传动轴设计计算
传动轴sheji计算
在轴向 油润滑且 轴承处, 具有认可 此处滚 型油封装 柱轴承 置或装有 用作推 连续轴套 力轴承 的无键套
合或法兰 连接的螺 旋桨轴
油润滑且 具有认可 型油封装
置或装有 连续轴套 的有键螺 旋桨轴
适用于前 两条规定 的螺旋桨 轴长度以 前的螺旋 桨轴或尾 轴到尾尖 舱舱壁部 分的直径
1.0 1.0 1.1 1.1 1.2 1.1
轴的直径d应不小于按下式计算 的值:
d=98K 3
Ne 570 ne σb-157
式中:d—轴的直径m m; K—不同轴的设计特性系数,按表2-5-9 (1)、(2)选取; ne—轴传递的额定功率,k W; Ne—轴传递Ne的额定转速,r /min; σb—轴材料的抗拉强度。对于中间轴,若>800MPa时,取
传动轴的计算主要包括传动轴的基本直径计算和 强度校核两方面内容。
基本直径计算按照相关的船舶规范进行。
强度校核则是计算静载荷下的合成应力,再根据 由经验所确定的许用安全系数来考虑动载荷的作 用。
㈠按《钢质海船入级与建造规范》 计算轴的基本直径
轴的直径d应不小于按下式计算 的值:
d=FC 3
Ne ne
在推力环 的两侧轴 承处④
1.1
注:
①在键槽底部横截面处的圆角半径不得小于0.0125d。 ②孔径应不大于0.3d。 ③纵向槽的长度应不大于1.4d;宽度应不大于0.2d。 ④距键槽端、横孔边缘0.2d长度以及距纵向槽道端0.3d长度
以后的轴及推力轴在距推力环长度等于推力轴直径以外的轴
径可以逐渐减少到以K=1算得的直径。
㈢传动轴的强度校核
传动轴在工作时,同时受到扭转、弯曲和压缩三 种负荷,不仅承受静载荷,而且还有附加动载荷 作用,受力情况很复杂,目前普遍采用的传动轴 强度校核方法,是在按规范计算出传动轴基本轴 径的基础上计算静载荷下的合成应力,再根据由 经验所确定的许用安全系数(见表2-17)来考虑 动载荷的作用,是一种近似计算方法。
轴的设计计算
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
传动轴设计计算范文
传动轴设计计算范文传动轴是通过连接两个轴组成的机械装置,用于传递动力和扭矩。
在设计传动轴时,需要考虑许多因素,包括应用环境、传动效率、可靠性和安全等。
下面我们将探讨传动轴的设计计算。
首先,在传动轴的设计计算中,需要确定扭矩传递的计算方法。
扭矩可以通过下式计算得到:T=P*9550/n其中,T为扭矩(N.m),P为功率(kW),9550为转速换算系数,n 为转速(rpm)。
在计算扭矩时,还需考虑传动系数(Kf)和动载系数(Km)。
传动系数是考虑传动装置的传动效率、工作条件以及装配质量等因素的系数,通常为1.2~1.6、动载系数是考虑传动过程中动态载荷的系数,通常为1.2~1.4确定了扭矩传递计算方法后,需要根据应用环境和工作条件确定传动轴的材料。
常见的传动轴材料包括钢、铝合金和碳纤维等。
不同材料的强度和刚度各有优缺点,需要根据实际需求做出选择。
接下来,需要根据传动轴的长度和直径来计算其弯曲刚度。
弯曲刚度可以通过公式:Φ=(π/32)*(G*d^4)/(L)其中,Φ为弯曲刚度(Nm/rad),G为剪切模量(N/m^2),d为传动轴的直径(m),L为传动轴的长度(m)。
根据传动轴的弯曲刚度,还可以计算得到传动轴的自然频率(f)f=(1/2π)*√(Φ/I)在进行传动轴的设计计算时,还需要考虑传动轴的安全系数。
传动轴的设计应该具有一定的安全储备,以保证传动轴在正常工作负载下不发生失效。
安全系数通常为1.5~2.0,根据实际情况可能有所不同。
最后,需要进行传动轴的强度计算。
强度计算的方法有多种,包括受力分析法、有限元分析法等。
在进行强度计算时,需要考虑各部件的受力情况,包括剪切力、弯矩、挤压力等。
根据受力分析结果,可以选择合适的传动轴尺寸和材料。
综上所述,传动轴的设计计算涉及许多因素,包括扭矩传递计算、材料选择、弯曲刚度计算、自然频率计算、安全系数考虑和强度计算等。
通过合理的设计计算,可以确保传动轴在工作过程中具有良好的传动性能和可靠性。
传动轴设计计算
传动轴设计计算1. 引言传动轴是用于传输动力和扭矩的机械元件,在各种机械设备和车辆中广泛应用。
本文将介绍传动轴设计计算的基本原理和步骤。
2. 传动轴设计计算的基本原理传动轴设计计算的目标是确定传动轴的最佳尺寸和材料,以满足特定的扭矩要求和使用条件。
以下是传动轴设计计算的基本原理:- 确定扭矩要求:根据机械设备或车辆的功率和转速要求,确定传动轴所需的最大扭矩值。
- 材料选择:选择适当的材料来制造传动轴,考虑材料的强度和可加工性。
- 长度计算:根据应用中传动轴的位置和距离要求,计算传动轴的长度。
- 直径计算:根据扭矩要求和材料的强度,计算传动轴的最小直径。
- 测量校验:通过适当的测量方法和校验,确保传动轴的尺寸和尺寸的准确性。
3. 传动轴设计计算的步骤以下是传动轴设计计算的一般步骤:1. 确定设计要求:了解机械设备或车辆的功率和转速要求,确定传动轴的设计要求。
2. 计算扭矩要求:根据设计要求和设备的工作条件,计算传动轴所需的最大扭矩值。
3. 选择材料:根据传动轴的使用条件和材料的特性,选择适当的材料来制造传动轴。
4. 计算传动轴长度:根据传动轴的位置和距离要求,计算传动轴的长度。
5. 计算传动轴直径:根据扭矩要求和材料的强度,计算传动轴的最小直径。
6. 确定油脂和润滑方式:根据传动轴的使用条件,选择适当的油脂和润滑方式,以减少磨损和摩擦。
7. 进行测量和校验:通过测量传动轴的尺寸和进行校验,确保传动轴满足设计要求。
4. 总结传动轴设计计算是确定传动轴尺寸和材料的重要步骤,它直接影响机械设备和车辆的性能和可靠性。
通过遵循上述步骤,我们可以设计出满足要求的传动轴,并确保其安全和有效地传输动力和扭矩。
机械设计 轴的计算
m 3z3 n csin β3 = ar m z sinβ2 n2 2
n1
F1 a
3
nⅡ
F3 a
nⅢ
F4 r
4
F3 r
F2 t
· F
t3
F4 t
1
F1 r
F4 a
F2 r
· F1 t
注意: 注意:
F2 a
2
Ⅱ
1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
M σ= W T τ= WT
{扭矩T
σ ca = σ 2 + 4τ 2 = 按第三强度理论: 按第三强度理论:
σ
M 2 +T 2 ≤ [σ ] W
t
转轴弯曲应力的循环特性 r = -1 扭转剪应力的循环特性取决于扭矩作用性质: 扭转剪应力的循环特性取决于扭矩作用性质: 应力的循环特性取决于扭矩作用性质 当扭矩频繁正反作用时, 当扭矩频繁正反作用时, = -1 ; r 当扭矩单向不连续作用时, = 0 ; 当扭矩单向不连续作用时, r 当扭矩不变化时, 当扭矩不变化时, r = +1 ; T
· F
t1
F2 t
F2 r
F2 a
3、计算: 、计算: 2T 2T mnz 2 3 QF 2 = F 3 ∴ tgβ2 = tgβ3Q T2 = T3 , d = a a d2 d3 cosβ
Ⅱ
2
注意: 注意: 1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
sin β 2 sin β 3 ∴ = m n2z 2 m n3z 3
Kσ =
εσ β
kσ
传动轴设计算
参 数符号数值公 式■基本参数■传动轴外径,mmD 76传动轴内径,mmd 71传动轴长度,mmL 1135发动机额定转速,r/minn e 4000发动机最大扭矩,N.mmT emax 230000注意单位为N.mm 变速器传动比_1档i g1 4.3134变速器传动比_2档i g2 2.33用不上此数据变速器传动比_3档i g3 1.4364用不上此数据变速器传动比_4档i g41用不上此数据变速器传动比_5档i g50.7887变速器传动比_R 档i gr 4.2201后桥主减速器传动比i 0 4.1分动器传动比_高档i p 1分动器传动比_低档i d 2.48两驱车此处改为1分动器扭矩分配f 0.5一般为0.5:0.5,两驱车此处改为1■直径选择与临界转速校核■要求K>[K]传动轴最高转速,r/minn max 5072传动轴临界转速,r/min n c9688临界转速时实际安全系数K1.91临界转速时许用安全系数[K] 1.60[K]=1.2~2.0■扭转应力计算■要求τmax <[τc ]传动轴计算转矩,N.mmT 11230182传动轴扭转应力,Mpaτc 59.9动载荷系数K 1.8K=1.5~1.8传动轴最大扭转应力,Mpaτmax 107.8传动轴许用扭转应力,Mpa[τc ]300材料为SS400,■花键齿侧挤压应力计算■要求σy <[σy ]花键转矩分布不均匀系数K ′ 1.4K ′=1.3~1.4花键大径,mmD h 36.333花键小径,mmd h 32.682花键有效工作长度,mmL h 85花键齿数n 020花键齿侧挤压应力,Mpaσy 32花键齿侧许用挤压应力,Mpa[σy ]40齿面硬度>HRC35时,滑动式花键[σy ]= 25~ 50MPa ,非滑动式花键[σy ]=50~100MPa ■十字轴的强度计算■要求σw <[σw ],τ<[τ]十字轴轴颈直径,mm d 117传动轴设计与校核[]0.2~2.1[K], max == K >n n K c )/(=5max p g e i i n n ⨯f i i T T d g e 1max =)(16441d D DT c -=πτ2228c +102.1=L d D n ⨯0'1)2)(4(n L d D d D K T h h h h h y -+=σ十字轴轴颈油道孔直径,mm d 26力作用点到轴颈根部的距离,mm S 6.25力作用点到十字轴中心距离,mm R 28.25万向节主从动叉轴的夹角,(°)α 3.4646十字轴颈所受最大垂向力,NQ max 21813十字轴颈部的弯曲应力,MPa σw 287十字轴颈部的剪切应力,Mpa τ110十字轴颈部的弯曲许用应力,MPa [σw ]350材料20CrMnTi,表面硬度HRC58~65,[σw ]=350MPa 十字轴颈部的剪切许用应力,Mpa[τ]120材料20CrMnTi,表面硬度HRC58~65,[τ]=120MPA ■十字轴滚针轴承接触应力计算■要求σj <[σj ]滚针直径,mmd 0 2.975滚针工作长度,mmL b 11.8滚针列数i 1每列中的滚针数Z 21一个滚针所受到的最大载荷,NF n 4778十字轴滚针轴承接触应力,Mpa σj 3440十字轴滚针轴承许用接触应力,Mpa[σj ]3200滚针和十字轴颈表面硬度>58HRC ,[σj ]=3000~3200MPa ■连接螺栓强度校核与计算■要求σL <[σs ]螺栓安装端面分布圆半径,mm R 42.5单个螺栓所受摩擦力,NF A 7236可靠性系数K f 1.3K f =1.1~1.3螺栓连接接合面数量m 1接合面摩擦系数f 0.15螺纹小径,mmd L 8.647螺纹规格M10×1.25,查表得d L =8.647mm 单个螺栓所受拉力,NF p 62715单个螺栓所受拉应力,MPa σL 1068螺栓材料的屈服极限,MPa σs 900强度等级10.9,σs =900MPa 安全系数S 1.3安全系数S=1.3螺栓材料的许用屈服极限,MPa [σs ]692)cos 2/(1max αR T Q =()4241max 1w d 32d d S Q -=πσiZ F n Qmax 6.4=()2221max 4d d Q -=πτb n j L F d d ⎪⎪⎭⎫ ⎝⎛+=0111272σR T F A 4/1=mf /A f p F K F =2/4L p L d F πσ=S s s /][σσ=。
第三节轴的强度计计算、设计
第三节 轴轴的强度计计算、设计计步骤与与设计实例例一.按抗扭强强度计算小直对于传动轴直径,然后进轴,因只受转进行轴的结构矩,可只按转构设计,并用转矩计算轴的弯扭合成强度的直径;对于度校核。
于转轴,先用用此法估算轴的最 对偿弯实心圆轴扭 对于转轴,也弯矩对轴的强扭转的强度条 τ也可用上式初步强度的影响。
条件为0.2T T W ==步估算轴的直由上式可写二.定,M 截面 式中 T P—— n—— [ τ] d——W T ——d ≥C——由轴的通过9-2式按弯扭组合轴的结构设就可以画出对于一般钢e M W σ=e M =式中,e σ为V 分别为水平面的抗弯截面T——轴传递—轴传递的功—轴的转速(r ——许用扭—轴的最小直—轴的抗弯截=的材料和受载式求出的轴的合强度计算设计完成后,轴出轴的受力简钢制的轴,可e=为当量应力(平面和垂直面面系数(mm 递的工作转矩功率(kW);r/min);扭转切应力;直径,估算时如截面模量。
=载情况所决定表9-4 几的直径d,应按算 轴上零件的位简图,然后就可按第三强度M =MPa);e M 为的弯矩(N·3),W=0.1T 3[]dτ≤ 直径,但必须出计算轴的直,也是轴承受如果该处有一 定的系数,其几种轴用材料按表圆整成标位置也确定下可以进行弯扭理论进行强度1[σ−≤为当量弯矩(mm);T 为;为根3d α据 须把轴的许用直径公式:用扭转切应力 (9-1) 力适当降低,以补受的扭矩,(一个键槽,应(N·mm);将所算的最小小直径增加5%; (9-2) 其值见表9-4.料的[及C ]τ值标准直径,作下来,外加载扭合成强度计度计算。
强度]b b(N·mm);M 为轴传递的转矩据转矩性质而作为转轴的最载荷和支反力计算,其具体度条件为为合成弯矩(矩(N·mm)而定的折合因最小直径。
力作用点也相体步骤如下:应确(N·mm);;W 为轴的危因数。
轴的设计计算
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
传动轴的机械加工工艺设计计算说明书
目录摘要 (1)Abstract (2)1绪论 (2)1.2课题背景 (2)1.2课题设计的目的及意义 (2)2工艺设计说明书 (2)1.1零件图工艺性分析 (3)1.2毛坯选择 (3)1.3毛坯-零件合图草图 (5)1.4工序尺寸及其公差确定 (9)1.5设备及其工艺装备确定 (11)1.6切削用量及工时定额确定 (12)3第10号工序刀具设计说明书 (14)1.1工序尺寸精度分析 (14)1.2刀具类型确定 (14)1.3刀具设计参数确定(数据来源参考书[3]) (14)1.4刀具工作草图 (16)4第40号工序量具设计说明书 (16)1.1工序尺寸精度分析 (16)1.2量具类型确定 (16)1.3极限量具尺寸公差确定 (16)1.4极限量具尺寸公差带图 (17)1.5极限量具结构设计 (18)5总结 (18)参考文献 (18)摘要:轴类零件毕业设计是机械工程类专业学生完成本专业教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。
传动轴是组成机器零件的主要零件之一,一切做回转运动的传动零件(例如:齿轮,蜗轮等)都必须安装在传动轴上才能进行运动及动力的传动,传动轴常用于变速箱与驱动桥之间的连接。
这种轴一般较长,且转速高,只能承受扭矩而不能承受弯矩。
应该使传动轴具有足够的强度和高临界转速,在强度计算中,由于所获取的安全系数较大,从而使轴的尺寸过大。
关键词:传动轴零件刚度强度Abstract:Axial parts of graduation design is mechanical engineering specialty studentscomplete the teaching plan last a very important practical teaching link is to make the students comprehensive use of basic theory, we learned the basic knowledge and skills to solve major problems within the scope of the engineering technology and a basic training. Shift is composed of the main parts of the machine parts, all of the transmission parts motion (for example: gear, gear, etc.) must be installed in the transmission of power to exercise and shaft transmission, often used in the connection between the transmission and drive. The shaft generally is long, and the high speed, can withstand torque not inherit the moment. Should make the shaft has enough rigidity and high speed, strength calculation, because of the large safety factor, thus make shaft dimension.Keywords:Shaft parts stiffness strength一、绪论在我们的日常生活中,传动轴的运用十分广泛。
传动轴的机械加工工艺设计计算说明书
目录摘要 (2)Abstract (2)1绪论 (3)1.2课题背景 (3)1.2课题设计的目的及意义 (3)2工艺设计说明书 (4)1.1零件图工艺性分析 (4)1.2毛坯选择 (5)1.3毛坯-零件合图草图 (8)1.4工序尺寸及其公差确定 (12)1.5设备及其工艺装备确定 (16)1.6切削用量及工时定额确定 (17)3第10号工序刀具设计说明书 (19)1.1工序尺寸精度分析 (19)1.2刀具类型确定 (19)1.3刀具设计参数确定(数据来源参考书[3]) (19)1.4刀具工作草图 (21)4第40号工序量具设计说明书 (21)1.1工序尺寸精度分析 (21)1.2量具类型确定 (21)1.3极限量具尺寸公差确定 (22)1.4极限量具尺寸公差带图 (22)1.5极限量具结构设计 (23)5总结 (23)参考文献 (24)摘要: 轴类零件毕业设计是机械工程类专业学生完成本专业教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。
传动轴是组成机器零件的主要零件之一,一切做回转运动的传动零件(例如:齿轮,蜗轮等)都必须安装在传动轴上才能进行运动及动力的传动,传动轴常用于变速箱与驱动桥之间的连接。
这种轴一般较长,且转速高,只能承受扭矩而不能承受弯矩。
应该使传动轴具有足够的强度和高临界转速,在强度计算中,由于所获取的安全系数较大,从而使轴的尺寸过大。
关键词:传动轴零件刚度强度Abstract: Axial parts of graduation design is mechanical engineering specialty students complete the teaching plan last a very important practical teaching link is to make the students comprehensive use of basic theory, we learned the basic knowledgeand skills to solve major problems within the scope of the engineering technology and a basic training. Shift is composed of the main parts of the machine parts, all of the transmission parts motion (for example: gear, gear, etc.) must be installed in the transmission of power to exercise and shaft transmission, often used in the connection between the transmission and drive. The shaft generally is long, and the high speed, can withstand torque not inherit the moment. Should make the shaft has enough rigidity and high speed, strength calculation, because of the large safety factor, thus make shaft dimension.Keywords:Shaft parts stiffness strength一、绪论在我们的日常生活中,传动轴的运用十分广泛。
传动轴的计算及强度校核
传动轴的计算及强度校核第一节概述万向传动轴由万向节和传动轴组成,有时还加中间支承。
.它主要用来在工作过程中不断改变的两根轴间传递转矩和旋转运动。
.万向传动轴设计的基本要求:1. 保证所连接的两轴的相对位置在预计的范围内变动时,能可靠的传递动力。
.2. 保证所连接的两轴尽可能等速运转。
.由于万向节夹角而产生的附近载荷、振动和噪声应在允许的范围内。
.3. 传动效率高,使用寿命长,结构简单,制造方便,维修容易等.设计要点:1. 关键性能尺寸的确定传动轴中心距由传动轴总布置确定。
.固定节、移动节的装配尺寸根据接口(轮毂、半轴齿轮等)尺寸、结构确定,主要结构参数参见传动轴的主要结构与计算。
.2. 粗糙度和形位公差的确定移动节轴颈与变速箱油封配合处,为保证油封的密封效果,轴颈处粗糙度一般选0. 8或0. 63。
.移动节、固定节轴承配合端面垂直度取0. 05。
.形状和位置公差GB/T1182-ISO1302。
. 表面粗糙度符号按GB/T131-ISO1302。
.形状和位置的未注公差按GB/T1184-k,线性尺寸的未注公差按GB/T1804-m,角度的未注公差按GB/T11335-m。
.3. 零件号要求传动轴组号为22。
.前传动轴分组号2203。
.中间传动轴分组号2202。
.后传动轴组号2201。
.第二节 万向节的设计一、万向传动的计算载荷表中, max e T ――-发动机最大转矩;N ―――计算驱动桥数;取法见下表。
.1i ―――变速器一档传动比;η―――发动机到万向节传动轴之间的传动效率;k ―――液力变矩器变矩系数, k= 〔(0k -1)/2〕+1, 0k 为最大变矩系数;2G ―――满载状态下一个驱动桥上的静载荷(N );'2m ―――汽车最大加速度时的后轴负荷转移系数, 轿车'2m = 1. 2~1. 4,货车: '2m = 1. 1~1. 2;ϕ―――轮胎与路面间的附着系数,对于安装一般轮胎的公路用汽车, 在良好的混泥土或沥青路面上, ϕ可取0. 85, 对于安装防侧滑的轮胎的轿车, ϕ可取1. 25, 对于越野车, ϕ值变化较大, 一般取1;r r ―――车轮滚动半径(m );0i ―――主减速器传动比;m i ―――主减速器从动齿轮到车轮之间的传动比;m η―――主减速器主动齿轮代车轮之间的传动效率;1G ―――满载状态下转向驱动桥上的静载荷(N );'1m ―――汽车最大加速度时的前轴负荷转移系数, 轿车: '1m = 0. 80~0. 85, 货车: '1m = 0. 75~0. 90;t F ―――日常汽车行驶平均牵引力(N );f i ―――分动器传动比, 取法见表2;d k ―――猛接离合器所产生的动载系数, 对于液力自动变速器, d k = 1,对于具有手动操纵的机械变速器的高性能赛车, d k = 3, 对于性能系数j f = 0的汽车(一般货车、况用汽车和越野车), d k = 1, 对于j f ﹥0的汽车, d k = 2或由经验选定。
25轴的设计之 传动轴的强度和刚度计算
长春职业技术学院课程教案用纸
教学环节 教 学 内 容 备 注
M ca1 M ca2 M ca
7、校核 危险截面轴的强度
ca
设计公式
M ca M ca M ca [ 1 ]b 3 1 W 0 . 1 d 3 d 32 M ca d 3 0.1[ 1 ]b
小结
1.传动轴的强度计算方法 教师总结
巩固学习
加强训练,实例分析
长春职业技术学院课程教案用纸
教学环节 教 学 内 容 备 注
2、求水平面支反力 RH1、RH2 作水平面弯矩图
3、求垂直平面内支反力 RV1、RV矩图
结合实物 举例
5、作扭矩图
M ca M 2 (T ) 2
6、作当量弯矩图
M ca M 2 (T ) 2
导言
T
T 9.55 106 P [ ] T 3 W 0.2d n T
5 9.55 10 6 P P C3 [ T ]n n
设计公式
d 3
求出的直径值,需圆整成标准直径,并作为轴的最小直径。如 轴上有一个键槽,可将值增大 3%—5%,如有两个键槽可增大 7%—10%。 二、按弯扭合成强度条件计算 条件:已知支点、扭距,弯矩 步骤: 1、作轴的空间受力简图 举例分析 说明
长春职业技术学院课程教案用纸
教学环节
组织教学 提问
教
学
内
容
备 注
检查学生出勤 联系实际,在实际生产中,在哪些机械系统当中有轴,其作用 是什么? 大家说的这些轴有什么样的特点呢?有应用到什么场合 呢? 学习情境四:轴系总成结构分析与设计 任务 4-3:轴的设计 一、按扭转强度条件计算 用于:①只受扭矩或主要承受扭矩的传动轴的强度计算 ②结构设计前按扭矩初估轴的直径 dmin 强度条件 举例导入
传动轴设计计算
传动轴设计计算1概述在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。
万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。
在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。
传动轴设计应能满足所要传递的扭矩与转速。
现轻型载货汽车多采用不等速万向节传动轴。
2传动轴设计2.1传动轴万向节、花键、轴管型式的选择根据整车提供发动机的最高转速、最大扭矩及变速箱提供的一档速比,及由后轴负荷车轮附着力,计算得扭矩,由两者比较得出的最小扭矩来确定传动轴的万向节、花键、轴管型式。
a 按最大附着力计算传动轴的额定负荷公式:M ψmax =G ·r k ·ψ/i oG 满载时驱动轴上的负荷r k 车轮的滚动半径ψ车轮与地面的附着系数i o 主减速器速比b 按发动机最大扭矩计算传动轴的额定负荷公式:M ψmax =M ·i k1·i p /nM 发动机最大扭矩i k1变速器一档速比i p 分动器低档速比n 使用分动器时的驱动轴数按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。
考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩: M ψmaxo = M max ·μ传动轴的试验扭矩:由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的 1.5-2.0倍。
传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。
轴管扭转应力公式:τ=16000DM π(D 4-d 4)<[τ] =120N/ mm 2 D 轴管直径;d 轴管内径;M 变速箱输出最大扭矩;花键轴的扭转应力:τ=16000M πD 23<[τ] =350N/ mm 2D 2花键轴花键底径;D 2=27.667mm 。
某型SUV传动轴设计与计算概论
河北工业大学毕业论文作者:原囡囡学号:100280学院:机械工程学院系(专业):车辆工程题目:某型SUV传动轴设计与计算指导者:刘璇讲师评阅者:2014年 6月 7日目录1 绪论 (5)1.1 课题背景 (5)1.2 国内外研究现状 (5)1.3 常见的万向节及其工作原理 (7)1.4 课题内容 (9)2 万向传动轴的设计与计算 (10)2.1 传动轴设计校核计算过程 (10)2.2 传动轴的主要结构参数及校核计算 (10)2.3 计算机辅助绘图 (15)3 建立万向传动轴模型 (19)3.1 软件介绍 (19)3.2 实体建模 (20)3.3 本章小结 (21)4 万向传动轴的仿真分析 (22)4.1 Nastran软件介绍 (22)4.2 有限元分析过程及结果 (22)4.3 分析所设计的结构的不足与改进方法 (27)4.4 模态分析 (27)结论 (28)参考文献 (29)致谢 (30)1 绪论1.1 课题背景随着人类社会的发展越来越好,人民生活水平的质量越来越高,汽车的使用也越来越频繁。
作为汽车传动系统的重要组成部分,在前置引擎后轮驱动的汽车中,传动轴重要性更为突出,其主要功能是将变速器的输出转矩和功率传输到后轴的旋转运动,起到了连接变速箱与后桥,是汽车传动系的一条大动脉。
汽车所安装的万向传动轴大部分由传动轴、万向节和中间支撑等构成。
不同的行驶情况下传动轴所受力矩由汽车驱动轮(后轮)载荷决定。
汽车在加速、爬坡或满载时传动轴所受力矩较大。
汽车行驶时,由于后轴的跳动,变速器和后驱动桥的相对位置也会不断的发生变化,使传动轴与变速器之间产生轴向位移,伸缩花键可以很好的解决这个问题。
根据汽车的工作情况来设计汽车的传动轴,使其能够承受传动载荷,结构尽可能简单,便于拆装,寿命足够长。
从而使汽车减少材料使用,减轻质量,降低油耗,使产品拥有更强的竞争力。
如果按照传统的设计方法来设计传动轴然后检验其性能耗时长,效率低,成本高且检验性能的过程也比较复杂。
轴的设计计算
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
轴设计计算和轴承计算模板实例
(3)确定各段轴径直径和长度
轴径:从联轴器开始向左取ф55(联轴器轴径)d1;
根据以上考虑可确定每段轴长,并可以计算出轴承与齿轮、联轴器间的跨度。
L=80+2×15+2×5+2×(23/2)=143mm
L1=58+82/2+23/2=111.5mm
d1=55mm
d2=63mm
d3=65mm
d4=75mm
d5=85mm
d6=74mm
d7=65mm
B=23mm
a=15mm
s=5mm
d2→ф63(55+2×0.07d1=62.7;取标准值,表12-10)
d3→ф65(轴颈,查轴承内径)(轴承)
d4→ф75(取>65的标准值)(齿轮)
d5→ф85(75+2×0.07d4=85.5;取整数值)
d6→ф74(查轴承7213C的安装尺寸da)
d7→ф65(轴颈,同轴两轴承取同样的型号)d7=d3
C0r=29.2kN
3.计算当量动载荷P
Fa/C0r=0.018,用内插法由表12-16知,
判断系数e=0.20
Fa/Fr=0.22>e,由表12-16查得X=0.56,Y=2.211,由表12-14知fp=1,由公式
知P=2494N
P=2494N
4.计算轴承受命Lh
查表12-13取温度系数ft=1,由公式12-12知轴承寿命
4转轴的强度设计计算
第四节轴的设计计算1、设计计算公式1)按钮转强度计算—传动轴传动轴上开有键槽时,轴径增大4~7%2)按弯扭合成强度计算1、填空题1 轴根据其受载情况可分为:__________、____________、__________。
2 轴根据其形状可分为:__________3 主要承受弯矩,应选____________轴4 主要承受转矩,应选____________轴5 既承受弯矩,又承受转矩应选_________轴。
6 平键联结可分为__________、___________、_____________等。
7 键连接可分为__________、____________、______________、__________。
2、单选题1 平键工作以_________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是2 半圆键工作以___________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是3 楔键工作以____________为工作面。
A: 顶面B: 侧面C: 底面D: 都不是4 机器的零、部件在装拆时,不得损坏任何部分。
而且经几次装拆仍能保持该机器性能的联接叫__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是5 机械静联接多数属于__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是6 键联接、销联接和螺纹联接都属于__________。
A: 可拆联接B: 不可拆联接C: 焊接D: 以上均不是7 楔键联接对轴上零件能作周向固定,且__________。
A: 不能承受轴向力B: 只能承受单向轴向力C: 不能承受径向力D: 以上均不是8 根据平键的__________不同,分为A、B、C型。
A: 截面形状B: 尺寸大小C: 头部形状D: 以上均不是9 _________ 联接的轴与轴上零件的对中性好,用于高速精密的传动。
A: 紧键B: 松键C: 高速精密D: 以上均不是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传动轴设计计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
编号:
传动轴设计计算书
编制:日期:
校对:日期:
审核:日期:
批准:日期:
一.计算目的
我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球面滚轮万向节,车轮端选用球笼万向节。
左、右前轮分别由1根等速万向节传动轴驱动。
通过计算,校核选型是否合适。
二.计算方法
本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。
而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、
42CrMo、40MnB,其扭转屈服极限可达到784 N/mm2左右,轴端花键挤压应力可达到196
N/mm2。
传动轴校核计算流程:
轴管直径的校核
校核:
两端自由支撑、壁厚均匀的等截面传动轴的临界转速
22
2
8
1.2x10
n
e l d
D+
= (r/min)
式中L传动轴长,取两万向节之中心距:mm D为传动轴轴管外直径:mm
d为传动轴轴管内直径:mm
各参数取值如下:D=φ27mm,d=0mm
取安全系数K=n
e /n
max
,其中n
max
为最高车速时的传动轴转速,
取安全系数K=n
e /n
max
=~。
实际上传动轴的最大转速n
max =n
c
/(i
g
×i
),r/min
其中:n
c
-发动机的额定最大转速,r/min;
i
g
-变速器传动比;
i 0-主减速器传动比。
轴管的扭转应力的校核
校核扭转应力:
τ=
]
[1644τπ≤)
-(d D DT J
(N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗
拉应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的~,取该系数为,由此可取扭转应力为539 N/mm 2,参考GB 3077-88]
式中:
Tj ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ;
i g1-变速器一档传动比或倒档传动比;
i g0-主减速器传动比
k d -动载系数
η-传动效率
传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核
][)2
)(4(2121j j ZL
D D D D T σσ≤-+=
(N/mm 2
)
式中:Tj -计算转矩,N ·mm ;
D 1,D 2-花键的外径和内径,mm ;
Z ………花键齿数
L ………花键有效长度
][j σ……许用挤压应力,花键取][j σ=192 N/mm 2。
(详见《汽车设计》390页)
参 考 资 料
1. 张洪欣. 汽车设计(第二版). 北京:机械工业出版社,1989
2. 刘惟信. 汽车设计. 北京:清华大学出版社,2002
3. 汽车工程手册编写组编. 汽车工程手册(设计篇). 北京:机械工业出版
社,2001 4.
汽车设计标准资料手册(金属篇).出版社:中国汽车技术研究中心 三. 计算过程
传动轴花键参数:
变速器参数:
轴管直径的校核
根据所传动最大转矩、最高转速和传动轴长度,按有关标准选取轴管外直径及壁厚
根据同型样车取D=φ27mm,d=0mm
校核:
两端自由支撑、壁厚均匀的等截面传动轴的临界转速
22
2
8
1.2x10
n
e l d
D+
= (r/min)
式中L传动轴长,取两万向节之中心距:mm
各参数取值如下:D=φ27mm,d=0mm
其中左传动轴长L=438.2mm,右传动轴长L=737.8mm,取其中较长的一个L=737.8mm。
代入得:n
e
=5952r/min
取安全系数K=n
e /n
max
,其中n
max
为最高车速时的传动轴转速,
取安全系数K=n
e /n
max
=~。
实际上传动轴的最大转速n
max =n
c
/(i
g
×i
),r/min
其中:n
c
-发动机的额定最大转速,r/min;
i
g
-变速器传动比;
i
-主减速器传动比。
各参数取值如下:n
c
=5500 r/min
由上表参数得:
n max =5500/(i
×i
5
)=5500/(×)=1607 r/min 代入数值后K=5952/1607=>
由此φ27mm轴可满足要求。
轴管的扭转应力的校核
校核扭转应力:
τ=
][164
4τπ≤)
-(d D DT J (N/mm 2
) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗
拉应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的~,取该系数为,由此可取扭转应力为539 N/mm 2,参考GB 3077-88]
Tj ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ;
i g1-变速器一档传动比或倒档传动比;
i g0-主减速器传动比
k d -动载系数
η-传动效率
各参数取值如下:
T emax =193 N ·m
i g1=
i g0=
k d =1
η=85%
按试验数据最大转矩Tj=193×××1×2=1296 N ·m
τ
=335 N/mm 2
取安全系数得τ'=503N/mm 2
τ'≤539 N/mm
2
由此φ27mm 轴可满足要求
传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核
]
[)2
)(4(2121j j
ZL
D D D D T σσ≤-+= (N/mm 2) 式中:Tj -计算转矩,N ·mm ;
D 1,D 2-花键的外径和内径,mm ;
Z ………花键齿数
L ………花键有效长度
][j σ……许用挤压应力,花键取][j σ=192 N/mm 2。
(详见《汽车设计》390页)
变速器端花键轴D1=φ28mm ,D2=φ26mm
变速器端花键轴Z =27,L =27.1 mm
校核:代入得车轮端花键轴σ= N/mm2<192 N/mm2
车轮器端花键轴D1=φ26mm,D2=φ24mm
车轮器端花键轴Z=25,L=46 mm
校核:代入得车轮端花键轴σ= N/mm2<192 N/mm2
经校核传动轴管可达到预期目的。
四.结论
由上计算比较,选用Ф27传动轴方案,可以满足本车动力匹配要求。