的延长线上,且满足AC-BC=b,D、E分别为AC、BC的中点,你能猜想DE的长度吗?写出你的结论,不要说明理由.类型4运用分类讨论思想求线段的长度6.已知线段AB=60 cm,在直线AB上画线段BC,使BC=20 cm,点D是AC的中点,求CD的长度.7.已知,线段AB、BC均在直线l上,若AB=12 cm,AC=4 cm,M、N分别是AB、AC的中点,求MN的长.参考答案1.因为AB=2,AC=5,所以BC=AC-AB=3.所以BD=3BC=9.所以AD=AB+BD=11.2.因为点O 是线段AB 的中点,AB =22cm,所以AO =12AB =11cm.所以OC =AC -AO =14-11=3(cm).3.设AB 的长为x cm.因为线段AB 被点C 、D 分成了3∶4∶5三部分, 所以AC =312x cm ,CD =412x cm ,DB =512x cm.又因为AC 的中点M 和DB 的中点N 之间的距离是40 cm , 所以MC =324x cm ,DN =524x cm.所以324x +412x +524x =40.解得x =60.所以AB 的长为60 cm.4.(1)因为M 是AC 的中点,所以AC =2AM.因为AM =3 cm ,所以AC =2×3=6(cm).因为AB =10 cm ,所以BC =AB -AC =10-6=4(cm). 又因为N 是BC 的中点,所以CN =12BC =12×4=2(cm).(2)因为M 是AC 的中点,所以MC =12AC.因为N 是BC 的中点,所以NC =12CB.所以MC +CN =12AC +12CB =12(AC +CB)=12AB ,即MN =12AB.又因为MN =6 cm ,所以AB =2×6=12(cm).5.(1)由题意,得CD =12AC =3 cm ,CE =12BC =2 cm ,所以DE =CD +CE =3+2=5(cm).(2)由题意得,CD =12AC ,CE =12BC ,所以DE =CD +CE =12AC +12BC =12(AC +BC)=12AB =12a. (3)DE =12b.6.当点C 在线段AB 上时,如图1:CD =12(AB -BC)=12(60-20)=12×40=20(cm);当点C 在线段AB 的延长线上时,如图2:CD =12(AB +BC)=12(60+20)=12×80=40(cm).所以CD 的长度为20 cm 或40 cm.7.当点C 在线段AB 上时,如图1:因为点M 是线段AB 的中点,点N 是线段AC 的中点,所以AM =12AB =6 cm ,AN =12AC =2cm.所以MN =AM -AN =6-2=4(cm ).当点C 在线段BA 的延长线上时,如图2:因为点M 是线段AB 的中点,点N是线段AC的中点,所以AM=12AB=6 cm,AN=12AC=2cm.所以MN=AM+AN=6+2=8(cm).即MN=4 cm或8 cm.。
七年级数学线段的练习题
七年级数学线段的练习题七年级数学线段的练习题数学是一门既有趣又实用的学科,它贯穿于我们生活的方方面面。
在七年级数学中,线段是一个重要的概念。
线段是数学中的一种基本几何图形,它由两个端点和连接它们的线段组成。
在本文中,我将为大家介绍一些七年级数学线段的练习题,希望能够帮助大家更好地理解和掌握线段的概念。
1. 给定线段AB,如果线段AB的长度是5cm,那么线段BA的长度是多少?解析:线段AB和线段BA是同一条线段,只是方向相反而已。
所以线段BA的长度也是5cm。
2. 在一个长方形中,两个相邻的边的长度分别是7cm和5cm,求长方形的周长。
解析:长方形的周长等于所有边的长度之和。
根据题意,长方形的周长等于2× (7cm + 5cm) = 24cm。
3. 如果一个线段的长度是8cm,将它分成3等分,每一段的长度是多少?解析:将线段分成3等分,意味着将线段分成3个相等的部分。
所以每一段的长度等于8cm ÷ 3 ≈ 2.67cm。
4. 在一个正方形中,对角线的长度是10cm,求正方形的边长。
解析:正方形的对角线将正方形分成两个等边直角三角形。
根据勾股定理,对角线的长度等于边长的平方根乘以√2。
所以边长等于10cm ÷ √2 ≈ 7.07cm。
5. 在一个等边三角形中,每条边的长度是6cm,求三角形的周长。
解析:等边三角形的三条边的长度相等,所以三角形的周长等于3 × 6cm =18cm。
通过以上几个练习题,我们可以看到线段在几何图形中的应用。
线段的长度可以通过计算两个端点的距离来确定,而在其他图形中,线段的长度也可以通过其他已知条件来计算。
通过练习这些题目,我们可以更好地理解线段的概念,提高我们的数学解题能力。
除了以上的练习题,还有许多其他与线段相关的问题可以练习。
比如,给定两个点的坐标,求它们之间的距离;给定一个线段和一个点,判断这个点是否在线段上等等。
这些问题都可以通过线段的性质和几何知识来解决,对我们的数学学习和思维能力的培养都有很大的帮助。
新人教版七年级数学上册专题训练:线段的计算(含答案)
专题训练 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm ,所以AD =12AB =12×4=2(cm ). 因为C 是线段AD 的中点,所以CD =12AD =12×2=1(cm ). 【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm ,所以AO =12AB =11 cm . 所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点,所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm .(2)因为E 是BC 的中点,所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点,所以DC =12AC =12BC =5 cm . 所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm ,所以AD =AB +BC +CD =10x cm .因为M 是AD 的中点,所以AM =MD =12AD =5x cm . 所以BM =AM -AB =5x -2x =3x(cm ).因为BM =6 cm ,所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ),AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm ,所以BC =32AB =32cm . 所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ; 当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92cm .专题训练 有理数的运算题组1 有理数的加、减、乘、除、乘方运算1.计算:(1)(-3)+(-9);解:原式=-12.(2)-4.9+3.7;解:原式=-1.2.(3)(-13)+34; 解:原式=512.(4)0-9;解:原式=-9.(5)(-3)-(-5);解:原式=2.(6)-712-914; 解:原式=-1634.(7)(-12.5)-(-7.5).解:原式=-5.2.计算:(1)(-3)×5;解:原式=-15.(2)(-34)×(-89); 解:原式=23.(3)(-37)×(-45)×(-712); 解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017;解:原式=0.(5)(-36)÷9;解:原式=-4.(6)(-1225)÷(-35); 解:原式=45.(7)(-12557)÷(-5). 解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4;解:原式=-16.(4)(112)3. 解:原式=278.题组2 有理数的混合运算(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(2)314+(-235)+534-825; 解:原式=314+534+[(-235)+(-825)] =9+(-11)=-2.(3)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24) =-12+15+6=9.(4)719×(112-118+314)×(-214); 解:原式=649×(-94)×(32-98+134) =-16×(32-98+134) =-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3);解:原式=-99÷3÷3=-11.(6)(-48)÷8-(-5)×(-6);解:原式=-6-30=-36.(7)2-(-4)+8÷(-2)+(-3).解:原式=2+4+(-4)+(-3)=2+(-3)=-1.(1)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5=(-8)+(-54)+4.5=-62+4.5 =-57.5.(3)-32×(-13)2-(-2)3÷(-12)2; 解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22); 解:原式=16÷(-8)-(-18)×(-4) =(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(6)-14+(1-0.5)×13×[2-(-3)2]. 解:原式=-1+0.5×13×(2-9) =-1+0.5×13×(-7) =-1-713 6.=-。
七年级数学线段计算题
[例1] 已知:如图,C是线段AB上一点,M、N分别是线段AC、BC的中点,
AB=11,求MN。
[例2] 已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,
,求线段AB的长。
[例3] 如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB 分成两部分,若,求AB。
[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。
[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。
[例6] 如图:,F是BC的中点,,求EF。
[例7] 如图:E、F是线段AC、AB的中点,且,求线段EF的长。
[例8] 已知A、B、C、D为直线上四点且满足,M、N分别为AB 和CD的中点,,求AB、AC、AD。
【模拟试题】(答题时间:30分钟)
2. 如图,已知,CD的长为10cm,求AB的长。
3. 如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。
4. 如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。
5. 一条直线上顺次有A、B、C、D四点,且C为AD中点,,求
的值。
6. 已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。
7. 已知线段,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。
8. 同一直线上A、B、C、D四点,已知,且,求AB的长。
初一上册数学线段题
初一上册数学线段题一、试卷部分(一)单选题(每题5分,共30分)1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,则BC 的长为()A. 5cmB. 11cmC. 3cmD. 8cm答案:A。
解析:因为BC = AB - AC,AB = 8cm,AC = 3cm,所以BC = 8 - 3 = 5cm。
2. 下列说法正确的是()A. 两点之间的连线中,直线最短B. 若AP = BP,则点P是线段AB的中点C. 若点C在线段AB外,则AC+BC>ABD. 两点之间的距离是指连接两点的线段答案:C。
解析:A选项,两点之间线段最短,不是直线最短;B选项,当AP = BP时,点P不一定是线段AB的中点,只有当点P在线段AB上时才是中点;D选项,两点之间的距离是指连接两点的线段的长度,而不是线段本身。
3. 延长线段AB到C,使BC = AB,再反向延长AB到D,使AD = 2AB,那么线段CD的长是线段AB长的()A. 3倍B. 4倍C. 5倍D. 6倍答案:C。
解析:设AB = x,则BC = x,AD = 2x,CD = AD+AB+BC = 2x+x+x = 4x,所以线段CD的长是线段AB长的5倍。
4. 一条直线上有A、B、C三点,线段AB = 10cm,BC = 4cm,则AC的长为()A. 14cmB. 6cmC. 14cm或6cmD. 无法确定答案:C。
解析:当点C在线段AB上时,AC = AB - BC = 10 - 4 = 6cm;当点C在线段AB的延长线上时,AC = AB+BC = 10 + 4 = 14cm。
5. 已知线段AB = 12cm,点C是线段AB的中点,点D是线段AC的中点,则线段BD的长为()A. 9cmB. 6cmC. 3cmD. 1.5cm答案:A。
解析:因为C是AB中点,所以AC = BC = 6cm,又因为D是AC中点,所以AD = DC = 3cm,BD = BC+CD = 6+3 = 9cm。
初一线段练习题
初一线段练习题在初中数学学习中,线段是一个基本概念。
理解线段的特点和性质对于解决与几何相关的问题至关重要。
本篇文章将为你提供一些初一线段练习题,帮助你巩固对线段的理解。
1. 线段AB的长度为7cm,线段CD的长度比线段AB的长度多4cm,求线段CD的长度。
解析:设线段CD的长度为x cm,则x = 7 + 4 = 11。
所以,线段CD的长度为11cm。
2. 已知线段EF的长度为24cm,线段GH的长度为14cm,线段GH比线段EF的长度少几厘米?解析:设线段GH的长度比线段EF少x厘米,则24 - x = 14。
通过计算得出,x = 10。
所以,线段GH比线段EF的长度少10厘米。
3. 已知线段IJ的长度为18cm,线段KL比线段IJ的长度增加3cm,求线段KL的长度。
解析:设线段KL的长度为x cm,则x = 18 + 3 = 21。
所以,线段KL的长度为21cm。
4. 线段MN的长度是线段OP长度的2倍,线段MN的长度是6cm,求线段OP的长度。
解析:设线段OP的长度为x cm,则2x = 6。
通过计算得出,x = 3。
所以,线段OP的长度为3cm。
5. 线段QR的长度比线段ST的长度多8cm,线段ST的长度是12cm,求线段QR的长度。
解析:设线段QR的长度为x cm,则x = 12 + 8 = 20。
所以,线段QR的长度为20cm。
通过以上练习题,我们可以更好地理解线段的概念和性质。
通过计算线段的长度,我们可以在解决实际问题时获得更多的线索和信息。
练习题的解析过程还培养了我们的逻辑思维和数学推理能力。
除了计算线段的长度,我们还可以通过线段之间的相对位置来解决问题。
例如,线段的垂直、平行关系等。
通过练习题的反复练习和思考,我们可以更好地掌握线段的相关知识,并能够熟练地应用到实际问题中。
希望通过本篇文章提供的初一线段练习题,你能对线段的特点和性质有更深入的理解,并能够灵活运用于实际问题中。
线段作为几何学中的基本概念,对于后续的学习和应用都至关重要。