平行线 常考经典较难题、压轴题例题和巩固练习教学内容

合集下载

平行线问题的典型例题和解决方法式 -回复

平行线问题的典型例题和解决方法式 -回复

平行线问题的典型例题和解决方法式 -回复
平行线问题是几何学中常见的问题,下面给出一个典型例题和解决方法:
例题:已知在平面直角坐标系中,直线L1与x轴的夹角为30度,直线L2与x轴的夹角为60度,且L1与L2的斜率之和
为3/2。

求L1与L2的方程。

解决方法:
1. 首先,我们知道,直线与x轴的夹角可以通过斜率来表示。

直线L1与x轴的夹角为30度,根据三角函数的定义,
tan(30°)=1/√3,所以直线L1的斜率为k1=1/√3。

2. 同理,直线L2与x轴的夹角为60度,根据三角函数的定义,tan(60°)=√3,所以直线L2的斜率为k2=√3。

3. 根据斜率之和的关系,我们有 k1 + k2 = 3/2。

4. 将k1和k2的值代入方程,得到1/√3 + √3 = 3/2,整理得到
√3 + 3√3 = (3/2)√3,化简得到4√3 = (3/2)√3。

5. 由于等式两边都含有√3,且√3不等于0,所以我们可以将
等式两边除以√3,得到 4 = 3/2。

6. 由于等式两边不等,所以没有满足条件的直线L1和L2。

因此,此题无解。

总结:解决平行线问题的方法是,根据直线与x轴的夹角和斜率之间的关系,将已知条件用方程表示,并求解方程,得到直线的方程。

然后通过比较方程中的斜率和截距等特征,判断是否为平行线。

如果斜率和截距都相等,则两条直线平行;否则,两条直线不平行。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

人教版七年级数学下册期考重难点突破、典例剖析与精选练习: 平行线(附全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习: 平行线(附全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平行线知识网络重难突破知识点一平行线及其判定平行线的概念:在同一平面内,不相交的两条直线叫做平行线,平行用符号“∥”表示,如:直线a与直线b互相平行,记作a∥b,读作a平行于b。

平行线的画法:一落、二靠、三移、四画。

判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合平行公理(唯一性):经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论(传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行几何描述:∵b∥a,c∥a∴b∥c平行线的判定判定方法 1 :两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行判定方法 2 :两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行几何符号语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典型例题】1.(2018·沈阳市第七中学初二期中)1.(2018·沈阳市第七中学初二期中)如果a//b,b//c,那么a//c,这个推理的依据是( )A.等量代换B.经过直线外一点,有且只有一条直线与已知直线平行C.平行线的定义D.平行于同一直线的两直线平行2.(2019·石家庄市第二十八中学初一期末)如图,直线//a b.则直线a,b之间的距离是()A.线段AB的长度B.线段CD的长度C.线段ABD.线段CD3.(2019·上海市中国中学初一期中)下列结论中,错误的是( )A.经过直线外一点,有且只有一条直线与这条直线平行B.如果直线a,b,c满足:a∥b,c∥b,那么a∥cC.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离4.(2019·福建莆田一中初一期中)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行5.(2019·上海市嘉定区震川中学初一期中)下列说法中正确的个数有( )①两条直线被第三条直线所截,内错角相等;②在同一平面内不重合的两条直线有平行、相交和垂直三种位置关系;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离;④在同一平面内,垂直于同一条直线的两条直线互相平行。

人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

平行线与相交线期末考试总复习考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是,那么称这两个角互为余角.2.补角:如果两个角的和是,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A+∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A 处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是______10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1-2-3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。

本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。

知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。

- (b) 两条直线之间的对应角相等。

- (c) 一条直线与另一平行线的任意直线交角为180°。

3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。

- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。

- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。

经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。

例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。

例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。

例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。

以上是初三平行线知识点以及经典例题的介绍。

希望能对初三学生理解和掌握平行线有所帮助。

平行线知识点归纳及典型题目练习(含答案)

平行线知识点归纳及典型题目练习(含答案)

平行线知识点归纳及典型题目练习(含答案) -第一篇:平行线知识点归纳及典型题目练习(含答案)第五章相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________. 9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .- 115. 如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16. 如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.17. 如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.- 321.如图,已知ABC,AD BC于D,E为AB上一点,EF BC于F,DG//BA交CA于G.求证1 2.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.- 5第二篇:第五章相交线与平行线全章知识点归纳及典型题目练习(含答案)第五章相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种. 7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________. 9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .- 115. 如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16. 如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.17. 如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.- 321. 如图,已知ABC,AD BC于D,E为AB上一点,EF BC于F,DG//BA交CA于G.求证1 2.22. 已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.- 5第三篇:相交线与平行线知识点归纳相交线与平行线知识点小结一、相交线1.相交线:两条直线相交,有且只有一个交点。

(完整版)平行线常考经典较难题、压轴题例题和巩固练习

(完整版)平行线常考经典较难题、压轴题例题和巩固练习

平行线 例1 翻折 1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为的大小为 度.度.例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.量关系?并说明理由. 1AED B C2、如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB ∥CD . (1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为的数量关系为 ; (2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;系,并证明你的结论;(3)如图3,∠ABM=∠MBE ,∠CDN=∠NDE ,直线MB 、ND 交于点F ,则= .例4 平移1、如图1所示,已知BC ∥OA ,∠B=∠A=120°(1)说明OB ∥AC 成立的理由.成立的理由. (2)如图2所示,若点E ,F 在BC 上,且∠FOC=∠AOC ,OE 平分∠BOF ,求∠EOC 的度数.的度数. (3)在(2)的条件下,若左右平移AC ,如图3所示,那么∠OCB :∠OFB 的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA 时,求∠OCA 的度数.的度数.2、如图,已知AM ∥BN ,∠A=60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)求∠CBD 的度数;的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,∠ABC 的度数是的度数是.例5 作图—应用1、(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD 表示.试问:桥CD 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥CD 的位置.的位置.2、如图,平面上有直线a 及直线a 外的三点A 、B 、P .(1)过点P 画一条直线m ,使得m ∥a ;(2)过B 作BH ⊥直线m ,并延长BH 至B ′,使得BB ′为直线a 、m 之间的距离;之间的距离;(3)若直线a 、m 表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B 的路程最短,试问桥应建在何处?画出示意图.的路程最短,试问桥应建在何处?画出示意图.【巩固练习】【巩固练习】1、如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P ﹣2∠C=57°,则∠C 等于(等于( )A .24°B .34°C .26°D .22° 图2图1P BA题图第2题图题图第1题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类的位置关系是( )推,则l1和l8的位置关系是(A.平行.平行或垂直 D.无法确定.无法确定 .平行 B.垂直.垂直 C.平行或垂直4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有(为定值,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个第5题图题图第4题图题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于(等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为的值为 .第9题图题图题图第8题图第7题图题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为的度数为 .8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所的度数是.在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.;(1)如图1,直接写出∠A和∠C之间的数量关系之间的数量关系(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.之间的一点.之间的数量关系,并证明你的结论;(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.的大小.13、已知:如图,BC ∥OA ,∠B=∠A=100°,试回答下列问题:,试回答下列问题:(1)如图①所示,求证:OB ∥AC .(注意证明过程要写依据).(注意证明过程要写依据)(2)如图②,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF .(ⅰ)求∠EOC 的度数;的度数; (ⅱ)求∠OCB :∠OFB 的比值;的比值;(ⅲ)如图③,若∠OEB=∠OCA .此时∠OCA 度数等于度数等于 .(在横线上填上答案即可).(在横线上填上答案即可)14、已知直线AB ∥CD .(1)如图1,直接写出∠ABE ,∠CDE 和∠BED 之间的数量关系是之间的数量关系是 . (2)如图2,BF ,DF 分别平分∠ABE ,∠CDE ,那么∠BFD 和∠BED 有怎样的数量关系?请说明理由.理由.(3)如图3,点E 在直线BD 的右侧,BF ,DF 仍平分∠ABE ,∠CDE ,请直接写出∠BFD 和∠BED 的数量关系的数量关系.。

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同. 要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. (乌兰察布校级期中)a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对举一反三:【变式】如图,在正方体中:(1)找出与线段AB平行的线段:_________;(2)找出与线段AB相交的线段:______.2.如图,已知直线a、b被直线c所截. 图中八个角共有组同位角,组内错角,组同旁内角.举一反三:【变式】观察下图并填空:(1) ∠1 与是同位角;(2) ∠5 与是同旁内角;(3) ∠1 与是内错角.类型二、平行线的判定和性质3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ).A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.类型三、图形的平移5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.举一反三:【变式】(福州自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D..类型四、综合应用6.如图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.(春•鄂城区月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4 B.3 C.2 D.14.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.(盐津县校级月考)平行用符号 表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (大庆校级自主招生)如图,点E 在AC 的延长线上,对于给出的四个条件: (1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE ;(4)∠D+∠ABD=180°. 能判断AB ∥CD 的有 个.13.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.三、解答题17.(滨湖区校级期末)把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC 平分∠DAB ,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a 米,宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.北 北 甲 乙20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?。

初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连接三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义 :有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。

⑵对角线互相垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12正方形判定定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。

(完整版)平行线知识点归纳及典型题目练习(含答案).doc

(完整版)平行线知识点归纳及典型题目练习(含答案).doc

(完整版)平行线知识点归纳及典型题目练习(含答案).doc第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为 _____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互 _______.垂线的性质:⑴过一点 ______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有 ________与 _________两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 .简单说成:_____________________________________. ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 .简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行的性:⑴两条平行直被第三条直所截,同位角相等.成:_________________.⑵两条平行直被第三条直所截,内角相等.成:__________________________________. ⑶两条平行直被第三条直所截,同旁内角互.成: ____________________________________ .11.判断一件事情的句,叫做 _______.命由 ________和 _________ 两部分成 .是已知事,是______________________. 命常可以写成“如果??那么??”的形式,“如果”后接的部分是_____,“那么”后接的部分是_________.如果成立,那么一定成立 .像的命叫做___________.如果成立,不能保一定成立,像的命叫做___________.定理都是真命 .12.把一个形整体沿某一方向移,会得到一个新形,形的种移,叫做平移,称_______.形平移的方向不一定是水平的 .平移的性:⑴把一个形整体平移得到的新形与原形的形状与大小完全______.⑵新形中的每一点,都是由原形中的某一点移后得到的,两个点是点. 接各点的段_________________.熟悉以下各:13.如,BC AC, CB 8cm, AC 6cm, AB10cm, 那么点A 到 BC 的距离是 _____,点B 到 AC 的距离是 _______,点 A、B 两点的距离是 _____,点C 到 AB 的距离是 ________.14. a 、b、c平面上三条不同直,a)若 a // b,b // c ,a与c的位置关系是_________;b)若 a b, b c ,a与c的位置关系是_________;c)若 a // b , b c,a与c的位置关系是________.15.如图,已知 AB、 CD、EF 相交于点 O,AB⊥ CD, OG 平分∠ AOE,∠ FOD =28°,求∠ COE 、∠ AOE、∠ AOG 的度数.16.如图,AOC 与BOC 是邻补角,OD、OE分别是AOC 与BOC 的平分线,试判断 OD 与 OE 的位置关系,并说明理由.17.如图,AB ∥DE,试问∠ B、∠ E、∠ BCE 有什么关系.解:∠ B+∠ E=∠ BCE过点 C 作CF∥ AB,则B____()又∵ AB∥ DE ,AB∥ CF,∴ ____________ ()∴∠ E=∠ ____()∴∠ B+∠ E=∠ 1+∠ 2即∠ B+∠ E=∠ BCE.18.⑴如图,已知∠1=∠ 2求证:a∥b.⑵直线a // b,求证:1 2 .⑴∵∠ 1=∠ 2又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 3∴a∥ b(同位角相等两直线平行)⑵∵ a∥ b∴∠ 1=∠ 3(两直线平行,同位角相等)又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 2.19.阅读理解并在括号内填注理由:如图,已知AB∥ CD ,∠ 1=∠ 2,试说明EP∥ FQ .证明:∵ AB ∥CD ,∴∠ MEB =∠ MFD ()又∵∠ 1=∠ 2,∴∠ MEB -∠ 1=∠ MFD -∠ 2,即∠MEP =∠ ______∴ EP∥ _____.()20.已知DB∥FG ∥EC, A 是 FG 上一点,∠ ABD =60°,∠ ACE =36°, AP 平分∠ BAC,求:⑴∠ BAC 的大小;⑵∠ PAG 的大小 .21.如图,已知ABC , AD BC 于D, E 为 AB 上一点, EF BC 于F, DG // BA 交CA 于 G.求证1 2 .22.已知:如图∠1=∠2,∠ C=∠ D,问∠ A 与∠ F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位角内错角同旁内角6.平行相交平行7.平行这两直线互相平行8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行 .9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补 .11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行垂直15. 28°118° 59°16. OD ⊥OE 理由略17. 1(两直线平行,内错角相等)DE ∥ CF(平行于同一直线的两条直线平行)2 (两直线平行,内错角相等). 18.⑴∵∠ 1=∠ 2 ,又∵∠ 2=∠ 3(对顶角相等),∴∠ 1=∠ 3∴ a∥ b(同位角相等两直线平行)⑵∵ a∥ b ∴∠ 1=∠ 3(两直线平行,同位角相等 )又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 2. 19. 两直线平行,同位角相等MFQ FQ 同位角相等两直线平行20. 96°,12°.21.Q AD BC, FE BC EFB ADB 90o EF // AD 2 3Q DG // BA, 3 1 1 2. 22. ∠A=∠ F.∵∠ 1=∠ DGF (对顶角相等)又∠ 1=∠ 2 ∴∠ DGF =∠ 2∴DB∥ EC(同位角相等,两直线平行)∴∠ DBA=∠ C(两直线平行,同位角相等)又∵∠ C=∠ D ∴∠ DBA=∠ D ∴ DF ∥AC(内错角相等,两直线平行)∴∠A=∠ F( 两直线平行 ,内错角相等 ).。

特训02 相交线 平行线 压轴题(八大题型归纳)(解析版)

特训02 相交线 平行线 压轴题(八大题型归纳)(解析版)

特训02相交线平行线压轴题(八大题型归纳)目录:题型1:添加辅助线构造平行题型2:角平分线在平行线中的应用题型3:动直线、动射线、动三角形的旋转问题及其应用题型4:动点问题题型5:一副三角板及其在平行线中的应用题型6:单个三角板在平行线中的应用题型7:折叠问题题型8:定值问题题型1:添加辅助线构造平行1.【阅读探究】(1)如图1,,,AB CD E F ∥分别是,AB CD 上的点,点M 在,AB CD 两平行线之间,50,20AEM CFM ∠=︒∠=︒,求EMF ∠的度数.解:过点M 作∥MN AB ,所以EMN ∠=∠______,因为AB CD ,所以MN CD ∥,所以FMN ∠=∠______,因为50,20AEM CFM ∠=︒∠=︒,所以502070EMF EMN FMN AEM CFM ∠=∠+∠=∠+∠=︒+︒=︒.(2)从上面的推理过程中,我们发现平行线可将AEM ∠和CFM Г凑”在一起,得出角之间的关系,使问题得以解决.进一步研究,我们可以发现图1中,AEM EMF ∠∠和CFM Ð之间存在一定的数量关系,请直接写出它们之间的数量关系为________.【方法应用】(3)如图2,,,AB CD E F ∥分别是,AB CD 上的点,点M 在,AB CD 两平行线之间,135,155AEM CFM ∠=︒∠=︒,求EMF ∠的度数.【应用拓展】(4)如图3,,,AB CD E F ∥分别是,AB CD 上的点,点M 在,AB CD 两平行线之间,作AEM ∠和CFM Ð的平分线,EP FP ,交于点P (交点P 在两平行线AB CD 、之间),若EMF α∠=︒,则EPF ∠的度数为________︒(用含α的式子表示).∴EMN AEM ∠=∠,∵AB CD ,∴180AEM NME ∠+∠=︒,∵AB CD ,∴MN CD ∥,∴180CFM NMF ∠+∠=︒,∴AEM NME NMF CFM ∠+∠+∠+∠即360AEM EMF CFM ∠+∠+∠=︒∵135AEM ∠=︒,155CFM ∠=︒,∴36013515570EMF ∠=︒-︒-︒=︒.(4)∵EP 、FP 分别是AEM ∠和∴12AEP AEM ∠=∠,12CFP ∠=∠过点P 作PH AB ∥,如图3所示:∵AB CD ∥,∴PH CD ∥,∴EPH AEP ∠=∠,FPH CFP ∠=∠∴EPF EPH FPH AEP ∠=∠+∠=∠同理可得:360EMF AEM ∠=︒-∠∴360AEM CFM α∠+∠=︒-,∴()(1136022AEM CFM ∠+∠=⨯︒-∴11802EPF α=︒-∠.2.已知,直线AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠的度数.(2)如图2,点P 在直线AB ,CD 之间,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外.①直接写出APC ∠、BAP ∠、DCP ∠的数量关系为______.②BAP ∠与DCP ∠的角平分线相交于点K ,请直接写出AKC ∠与APC ∠的数量关系为______.AB CD∥,∴PE AB CD∥∥,∴APE BAP∠=∠,∠∴APC APE∠=∠+∠(2)解:12 AKC∠=如图2,过K作KE∥AB CD ∥ ,KE AB CD ∴∥∥,AKE BAK ∴∠=∠,CKE ∠AKC AKE CKE ∴∠=∠+∠=过P 作PF AB ∥,同理可得,APC BAP ∠=∠BAP ∠ 与DCP ∠的角平分线相交于点∴12BAK DCK BAP ∠+∠=∠∴12AKC APC ∠=∠;(3)解:①如图3,过P 作AB CD ∥ ,∴PF AB CD ∥∥,∴BAP APF ∠=∠,DCP CPF ∠=∠,∴APC APF CPF BAP ∠=∠-∠=∠-故答案为:APC BAP DCP ∠=∠-∠②如图3,过K 作KE AB ∥,AB CD ∥ ,KE AB CD ∴∥∥,BAK AKE ∴∠=∠,DCK CKE ∠=∠AKC AKE CKE BAK ∴∠=∠-∠=∠由①知,APC BAP DCP ∠=∠-∠,BAP ∠ 与DCP ∠的角平分线相交于点∴1122BAK DCK BAP DCP ∠-∠=∠-∠∴12AKC APC ∠=∠.3.课题学习:平行线的“等角转化”功能.(1)阅读理解:如图,已知点A 是BC 外一点,连接AB 、AC ,求B BAC C ∠+∠+∠的度数.阅读并补充下面推理过程.解:过点A 作ED BC ∥,所以B ∠=,C ∠=,又因为180EAB BAC DAC ∠+∠+∠=︒,所以180B BAC C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠、B ∠、C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图1,已知AB CD ∥,求B BPD D ∠+∠+∠的度数;(3)深化拓展:已知直线AB CD ∥,点P 为平面内一点,连接PA 、PD .①如图2,已知50A ∠=︒,140D ∠=︒,请直接写出APD ∠的度数;②如图3,请判断∠PAB 、CDP ∠、APD ∠之间的数量关系,并说明理由.【答案】(1)EAB ∠;DAC∠(2)360B BPD D ∠+∠+∠=︒(3)①90︒;②180PAB CDP APD ∠+∠-∠=︒,理由见解析【分析】(1)根据两直线平行内错角相等即可得出结论;(2)过点P 作PF AB ∥,根据两直线平行同旁内角互补得出180D FPD ∠+∠=︒,180B FPB ∠+∠=︒,即可得到最后结论;(3)①APD ∠的度数为90︒,过点P 作PG AB ∥,根据平行线性质求得50APG ∠=︒,40GPD ∠=︒,即可求得APD ∠的度数;②180PAB CDP APD ∠+∠-∠=︒,过点P 作PF AB ∥,根据平行线性质得到CDP DPF ∠=∠,180PAB APE ∠+∠=︒,即可退出最后结论.【解析】(1)解:过点A 作ED BC ∥,B EAB ∠=∠,C DAC ∠=∠,又因为180EAB BAC DAC ∠+∠+∠=︒,所以180B BAC C ∠+∠+∠=︒;(2)解:如图,过点P 作PF AB ∥,AB CD ∥ ,PF CD ∴∥,180D FPD ∴∠+∠=︒,PF AB ∥ ,180B FPB ∴∠+∠=︒,360B FPB FPD D ∴∠+∠+∠+∠=︒,360B BPD D ∴∠+∠+∠=︒;(3)解:①APD ∠的度数为90︒;理由:过点P 作PG AB ∥,50A APG ∴∠=∠=︒,AB CD ∥ ,GP CD ∴∥,180GPD D ∴∠+∠=︒,140D ∠=︒ ,18014040GPD ∴∠=︒-︒=︒,504090APD APG GPD ∴∠=∠+∠=︒+︒=︒;②180PAB CDP APD ∠+∠-∠=︒,理由:过点P 作PF AB ∥,AB CD ∥ ,PF CD ∴∥,CDP DPF ∴∠=∠,PF AB ∥ ,180PAB APE ∴∠+∠=︒,APF DPF APD ∠=∠-∠ ,180PAB DPF APD ∴∠+∠-∠=︒,180PAB CDP APD ∴∠+∠-∠=︒.【点睛】本题考查了平行线的判定与性质,解答本题的关键是正确作出辅助线,利用平行线的性质进行推理.4.(1)【问题解决】如图1,已知AB CD ∥,36BEP ∠=︒,152CFP ∠=︒,求EPF ∠的度数;(2)【问题迁移】如图2,若AB CD ∥,点P 在AB 的上方,则PFC ∠,PEA ∠,EPF ∠之间有何数量关系?并说明理由;(3)【联想拓展】如图3,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,求G ∠的度数(结果用含α的式子表示).∵PQ AB ∥,∴36EPQ BEP ∠=∠=︒,∵AB CD ∥,∴CD PQ ∥.∵PN AB ∥,AB CD ∥,∴PN CD ∥,PEA NPE ∴∠=∠,FPN NPE EPF ∠=∠+∠ FPN PEA EPF ∠=∠+∠∴∵PN CD ∥,FPN PFC ∴∠=∠,PFC PEA EPF ∠=∠+∠∴;(3)如图3,过点G 作GH ∵GH AB ∥,AB CD ∥,∴AB CD GH ∥∥,HGE AEG ∴∠=∠,HGF ∠又PEA ∠ 的平分线和PFC ∠12HGE AEG AEP ∴∠=∠=∠由(2)得,CFP P ∠=∠+题型2:角平分线在平行线中的应用5.如图,已知AD BE ∥,AC 平分BAD ∠交BE 于点C ,点P 、Q 分别在射线AD 、BE 上运动(点Q 不与点B 、C 重合),且满足APQ B ∠=∠,连结CP .(1)AB 与PQ 平行吗?请说明理由;(2)设B α∠=,CPQ β∠=.①当点Q 在线段BC 上,求ACP ∠的度数;(用含α,β的代数式表示)②当点Q 在射线CE 上,CPQ ∠的平分线PF 交射线BE 于点F ,连结AF ,若60α=︒,20CAF ∠=︒,试探索AFP ∠与ACP ∠的数量关系.∵PF 平分CPQ ∠,∴60PCE APC β∠=∠=︒-,PFE ∠=∠∴180606060ACP ββ∠=︒-︒-︒+=︒+6.已知:直线a b ∥,点A 和点B 是直线a 上的点,点C 和点D 是直线b 上的点,连接AD ,BC ,设直线AD 和BC 交于点E .(1)在如图1所示的情形下,若AD BC ⊥,求ABE CDE ∠+∠的度数;(2)在如图2所示的情形下,若BF 平分ABC ∠,DF 平分ADC ∠,且BF 与DF 交于点F ,当64ABC ∠=︒,72ADC ∠=︒时,求BFD ∠的度数;(3)如图3,当点B 在点A 的右侧时,若BF 平分ABC ∠,DF 平分ADC ∠,且BF ,DF 交于点F ,设ABC α∠=,ADC β∠=,用含有α,β的代数式表示BFD ∠的补角.∵a b ∥,∴EG CD ∥,∴ABE BEG ∠=∠,CDE ∠∴ABE CDE BEG ∠+∠=∠∵AD BC ⊥,∴ABE CDE BED ∠+∠=∠(2)如图,过点F 作FH ∵a b ∥,∴FH CD ∥,∴ABF BFH ∠=∠,CDF ∠=∴BFD BFH DFH ∠=∠+∠=∵BF 平分ABC ∠,DF 平分∴1322ABF ABC ∠∠=︒,CDF ∠∴BFD ABF CDF ∠=∠+∠=(3)如图,过点F 作FQ ∥∵a b ∥,∴FQ CD ∥,∴180ABF BFQ ∠+∠=︒,∴BFD BFQ DFQ ∠=∠+∠∵BF 平分ABC ∠,DF 平分∴1122ABF ABC α∠=∠=∴180BFD ABF ∠=︒-∠+∴BFD ∠的补角1122α=-【点睛】本题考查的是平行线的性质,平行公理的应用,角平分线的定义,熟练的利用平行线的性质求角的度数是解本题的关键.7.已知:直线a b ∥,点A ,B 在直线a 上,点C ,D 在直线b 上,(1)连接AD ,BC ,BE 平分ABC ∠,DE 平分ADC ∠,且BE ,DE 所在直线交于点E .①如图1,若60ABC ∠=︒,70ADC ∠=︒,则BED ∠的度数为;②如图2,设ABC α∠=,ADC β∠=,则BED ∠的度数为(用含有α,β的式子表示).(2)如图3,EF 平分MEN ∠,NP 平分END ∠,EQ NP ∥,则FEQ ∠和BME ∠的数量关系是.(3)如图4,若25BAP BAC ∠=∠,25DCP ACD ∠=∠,且AE 平分BAP ∠,CF 平分DCP ∠,猜想E F ∠+∠的结果并且证明你的结论;BEF EBA ∴∠=∠,∥ AB CD ,∴EF CD ∥,FED EDC ∴∠=∠,BEF FED EBA ∴∠+∠=∠+∠BE 平分ABC ∠,DE 平分1302EBA ABC ∴∠=∠=︒,∠65BED EBA EDC ∴∠=∠+∠=故答案为:65︒;②过点E 作EF AB ∥,如图180BEF EBA ∴∠+∠=︒,180BEF EBA ∴∠=︒-∠,∥ AB CD ,∴EF CD ∥,FED EDC ∴∠=∠,180BEF FED EBA ∴∠+∠=︒-∠BE 平分ABC ∠,DE 平分1122EBA ABC α∴∠=∠=,∠180BED EBA EDC ∴∠=︒-∠+∠故答案为:1118022αβ︒-+(2)解:∵EF 平分MEN ∠∴2MEN FEN END ∠=∠∠,∵EQ NP ∥,∴QEN ENP ∠=∠,由(1)中的结论得:2MEN FEN BME ∠=∠=∠2BME QEN =∠+∠,∴22BME FEN QEN ∠=∠-∠2FEQ =∠,故答案为:2BME FEQ ∠=∠(3)解:∵AE 平分BAP ∠∴1125BAE BAF BAC ∠=∠=∠由(1)的结论得:15E BAE ECD ∠=+∠∠=∠题型3:动直线、动射线、动三角形的旋转问题及其应用8.如图,直线a b ∥,直线EF 与直线a ,b 分别交于点E ,F ,点B 在射线EF 上运动(点B 不与点E ,F 重合),A 是直线b 上的一个定点,连接AB ,过点B 作直线l AB ⊥,在直线b 上取一点C ,使得ABC ACB α∠=∠=.(1)若直线l b ∥,则α的度数是______;(2)若直线l 与a 相交于点D ,完成以下问题:①当90BAF ∠>︒时,猜想BDE ∠与α之间有怎样的数量关系,并写出证明过程;②当90BAF ∠<︒时,判断①中的结论是否仍然成立?若成立,请说明理由;若不成立,直接写出它们之间的数量关系.【答案】(1)45︒(2)①290BDE α-∠=︒,证明见解析;②不成立,290BDE α+∠=︒【分析】(1)根据平行线的性质得出180BAC ABD ∠+∠=︒,进而利用等腰直角三角形的性质解答;(2)①过B 作BH a ∥,根据两直线平行,内错角相等和三角形内角和定理解答即可;②过B 作BH a ∥,根据两直线平行,内错角相等和三角形内角和定理解答即可.【解析】(1)解: 直线l AB ⊥,90ABD ∴∠=︒,直线l b ∥,180BAC ABD ∴∠+∠=︒,90BAC ∴∠=︒,ABC ACB α∠=∠= ,180BAC ABC ACB ∠+∠+∠=︒,45α∴=︒,故答案为:45︒;(2)解:①290BDE α-∠=︒,理由如下:过B 作BH a ∥,直线a b ∥,BH a b ∴∥∥,BDE DBH ∴∠=∠,HBA BAC ∠=∠,ABC ACB α∠=∠= ,1802BAC α∴∠=︒-,(1802)BDE DBH DBA HBA DBA BAC DBA α∴∠=∠=∠-∠=∠-∠=∠-︒-,AB l ⊥ ,90ABC GBC ∴∠+∠=︒,90DBA ∠=︒,90GBC α∴∠=︒-,180DBA ABC GBC ∠+∠+∠=︒ ,90(1802)BDE α∴∠=︒-︒-,即290BDE α-∠=︒;②290BDE α+∠=︒,理由如下:过B 作BH a ∥,直线a b ∥,BH a b ∴∥∥,BDE DBH ∴∠=∠,HBA BAF ∠=∠,ABC ACB α∠=∠= ,2BAF α∴∠=,2BDE DBH DBA HBA DBA BAF DBA α∴∠=∠=∠-∠=∠-∠=∠-,AB l ⊥ ,90DBA ∴∠=︒,902BDE α∴∠=︒-,即290BDE α+∠=︒.【点睛】本题是几何综合题,此题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.9.长江汛期即将来临,江阴防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是/a ︒秒,灯B 转动的速度是/b ︒秒,且a 、b 满足()2340a b a b -++-=.假定这一带长江两岸河堤是平行的,即PQ MN ∥,且45BAN ∠=︒.(1)求a 、b 的值;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线第一次与MN 垂直之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【答案】(1)3a =,1b =;(2)当10t =秒或85秒时,两灯的光束互相平行;(3)不变,23BAC BCD ∠=∠.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A 灯转动t 秒,两灯的光束互相平行,分两种情况:①在灯A 射线到达AN 之前;②在灯A 射线到达AN 之后,分别列出方程求解即可;(3)设A 灯转动时间为t 秒,则180?3CAN t ∠=︒,3135BAC BAN CAN t ∠=∠-∠=-︒,过点C 作CF PQ ∥,则CF PQ MN ∥∥,得出1802BCA CBD CAN t ∠=∠+∠=︒-,290BCD ACD BCA t ∠=∠-∠=-︒,即可得出结果.【解析】(1)()2340a b a b -++-= ,∴3040a b a b -=⎧⎨+-=⎩,解得:31a b =⎧⎨=⎩,故3a =,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①在灯A 射线到达AN 之前,由题意得:()3201t t =+⨯,解得:10t =,②在灯A 射线到达AN 之后,由题意得:3180180(20)1t t -︒=︒-+⨯,解得:85t =,综上所述,A 灯转动10秒或85秒时,两灯的光束互相平行;(3)BAC ∠与BCD ∠的数量关系不发生变化,23BAC BCD ∠=∠;理由:设A 灯转动时间为t 秒,则1803CAN t ∠=︒-,45(1803)3135BAC BAN CAN t t ∴∠=∠-∠=︒-︒-=-︒,PQ MN ∥,如图2,过点C 作CF PQ ∥,则CF PQ MN ∥∥,BCF CBD ∴∠=∠,ACF CAN ∠=∠,18031802BCA BCF ACF CBD CAN t t t ∴∠=∠+∠=∠+∠=+︒-=︒-,CD AC ⊥ ,90ACD ∴∠=︒,90(1802)290BCD ACD BCA t t ∴∠=∠-∠=︒-︒-=-︒,23BAC BCD ∴∠=∠.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.10.长江汛期即将来临,为了便于夜间查看江水及两岸河堤的情况,防汛指挥部在一危险地带两岸各安置了一探照灯(如图1),假定这一带长江两岸河堤是平行的,即PQ ∥MN ,连结AB ,且45ABN ∠=︒.灯A 射线自AQ 顺时针旋转至AP 便立即回转,灯B 射线自BM 顺时针旋转至BN 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是1度/秒,灯B 转动的速度是3度/秒.(1)若两灯同时转动,在灯B 射线第一次转到BN 之前,两灯射出的光线交于点C .①如图1,当两灯光线同时转动50秒时,求ABC ∠的度数.②如图2,当两灯光线同时转动55秒时,过C 作CD BC ⊥交PQ 于点D ,求ABC ∠与ACD ∠的比值.(2)若灯A 射线先转动30秒,灯B 射线才开始转动,在灯A 射线第一次转到AP 之前,B 灯转动几秒,两灯的光线互相平行?【答案】(1)①15︒;②32(2)A 灯转动15秒或82.5秒时,两灯的光束互相平行【分析】(1)①当转动50秒时,有150MBC ∠=︒,即有18030CBN MBC ∠=︒-∠=︒,根据ABC ABN CBN ∠=∠-∠,即可得解;②过点C 作CH MN ∥,315565MBC ∠=⨯︒=︒,55QAC ∠=︒,,即有55ACH QAC ∠=∠=︒,15HCB CBN ∠=∠=︒,根据ABC ABN CBN ∠=∠-∠,可得30ABC ∠=︒,再根据ACB ACH BCH ∠=∠+∠,可得20ACD ∠=︒,即问题得解;(2)设A 灯转动t 秒,两灯的光束互相平行,A 灯先转动30秒,则AQ 转到AP 还需要18030150-=(秒)即150t 0<<,①当B 射线第一次垂直MN 时,用时90330÷=(秒),此时A 射线共计运动303060+=秒,即60QAE ∠=︒,即在灯B 射线到达BN 之前,先证明MBF QAE ∠=∠,即有:330=+t t ,即可求解;②在灯B 射线到达BN 之后,回到BM 前,根据①中,同理有:()30MBF QAE t ∠=∠=+︒,()3180FBN t ∠=-︒即有:()318030180t t -++=,即可求解;③在灯B 射线回到BM 后,第二次到BN 前,由题意得:336030t t -=+,即可求解,即问题得解.【解析】(1)两灯速度为:灯A 转动的速度是1度/秒,灯B 转动的速度是3度/秒.①当转动50秒时,503150MBC ∠=⨯︒=︒,∴18030CBN MBC ∠=︒-∠=︒,∴453015ABC ABN CBN ∠=∠-∠=︒-︒=︒,故答案为:15︒;∵PQ M N ∥,∴CH PQ ∥,两灯光线同时转动55秒时,则∴55ACH QAC ∠=∠= ,HCB ∠∴ABC ABN CBN ∠=∠-∠,即451530ABC ∠=︒-︒=︒,又∵ACB ACH BCH ∠=∠+∠,即5518016570ACB ∠=︒+︒-︒=而90BCD ∠=︒,∴9020ACD ACB ∠=︒-∠=︒∴303:202ABC ACD ︒∠∠==︒.即比值为:32;(2)两灯速度为:灯A 转动的速度是t∵PQ M N ∥,BF AE ∥,∴ABF EAB ∠=∠,PAB ABN ∠=∠,∴180180ABN ABF BAP BAE ︒-∠-∠=︒-∠-∠,∴MBF QAE ∠=∠,即有:330=+t t ,解得:15t =(秒);②如图4,在灯B 射线到达BN 之后,回到BM 前,根据①中,同理有:()30MBF QAE t ∠=∠=+︒∵()3180FBN t ∠=-︒即有:()318030180t t -++=,解得:82.5t =.③如图5,在灯B 射线回到BM 后,第二次到BN 前,由题意得:336030t t -=+,解得:195t =(舍去).综上所述,A 灯转动15秒或82.5秒时,两灯的光束互相平行.【点睛】本题主要考查了平行线的性质以及角的和差关系,厘清角度之间的关系并注意分类讨论是解答本题的关键.题型4:动点问题11.已知AB CD ∥,30AEC ∠=︒,点P 在直线AE 上,E 为CD 上一点,F 为AB 上一点.(1)如图1,当点P 在线段AE 上运动时,连接FP ,求BFP FPE ∠+∠的值;(2)如图2,当点P 在AE 的延长线上运动时,连接FP ,求BFP FPE ∠-∠的值;(3)如图3,当点P 在EA 的延长线上运动时,连接FP ,求BFP FPE ∠-∠的值.【答案】(1)210︒;(2)30︒;(3)150︒.【分析】(1)过点P 作PH AB ∥,得到AB CD PH ∥∥,利用平行线的性质即可求解;(2)过点P 作PH AB ∥,得到AB CD PH ∥∥,利用平行线的性质即可求解;(3)过点P 作PH AB ∥,得到AB CD PH ∥∥,利用平行线的性质即可求解;本题考查了平行线的性质,平行公理的推论,根据图形,正确作出辅助线是解题的关键.【解析】(1)解:如图所示,过点P 作PH AB ∥,∵AB CD ∥,∴AB CD PH ∥∥,∴180BFP HPF ∠+∠=︒,30HPE AEC ∠=∠=︒,∴18030210BFP FPE BFP HPF HPE +=++=︒+︒=︒∠∠∠∠∠;(2)解:如图所示,过点P 作PH AB ∥,∵AB CD ∥,∴AB CD PH ∥∥,∴FPH BFP ∠=∠,30HPA AEC ∠=∠=︒,∴30BFP FPE FPH FPE HPA ∠-∠=-==︒∠∠∠;(3)解:如图所示,过点P 作PH AB ∥,∵AB CD ∥,∴AB CD PH ∥∥,∴30HPE AEC ∠=∠=︒,180HPF BFP ∠+∠=︒,∵30HPF HPE FPE FPE =-=︒-∠∠∠∠,∴30180FPE BFP ︒-∠+∠=︒,∴150BFP FPE ∠-∠=︒.12.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠度数.小明的思路是:过P 作PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,易求得APC ∠的度数为______度;(直接写出答案)(2)问题迁移:如图2,AB CD ∥,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【答案】(1)110(2)APC αβ∠=+,理由见解析(3)当P 在BD 延长线上时,CPA αβ∠=-;当P 在DB 延长线上时,CPA βα∠=-.【分析】(1)过点P 作PE AB ,通过平行线性质求APC ∠即可;(2)过点P 作PE AB ,交AC 于E ,推出AB PE CD ,根据平行线的性质得出APE α=∠,CPE β=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上时,P 在DB 延长线上时,分别画出图形,根据平行线的性质得出APE α=∠,CPE β=∠即可得出答案.【解析】(1)解:过点P 作PE AB ,AB CD ∥ ,PE AB CD ∴∥∥,180PAB APE ∴∠+∠=︒,180PCD CPE ∠+∠=︒,130PAB ∠=︒ ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.故答案为:110;(2)APC αβ∠=+,理由:如图,过点P 作PE AB ,交AC 于E ,AB CD ∥ ,AB PE CD ∴∥∥,APE α∴=∠,CPE β=∠,APC APE CPE αβ∴∠=∠+∠=+;(3)当P 在BD 延长线上时,如图所示,由(2)可知APE α=∠,CPE β=∠,CPA αβ∴∠=-,当P 在DB 延长线上时,如图所示,由(2)可知APE α=∠,CPE β=∠,CPA βα∴∠=-,【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.题型5:一副三角板及其在平行线中的应用13.在数学实践活动课上,小亮同学利用一副三角尺探索与研究共直角顶点的两个直角三角形中的位置关系与数量关系.(其中30,60,45A B C D ∠=︒∠=︒∠=∠=︒)(1)将三角尺如图1所示叠放在一起.①AOD ∠与BOC ∠大小关系是________;②BOD ∠与AOC ∠的数量关系是________.(2)小亮固定其中一块三角尺COD △不变,绕点O 顺时针转动另一块三角尺,从图2的OA 与OC 重合开始,到图3的OA 与OC 在一条直线上时结束,探索AOB 的一边与COD △的一边平行的情况.①求当AB CD 时,如图4所示,AOC ∠的大小;②直接写出AOC ∠的其余所有可能值.【答案】(1)①相等;②180BOD AOC ∠+∠=︒(2)①75AOC ∠=︒;②30︒或45︒或120︒或135︒【分析】(1)①利用同角的余角相等,即可得到答案;②根据90DOC ∠=︒,90AOB BOC AOC ∠=∠+∠=︒,即可得到180BOD AOC ∠+∠=︒;(2)①过点O 作OE//AB 则AB ∥CD ∥OE ,即可得到AOE A ∠=∠=30°,COE C ∠=∠=45°即可得到答案;②分情况讨论:当AB OC ∥时;当OA CD ∥时,当AB OD ∥时,当OB CD ∥时,分别根据平行线的性质进行计算即可.【解析】(1)解:①AOD ∠与BOC ∠大小关系是相等;∵90AOD AOC ∠+∠=︒,90BOC AOC ∠+∠=︒,∴AOD BOC ∠=∠,故答案为:相等;②BOD ∠与AOC ∠的数量关系是:180BOD AOC ∠+∠=︒;∵90DOC ∠=︒,90AOB BOC AOC ∠=∠+∠=︒,∴180BOD AOC COD COB AOC ∠+∠=∠+∠+∠=︒;(2)解:①过点O 作OE AB ∥,∵AB CD ∥,∴AB CD OE ∥∥,∴30AOE A ∠=∠=︒,45COE C ∠=∠=︒,∴75AOC AOE COE ∠=∠+∠=︒;②当AB OC ∥时,如图,则30AOC A ∠=∠=︒;当OA CD ∥时,如图,则45AOC C ∠==︒∠;当AB OD ∥时,如图,则60BOD B ∠=∠=︒,∴3609090120AOC BOD ∠=︒-︒-︒-∠=︒;当OB CD ∥时,则45BOD D ∠=∠=︒,∴3609090135AOC BOD ∠=︒-︒-︒-∠=︒;∴综上所述:AOC ∠的其余可能值为30︒或45︒或120︒或135︒.【点睛】本题考查了同角的余角相等,角的和差计算,平行线的判定和性质,解题的关键在于能够熟练掌握平行线的性质,正确分类讨论.14.如图,直线PQ MN ∥,一副三角尺(90,30,ABC CDE ACB BAC ∠∠∠∠==︒=︒=60,45DCE DEC ∠∠︒==︒)按如图①放置,其中点E 在直线PQ 上,点B ,C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕点B 以每秒4度的速度逆时针方向旋转(,A C 的对应点分别为F ,G ),设旋转时间为t (s )(045≤≤t );①在旋转过程中,若边∥BG CD ,求t 的值;②若在三角形ABC 绕点B 旋转的同时,三角形CDE 绕点E 以每秒3度的速度顺时针方向旋转(,C D 的对应点为H ,K )请求出当边BG HK ∥时t 的值.30ACB ∠=︒ ,180150ACN ACB ∴∠=︒-∠=︒,CE 平分ACN ∠,//BG CD ,GBC DCN ∠=∠∴,DCN ECN ECD ∠∠∠=-=∵30GBC ∴∠=︒,430t ∴=,7.5t s ∴=,∴在旋转过程中,若边∥BG CD ②如图③中,当//BG HK 时,延长//BG HK ∵,GBN KRN ∠∠∴=,603,QEK t K QEK ∠∠∠=︒+= 90(603)30KRN t ∠∴=︒-︒+=︒//BG KR ,180GBN KRM ∴∠+∠=︒,603,QEK t EKR ∠∠∴=︒+120(18060KRM ∠∴=︒-︒-43180t t ∴+=︒,1807t s ∴=综上所述,满足条件的t 的值为【点睛】本题考查了平行线的性质,掌握平行线的性质,旋转变换,角平分线的定义是解题的关键.15.在数学活动课中,同学们用一副直角三角板(分别记为三角形ABC 和三角形DEF ,其中90BAC EDF ∠=∠=︒,60ACB ∠=︒,30ABC ∠=︒,45DEF DFE ∠=∠=︒,且AC DE <)开展数学活动.操作发现:(1)如图1,将三角形ABC 沿BC 方向移动,得到三角形111A B C ,我们会发现11AB A B ∥,推理的根据是:________;(2)将这副三角板如图2摆放,并过点E 作直线a 平行于边BC 所在的直线b ,点A 与点F 重合,求1∠的度数;(3)在(2)的条件下,如图3,固定三角形DEF ,将三角形ABC 能点C 旋转一周,当AB DE ∥时,请判断直线BC 和直线b 是否垂直,并说明理由.【答案】(1)同位角相等,两直线平行(2)15︒(3)垂直,见解析【分析】(1)由平行线的判定方法或平移的性质可得答案;(2)过A 作直线AG a ∥,交ED 于G ,而a b ∥,则a AG b ∥∥,可得1EAG ∠=∠,ABC BAG ∠=∠,再利用角的和差关系可得答案;(3)如图所示,当AB DE ∥时,ABC 旋转到如下位置,延长B A ''交BA 于点H ,可得A B DE ''‖,证明AH A C '‖,而90CA B CAB ''∠=∠=︒,可得90ACA '∠=︒,即旋转角位90︒,可得90BCB ACA ''∠=∠=︒,从而可得结论.【解析】(1)解:同位角相等,两直线平行或平移前后的对应线段平行;(2)过A 作直线AG a ∥,交ED 于G ,而a b ∥,∴a AG b ∥∥,∴1EAG ∠=∠,同理ABC BAG ∠=∠,∴115EAG BAE BAG BAE ABC ∠=∠=∠-∠=∠-=︒.(3)垂直,理由如下如图所示,当AB DE ∥时,ABC 旋转到如下位置,延长B A ''交BA 于点HA B DE''‖∴90EDA DHA '∠=∠=︒∴90DHA AHA ''∠=∠=︒∴AH A C '‖,而90CA B CAB ''∠=∠=︒,∴90ACA '∠=︒,即旋转角位90︒,∴90BCB ACA ''∠=∠=︒,∴B C b '⊥.【点睛】本题考查的是平移的性质,平行线的判定与性质,平行公理的应用,旋转的性质,熟练的利用旋转的性质进行证明是解本题的关键.题型6:单个三角板在平行线中的应用16.在一次数学活动课上,同学们用一个含有60︒角的直角三角板和两条平行线展开探究.如图,在Rt ABC △中,90ACB ∠=︒,60CAB ∠=︒,EF GH ∥.(1)如图1,点C 在EF 上,点A 在GH 上,AB 与EF 交于点D ,若120∠=︒,求2∠的度数;(2)如图2,点C 在EF 上,点A 在EF 上方,点B 在GH 下方,BC 与GH 交于点Q ,作ACE ∠的角平分线并反向延长与CQH ∠的角平分线交于点O ,求O ∠的度数;(3)如图3,点C 在EF 上,点A 在直线EF ,GH 之间(不含在EF ,GH 上),点B 在GH 下方,AB ,BC分别与GH 交于点P ,Q .设FCB n ∠=︒,是否存在正整数m 和n ,使得APH m FCB ∠=∠.若存在,请求出m 和n 的值;若不存在,请说明理由.EF GH ∥ ,EF OP GH ∴∥∥,DCE COP ∴∠=∠,POQ OQH ∠=∠CD 平分ACE ∠,QO 平分CQH ∠题型7:折叠问题17.如图1,现有一张纸条ABCD ,AD BC ∥,将纸条沿EF 折叠,点C 落在C '处,点D 落在D ¢处,D E '交BC 于点G .(1)①若55DEF ∠=︒,则'∠=BGD ______;②若DEF x ∠=︒,则'∠=BGD ______;(2)如图2,在图1的基础上将纸条沿MN 继续折叠,点A 落在A '处,点B 落在B '处,已知60DEF ∠=︒,EF MA '∥,求证:MN D E '∥;(3)如图3,在图1的基础上将纸条沿BC 继续折叠,点C '落在C ''处,点D ¢落在D ''处,AE BF <,设AED x '∠=︒,求C FE ''∠的度数.(用含x 的式子表示)18.在直角三角形ABC 中,90C ∠=︒,点D ,E 分别在AB AC ,上,将DEA △沿DE 翻折,得到DEF .(1)如图①,若70CED ∠=︒,则CEF ∠=______︒;(2)如图②,BDF ∠的平分线交线段BC 于点G .若CED BDG ∠=∠,求证BC DF ∥.(3)已知A α∠=,BDF ∠的平分线交直线BC 于点G .当DEF 的其中一条边与BC 平行时,直接写出BGD ∠的度数(可用含α的式表示).(3)解:∥,如图①所示:①当ED BC∴190C ∠=∠=︒,∴180190ADF A α∠=︒-∠-∠=︒-,∴18090FDB ADF α∠=︒-∠=︒+,∵BDF ∠的平分线交线段BC 于点G ∴1124522BDF α∠=∠=︒+,∵90B α∠=︒-,∴11802452BGD B α∠=︒-∠-∠=︒+③当EF BC ∥,如图③所示:∴90FDB A α∠=∠=︒-,∵BDF ∠的平分线交线段BC 于点G ,∴114522GDB BDF α∠=∠=︒-,∴11452BGD GDB α∠=∠-∠=︒-;⑤当EF BC ∥时,F 在AB 的下方,如图⑤所示:∴1290α∠=∠=︒-,∵翻折,F A α∠=∠=,∴1902FDB F α∠=∠-∠=︒-,19.如图,已知四边形纸片ABCD 的边AB CD ∥,E 是边CD 上任意一点,BCE 沿BE 折叠,点C 落在点F 的位置.(1)观察发现:如图①所示:60C ∠=︒,45FED ∠=︒,则ABF ∠=______.(2)拓展探究:如图②,点F 落在四边形ABCD 的内部,探究FED ∠,ABF ∠,C ∠之间的数量关系,并证明;(3)迁移应用:如图③,点F 落在边CD 的上方,则(2)中的结论是否成立?若成立,请证明:若不成立,请写出它们的数量关系并证明.【答案】(1)15︒(2)FED ABF C ∠∠=∠+,证明见解析(3)不成立,数量关系应为:ABF FED C ∠-∠=∠,证明见解析【分析】(1)根据已知条件,结合平行线的性质,算出ABC ∠,再结合折叠、四边形内角和,算出FBC ∠,最后根据ABF ABC FBC ∠=∠-∠计算即可;(2)过点F 作MN CD ∥,交AD 于点M ,交BC 于点N ,由平行线的性质可得FED EFN ∠=∠,根据平行公理的推论可得MN AB ∥,继而得到NFB ABF ∠=∠,再结合折叠的性质可得数量关系;(3)过点F 作GH CD ∥,由平行线的性质可得FED HFE ∠=∠,根据平行公理的推论可得GH AB ∥,继而得到得ABF HFB ∠=∠,再结合折叠的性质可得数量关系.【解析】(1)解:AB CD ∥ ,BCE 沿BE 折叠,点C 落在点F 的位置,60C ∠=︒,45FED ∠=︒,180120ABC C ∴∠=︒-∠=︒,(两直线平行,同旁内角互补)180135FEC FED ∠=︒-∠=︒,60F C ∠=∠=︒,3603606060135105FBC F C FEC ∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,(四边形内角和为360︒)12010515ABF ABC FBC ∴∠=∠-∠=︒-︒=︒,故答案为:15︒(2)解:如下图,过点F 作MN CD ∥,交AD 于点M ,交BC 于点N则FED EFN ∠=∠,AB CD ∥ ,MN AB ∴∥,NFB ABF ∴∠=∠,FED ABF EFN NFB EFB ∴∠∠=∠∠=∠++,由折叠的性质得,BCE BFE ≌,EFB C ∴∠=∠(全等三角形对应角相等)FED ABF C∴∠∠=∠+(3)解:如下图,过点F 作GH CD ∥,则FED HFE ∠=∠,AB CD ∥ ,GH AB ∴∥,ABF HFB HFE BFE FED BFE ∴∠=∠=∠∠=∠∠++,由折叠的性质得,BCE BFE ≌,BFE C ∴∠=∠(全等三角形对应角相等)ABF FED C ∴∠=∠∠+,即ABF FED C∠-∠=∠【点睛】本题考查了折叠的性质、平行线的性质、平行公理的推论.掌握折叠的性质和平行线的性质是解题的关键.题型8:定值问题20.综合与实践问题情境:数学课上,同学们以“长方形纸带的折叠”为主题开展数学活动,已知长方形纸带的边AD BC ∥,将纸片沿折痕EF 折叠,点A ,B 分别为点A ',B ',线段B F '与DE 交于点G (说明:折叠后纸带的边A E B F ''∥始终成立)操作探究:(1)如图1,若B F AD '⊥,则EFG ∠的度数为______°.(2)如图2,改变折痕EF 的位置,其余条件不变,小彬发现图中12∠=∠始终成立,请说明理由;(3)改变折痕EF 的位置,使点B '恰好落在线段AD 上,然后继续沿折痕MN 折叠纸带,点M ,N 分别在线段FC 和B D '上.①如图3,点C 的对应点与点B '重合,点D 的对应点为点.D '若70,80BFE CMN ∠=︒∠=︒,直接写出FB M '∠的度数.②如图4,点C ,D 的对应点分别为点C ',D ¢,点C ',D ¢均在AD 上方,若BFE α∠=,CMN β∠=,当FB MC ''∥时,直接写出α与β之间的数量关系.【答案】(1)45(2)说明理由见解析(3)①120FB M ∠='︒;②90αβ+=︒【分析】(1)由AD BC ∥,证明DEF BFE ∠=∠,由折叠知,BFE EFG ∠=∠,可得EFG DEF ∠=∠,结合B F AD '⊥,从而可得答案;(2)由A E B F ''∥,可得2DGB '∠=∠,由AD BC ∥,可得1DGB '∠=∠,从而可得答案;(3)①:由折叠得出2140B FB BFE '∠=∠=︒,同理得出180220B MF CMN '∠=︒-∠=︒,即可得出结论;②:同①的方法得,2BFB α'∠=,1802C MF β'∠=︒-,由平行得出BFB C MF ∠='∠',即可得出答案.【解析】(1)解:在长方形ABCD 中,AD BC ∥,DEF BFE ∴∠=∠,由折叠知,BFE EFG ∠=∠,EFG DEF ∴∠=∠,B F AD '⊥ ,90AGF ∴∠=︒,90DEF EFG ∴∠+∠=︒,45EFG ∴∠=︒,故答案为:45;(2)解:∵A E B F ''∥,2DGB '∴∠=∠,∵AD BC ∥,1DGB '∴∠=∠,12∴∠=∠;(3)解:①:由折叠知,BFE BFE '∠=∠,2B FB BFE '∴∠=∠,180********B FM BFB ''∴∠=︒-∠=︒-⨯︒=︒,同理:180220B MF CMN '∠=︒-∠=︒,1801804020120FB M B FM B MF '''∴∠=︒-∠-∠=︒-︒-︒=︒;②:同①的方法得,2BFB α'∠=,1802C MF β'∠=︒-,∴FB MC ''∥,BFB C MF ''∴∠=∠,21802αβ∴=︒-,90αβ∴+=︒.【点睛】此题主要考查了折叠的性质,平行线的性质,垂直的定义,三角形的内角和定理,掌握折叠的性质是解本题的关键.21.如图,AB CD ,点E 在直线AB 和CD 之间,且在直线BD 的左侧,14ABE CDE α∠=∠=.(1)如图1,求BED ∠的度数(用含α的式子表示);(2)连接BD ,过点E 作EF BD ∥,交AB 于点F ,动点G 在射线BE 上,BEF k α∠=.①如图2,若5k =,DG 平分BDE ∠,判断DG 与BE 的位置关系并说明理由.②连接DF ,若12DFE DFB ∠=∠,DG BE ⊥于点G ,是否存在常数k ,使FDG ∠为定值,若存在,求出k 的值,若不存在,请说明理由.。

平行线必考几何题型专训(6大题型)—2023-2024学年七年级数学下册(浙教版)(解析版)

平行线必考几何题型专训(6大题型)—2023-2024学年七年级数学下册(浙教版)(解析版)

平行线必考几何题型专训(6大题型+10道拓展培优)【题型目录】题型一 根据平行线的判定与性质求解题型二 根据平行线的性质探究角的关系题型三 平行线的性质在生活中的实际应用题型四 平行线中的旋转问题题型五 平行线中的折叠问题题型六 平行线中的平移问题【经典例题一 根据平行线的判定与性质求解】 【例1】(2023下·江苏南通·七年级校联考阶段练习)如图,AB BC ⊥于点B ,DC BC ⊥于点C ,DE 平分ADC ∠交BC 于点E ,点F 为线段CD 延长线上一点,BAF EDF ∠=∠.(1)求证:DE AF ∥;(2)若=40F ︒∠,求DAF ∠的度数.【答案】(1)证明见解析(2)40DAF ∠=︒【分析】(1)根据AB BC ⊥,DC BC ⊥得出AB CF ,根据平行线的性质可得180BAF F ∠+∠=︒,进而得出180EDF F ∠+∠=︒,根据平行线判定定理即可得结论;(2)根据平行线的性质得出ADE DAE ∠=∠,EDC F ∠=∠,根据角平分线的定义即可得答案.【详解】(1)证明:∵AB BC ⊥于点B ,DC BC ⊥于点C ,∴90B C ∠=∠=︒,∴180B C ∠+∠=︒,∴AB CF ,∴180BAF F ∠+∠=︒,∵BAF EDE ∠=∠,∴180EDE F ∠+∠=︒,∴DE AF ∥.(2)解:∵DE AF ∥,∴ADE DAE ∠=∠,EDC F ∠=∠,∵DE 平分ADC ∠,∴ADE CDE ∠=∠,∴40DAF F ∠=∠=︒.【点睛】本题考查平行线的判定与性质,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;熟练掌握平行线的判定定理是解题关键.【变式训练】 1.(2024下·全国·七年级假期作业)如图,已知直线,AB CD 被直线EF 所截,EG 平分AEF ∠,FG 平分EFC ∠,1290∠+∠=︒,AB CD 吗?为什么?因为EG 平分AEF ∠,FG 平分EFC ∠(已知),所以2AEF ∠∠=___________,2EFC ∠∠=___________,所以AEF EFC ∠∠+=___________( ),因为1290∠+∠=︒( ),所以AEF EFC ∠∠+=___________︒,所以AB CD ( ).【答案】平行,见解析【分析】本题考查了角平分线的定义、平行线的判定,熟练掌握平行线的判定是解题关键.先根据角平分线的定义可得21AEF ∠=∠,22EFC ∠=∠,从而可得180AEF EFC ∠+∠=︒,再根据平行线的判定即可得.【详解】解:因为EG 平分AEF ∠,FG 平分EFC ∠(已知),所以21AEF ∠=∠,22EFC ∠=∠,所以()212AEF EFC ∠+∠=∠+∠(等量代换),因为1290∠+∠=︒(已知),所以180AEF EFC ∠+∠=︒,所以AB CD (同旁内角互补,两直线平行). 2.(2023下·陕西西安·七年级校考阶段练习)如图,直线AB 和CD 被直线MN 所截.(1)如图1,EG 平分BEF ∠,FH 平分DFE ∠(平分的是一对同旁内角),则1∠与2∠满足______时, AB CD ∥,并说明平行的理由;(2)如图2,EG 平分MEB ∠,FH 平分DFE ∠(平分的是一对同位角),则1∠与2∠满足______时,AB CD ∥,并说明平行的理由;(3)如图3,EG 平分AEF ∠,FH 平分DFE ∠(平分的是一对内错角),则1∠与2∠满足______时,AB CD ∥,并说明平行的理由.【答案】(1)1290∠+∠=︒,见解析(2)12∠=∠,见解析(3)12∠=∠,见解析【分析】(1)根据角平分线的定义可得21BEF ∠=∠,22EFD ∠=∠,故1∠与2∠满足1290∠+∠=︒,即可得出()212180BEF EFD ∠+∠=∠+∠=︒,即可判断AB CD ∥;(2)根据角平分线的定义可得21BEM ∠=∠,22EFD ∠=∠,故1∠与2∠满足12∠=∠,即可得BEM DFE ∠=∠,即可判断AB CD ∥;(3)同(2)的分析即得结论.【详解】(1)当1∠与2∠满足1290∠+∠=︒时, AB CD ∥,理由如下:∵EG 平分BEF ∠,FH 平分DFE ∠,∴21BEF ∠=∠,22EFD ∠=∠,∵1290∠+∠=︒,∴()212180BEF EFD ∠+∠=∠+∠=︒,∴AB CD ∥;(2)当1∠与2∠满足12∠=∠时,AB CD ∥,理由如下:∵EG 平分MEB ∠,FH 平分DFE ∠,∴21BEM ∠=∠,22EFD ∠=∠,∵12∠=∠,∴BEM DFE ∠=∠,∴AB CD ∥;(3)当1∠与2∠满足12∠=∠时,AB CD ∥,理由如下:∵EG 平分AEF ∠,FH 平分DFE ∠,∴21AEF ∠=∠,22EFD ∠=∠,∵12∠=∠,∴AEF DFE ∠=∠,∴AB CD ∥.【点睛】本题考查了角平分线的定义和平行线的判定,熟练掌握平行线的判定方法是解题的关键,常见的判定两直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 3.(2023下·河北石家庄·七年级石家庄市第二十一中学校考期中)如图,直线EF 与直线AB ,CD 分别相交于点M ,O ,OP ,OQ 分别平分COE ∠和DOE ∠,与AB 交于点P ,Q ,已知90OPQ DOQ ∠+∠=︒.(1)若:2:5DOQ DOF ∠∠=,求FOQ ∠的度数;(2)对AB CD ∥说明理由.【答案】(1)140FOQ =︒∠(2)见解析【分析】(1)根据角平分线的定义得出EOQ DOQ =∠∠,设2DOQ EOQ x ==∠∠,则5DOF x =∠,根据题意得出225180x x x ++=︒,求出x 的值,即可得出答案;(2)根据OP ,OQ 分别平分COE ∠和DOE ∠,得出119022COP DOQ COE EOD ∠+∠=+=︒∠∠,根据90OPQ DOQ ∠+∠=︒,得出COP OPQ =∠∠,根据平行线的判断即可得出结论.【详解】(1)解:∵OQ 平分DOE ∠,∴EOQ DOQ =∠∠,∵:2:5DOQ DOF ∠∠=,∴设2DOQ EOQ x ==∠∠,则5DOF x =∠,∴225180x x x ++=︒,解得:20x =︒,∴527140FOQ DOF DOQ x x x =+=+==︒∠∠∠;(2)证明:∵OP ,OQ 分别平分COE ∠和DOE ∠,∴12COP EOP COE ==∠∠∠,12EOQ DOQ EOD ==∠∠∠,∴119022COP DOQ COE EOD ∠+∠=+=︒∠∠,∵90OPQ DOQ ∠+∠=︒,∴COP OPQ =∠∠,∴AB CD ∥.【点睛】本题主要考查了平行线的判定,角平分线的定义,余角的性质,解题的关键是熟练掌握平行线的判断方法. 4.(2022下·河北保定·七年级统考期中)如图,点E 在直线DC 上,射线EF 、EB 分别平分AED ∠、AEC ∠.(1)试判断EF 、EB 的位置关系,并说明理由;(2)若5A ∠=∠,且4590∠+∠=︒,求证:AB EF ∥.【答案】(1)EB EF ⊥,理由见解析(2)见解析【分析】(1)根据角平分线定义以及平角的定义即可求证;(2)由等角的余角相等可证得25∠=∠,进而可得2A ∠=∠,再由内错角相等两直线平行即可证得.【详解】(1)解:EB EF ⊥,理由如下:∵EB 平分AEC ∠,EF 平分AED ∠,∴1342AEC ∠=∠=∠,1122AED ∠=∠=∠,180AED AEC ∠+∠=︒,∴111123()180902222BEF AED AEC AED AEC ∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,∴EB EF ⊥;(2)证明:∵2390∠+∠=︒(已证),4590∠+∠=︒(已知),又∵3=4∠∠,∴25∠=∠,∵5A ∠=∠,∴2A ∠=∠,∴AB EF ∥.【点睛】本题考查了角平分线定义,平角定义,平行线的判定,等角的余角相等,综合掌握以上知识并熟练应用是解题的关键. 5.(2021下·山西大同·七年级校考期中)已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上. (1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程.(2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则CAB ∠=________.(用含α的代数式表示)【答案】(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF=∠ECA=α,进而得到=90BC AC A B α=∠︒−∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF=∠ECA=α,∵90ACB ACE ∠+∠=︒,∴∠ACB=90α︒−,∴ =90BC AC A B α=∠︒−∠,∴∠A=180°-A ABC CB −∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.【经典例题二 根据平行线的性质探究角的关系】 【例2】(2023下·江苏·七年级专题练习)如图,已知AB DE ABC CED ∠∠∥,、的平分线交于点F .探究BFE ∠与BCE ∠之间的数量关系,并证明你的结论.【答案】2BCE BFE ∠=∠,见解析【分析】本题主要考查了平行线的判定与性质,过点C 作直线MN AB ∥,然后证明MN DE ∥,根据平行线的性质可得=DEC ECN ∠∠,=ABC BCN ∠∠,进而可得BCE ABC DEC ∠=∠+∠,同理可得BFE ABF DEF ∠=∠+∠,再根据角平分线的性质可得2ABC ABF ∠=∠,2DEC DEF ∠=∠,等量代换可得答案.【详解】解:过点C 作直线MN AB ∥,∵AB DE MN AB ∥,∥,∴MN DE ∥,∴DEC ECN =∠∠,AB MN ,∴ABC BCN ∠=∠,∴BCE ABC DEC ∠=∠+∠,同理BFE ABF DEF ∠=∠+∠,∵ABC CED ∠∠、的平分线交于点F ,∴22ABC ABF DEC DEF ∠=∠∠=∠,,∴222BCE ABF DEF BFE ∠=∠+∠=∠.【变式训练】 1.(2024上·山西晋城·七年级统考期末)综合与探究如图,已知直线a b c ∥∥,点A ,B 在直线a 上,点C ,D 在直线c 上,P 是直线b 上的一个动点.(1)当点P 移动到如图1所示的位置时,,,PAB PCD APC ∠∠∠之间的数量关系为________(2)当点P 移动到如图2所示的位置时,(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出新的结论并说明理由.(3)如图3,已知20,50,45,15B BCD CDE E ∠=︒∠=︒∠=︒∠=︒.试判断AB 与EF 是否平行,并说明理由:【答案】(1)360PAB PCD APC ∠+∠+∠=︒(2)(1)中结论不成立,APC PAB PCD ∠=∠+∠.理由见解析(3)平行.理由见解析【分析】本题考查的是平行线的判定与性质,熟记平行线的性质与判定方法并灵活应用是解本题的关键.(1)利用平行线的性质证明12180∠+∠=︒,34180∠+∠=︒,从而可得结论;(2)利用平行线的性质证明1PAB ∠=∠,2PCD ∠=∠,从而可得结论;(3)如图,过点C 作CM EF ∥.由(2),得CDE DCM E ∠=∠+∠.求解20BCM ∠=︒.结合20B ∠=︒,进一步可得结论.【详解】(1)解:如图,∵a b c ∥∥,∴12180∠+∠=︒,34180∠+∠=︒,∴1234360∠+∠+∠+∠=︒,∴360PAB PCD APC ∠+∠+∠=︒.(2)(1)中结论不成立,APC PAB PCD ∠=∠+∠.理由:如图,∵a b ∥,1PAB ∴∠=∠.∵b c ∥,2PCD ∴∠=∠.12APC ∠=∠+∠,APC PAB PCD ∴∠=∠+∠.(3)平行.理由如下:如图,过点C 作CM EF ∥.由(2),得CDE DCM E ∠=∠+∠.45,15CDE E ︒∠︒∠==Q ,30DCM CDE E ∴∠=∠−∠=︒.50BCD ∠=︒,20BCM BCD DCM ∴∠=∠−∠=︒.又20B ︒∠=,BCM B ∴∠=∠.C AB M ∴∥.CM EF Q ∥,∴AB EF ∥.2.(2021下·湖北武汉·七年级校考阶段练习)已知,如图,AB 与CD 交于点O .(1)如图1,若AC BD ∥,请直接写出A C ∠+∠与B D ∠+∠的数量关系为_________.(2)如图2,若AC 不平行BD ,(1)中的结论是否仍然成立?请判断并证明你的结论.(注:不能用三角形内角和定理)【答案】(1)A C B D ∠+∠=∠+∠,证明见解析(2)(1)中结论成立,证明见解析【分析】(1)先证明A B ∠=∠,C D ∠=∠,可得A C B D ∠+∠=∠+∠;(2),过A 作AH BD ∥交CD 于N ,结合(1)可得:B D BAN AND ∠+∠=∠+∠,过C 作CG AH ∥,ACN CAN ACN ACG GCN ∠+∠=∠+=∠,证明OAC ACO OAN CAN ACN OAN GCN BAN AND ∠+∠=∠+∠+=∠+∠=∠+∠,从而可得结论成立.【详解】(1)解:A C B D ∠+∠=∠+∠,理由如下:∵AC BD ∥,∴A B ∠=∠,C D ∠=∠,∴A C B D ∠+∠=∠+∠;(2)(1)中结论成立,理由如下:如图,过A 作AH BD ∥交CD 于N ,结合(1)可得:B D BAN AND ∠+∠=∠+∠,过C 作CG AH ∥,∴AND GCD ∠=∠,ACG CAN ∠=∠,∴ACN CAN ACN ACG GCN ∠+∠=∠+=∠,∴OAC ACO OAN CAN ACN OAN GCN BAN AND ∠+∠=∠+∠+=∠+∠=∠+∠,∴B D OAC ACO ∠+∠=∠+∠;【点睛】本题考查的是平行线的性质,熟记平行线的性质并作出合适的辅助线是解本题的关键. 3.(2023上·河北石家庄·八年级统考阶段练习)如图,我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的.把处于闭合状态的刀片打开,使刀背与直角腰的夹角为1∠,刀片转动的角为2∠.(1)若155∠=︒,求2∠的度数.(2)刀片在打开过程中,若2∠为钝角,求证:2901∠=︒+∠.【答案】(1)145︒(2)见解析【分析】(1)根据平行线的性质得到155BCE ∠=∠=︒,DCE CDF ∠=∠,由互余得到9035DCE BCE ∠=︒−∠=︒,则35CDF DCE ∠=∠=︒,根据邻补角即可得到2∠的度数;(2)由(1)可知,AB DF CE ∥∥,则1BCE ∠=∠,DCE CDF ∠=∠, 由90BCE DCE ∠+∠=︒得到90901DCE BCE ∠=︒−∠=︒−∠,则901CDF DCE ∠=∠=︒−∠,根据邻补角即可得到结论.【详解】(1)解:如图,过点C 作CE DF ∥,由题意可知,AB DF ∥,∴AB DF CE ∥∥,∴155BCE ∠=∠=︒,DCE CDF ∠=∠,∵90BCE DCE ∠+∠=︒,∴90905535DCE BCE ∠=︒−∠=︒−︒=︒,∴35CDF DCE ∠=∠=︒,∴218018035145CDF ∠=︒−∠=︒−︒=︒;(2)由(1)可知,AB DF CE ∥∥,∴1BCE ∠=∠,DCE CDF ∠=∠,∵90BCE DCE ∠+∠=︒,∴90901DCE BCE ∠=︒−∠=︒−∠,∴901CDF DCE ∠=∠=︒−∠,∴()2180180901901CDF ∠=︒−∠=︒−︒−∠=︒+∠;即2901∠=︒+∠.【点睛】此题主要考查平行线的性质、邻补角等知识,熟练掌握平行线的性质是解题的关键. 4.(2023下·贵州毕节·七年级校联考期中)在综合与实践课上,老师让同学们以“两条平行线,AB CD 和一块含60︒角的直角三角尺(90,60)EFG EFG EGF ∠=︒∠=︒”为主题开展数学活动. (1)如图1,三角尺的60︒角的顶点G 在CD 上.240∠=︒,则1∠的度数为________.(2)如图2,小颖把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索AEF ∠与FGC ∠之间的数量关系是_______.(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30︒角的顶点E 在AB 上.若AEG α∠=,DFG β∠=,请直接写出AEG ∠与DFG ∠的数量关系(用含,αβ的式子表示).【答案】(1)80︒(2)90AEF FGC ∠+∠=︒(3)120αβ−=︒【分析】(1)根据平行线的性质可知1EGD ∠=∠,依据2180FGE EGD ∠+∠+∠=︒,可求出1∠的度数;(2)过点F 作∥FP AB ,得到FP AB CD ∥∥,通过平行线的性质把AEF ∠和FGC ∠转化到EFG ∠上即可;(3)依据AB CD ∥,可知180AEF CFE ∠+∠=︒,再根据18090CFE DFG ∠=︒−∠−︒,30AEF AEG ∠=∠−︒,代入180AEF CFE ∠+∠=︒,即可求出120AEG DFG ∠−∠=︒.【详解】(1)解:AB CD ∥,1EGD ∴∠=∠,2180FGE EGD ∠+∠+∠=︒,260180EGD ∴∠+︒+∠=︒,80EGD ∴∠=︒,180∴∠=︒;故答案为:80︒;(2)90AEF FGC ∠+∠=︒,理由如下:如图,过点F 作∥FP AB ,CD A B ∥,FP AB CD ∴∥∥,AEF EFP ∴∠=∠,FGC GFP ∠=∠,AEF FGC EFP GFP EFG ∴∠+∠=∠+∠=∠,90EFG ∠=︒,90AEF FGC ∴∠+∠=︒;故答案为:90AEF FGC ∠+∠=︒;(3)120αβ−=︒,理由如下:AB CD ∥,180AEF CFE ∠+∠=︒∴,18090CFE DFG ∠=︒−∠−︒,30AEF AEG ∠=∠−︒,3018090180AEG DFG ∴∠−︒+︒−∠−︒=︒,120AEG DFG ∴∠−∠=︒,120αβ∴−=︒.【点睛】本题考查了平行线的性质,正确作出辅助线是解决问题的关键.5.(2023下·浙江杭州·七年级统考期末)已知AB CD ∥,点E 在AB 上,点F 在CD 上,点Q 为射线EF 上一点.(1)如图1,若22A ∠=︒,35C ∠=︒,则AQC ∠= .(2)如图2,当点Q 在线段EF 的延长线上时,请写出A ∠、C ∠和AQC ∠三者之间的数量关系,并说明理由.(3)如图3,AH 平分QAB ∠,CH 交AH 于点H .①若CH 平分QCD ∠,求AQC ∠和AHC ∠的数量关系.②若:1:3QCH DCH ∠∠=,33HCD ∠=︒,25AHC ∠=︒,直接写出AQC ∠的度数为 .【答案】(1)57︒(2)数量关系:A C AQC ∠−∠=∠,理由见解析(3)① AHC ∠=12AQC ∠,②72AQC ∠=︒【分析】(1)过点Q 作QH ∥AB ,进而利用两直线平行,内错角相等解答即可;(2)过点Q 作MN ∥CD ,进而利用两直线平行,内错角相等解答即可;(3)①过点H 作PH ∥CD ,根据平行线的性质和角平分线的定义解答即可;②根据①的结论,利用角的关系解答即可.【详解】(1)解:过点Q 作QH ∥AB ,AB ∥CD ,QH ∴∥AB ∥CD ,35C CQH ∴∠=∠=︒,22A HQA ∠=∠=︒,352257AQC CQH HQA ∴∠=∠+∠=︒+︒=︒,故答案为:57︒;(2)数量关系:A C AQC ∠−∠=∠,证明:过点Q 作MN ∥CD ,AB ∥CD ,AB ∴∥MN ,NQC C ∴∠=∠,180MQA A ∠=︒−∠,180AQC NQC MQA A C ∴∠=︒−∠−∠=∠−∠.(3)①过点H 作PG ∥CD ,AB ∥CD ,AB ∴∥PH ,PHC HCD ∴∠=∠,180GHA HAB ∠=︒−∠,AHC HAB HCD ∴∠=∠−∠.又AH 平分CAB ∠,CH 平分QCD ∠,HAB ∴∠=12QAB ∠,HCD ∠=12QCD ∠ AHC ∴∠=12 ()QAB QCD ∠−∠由(2)可得AHC ∠=12.AQC ∠②72AQC ∠=︒,理由如下:QCH ∠:1:3DCH ∠=,33HCD ∠=︒,25AHC ∠=︒,11QCH ∴∠=︒,33DCH ∠=︒,332558HAB ∴∠=︒+︒=︒,5824472AQC ∴∠=︒⨯−︒=︒,故答案为:72︒.【点睛】本题考查平行线的判定和性质,关键是添加辅助线,根据两直线平行,内错角相等解答.【经典例题三 平行线的性质在生活中的实际应用】 【例3】(2023下·江苏泰州·七年级统考期末)如图1是一盏可折叠台灯.图2、图3是其平面示意图,支架AB 、BC 为固定支撑杆,支架OC 可绕点C 旋转调节.已知灯体顶角52DOE ∠=︒,顶角平分线OP 始终与OC 垂直.(1)如图2,当支架OC 旋转至水平位置时,OD 恰好与BC 平行,求支架BC 与水平方向的夹角θ∠的度数;(2)若将图2中的OC 绕点C 顺时针旋转15︒到如图3的位置,求此时OD 与水平方向的夹角OQM ∠的度数.【答案】(1)64︒(2)49︒【分析】(1)利用角平分线定义可得1262DOP DOE ∠=∠=︒,由垂直定义可得90COP ∠=︒,得出116COD COP DOP ∠=∠+∠=︒,再运用平行线性质即可得出答案;(2)过点C 作CG MN ∥,过点O 作OF CG ∥,根据平行线的性质求解即可.【详解】(1)解:如图2,52DOE ∠=︒,OP 平分DOE ∠,1262DOP DOE ∴∠=∠=︒,OP OC ⊥,90COP ∴∠=︒,9026116COD COP DOP ∴∠=∠+∠=︒+︒=︒,OD BC ∥,180********C COD ∴∠=︒−∠=︒−︒=︒,OC BF ∥,64COF C ∴∠=∠=︒,即64θ∠=︒;(2)如图3,过点C 作CG MN ∥,过点O 作OF CG ∥,则15COF OCG ∠=∠=︒,116COD ∠=︒,11615131FOQ COD COF ∴∠=∠+∠=︒+︒=︒,CG MN ∥,OF CG ∥,OF MN ∴∥,180OQM FOQ ∴∠+∠=︒,180********OQM FOQ ∴∠=︒−∠=︒−︒=︒.【点睛】本题考查了平行线性质等,适当添加辅助线,构造平行关系是解题关键.【变式训练】 1.(2023下·江苏·七年级期中)如图1,某段道路AB CD ,两旁安装了两个探照灯M 和N .灯M 光束从MB 开始旋转至180︒便立即回转,灯N 光束从NC 开始旋转至180︒便立即回转.灯M 转动的速度是每秒1度,灯N 转动的速度是每秒2度,灯M 转动的时间为t 秒. (1)如图2,灯M 光束先转动30秒后,灯N 光束才开始转动.①直接写出灯M 光束和灯N 光束,灯 先回转;(填M 或N )②在灯M 光束回转之前,当两灯的光束平行时,求t 的值;(2)如图3,两灯同时转动,且均不回转.连接MN ,且2BMN MND ∠=∠,若两灯光束交于点E ,在转动过程中,请探究BME ∠与MEF ∠的数量关系是否发生变化?并说明理由.【答案】(1)①N ;②当t 的值为60或140时,两灯的光束互相平行(2)不变,BME MEF ∠=∠.理由见解析【分析】(1)①分别计算M 、N 回转时间,然后比较即可;②根据M 、N 均未回转即30120t <<和N 回转后即120180t <<两种情况,进行求解即可;(2)由AB CD ,可得180BMN MND ∠+∠=︒,则12060BMN MND ∠=︒∠=︒,,由2BME t CNF t ∠=︒∠=︒,,得1202120NME t MNF t ∠=︒−︒∠=︒−︒,,求得180MEN t ∠=︒−︒,则MEF t ∠=︒,进而可得BME MEF ∠=∠.【详解】(1)①解:光束M 回转时间为1801180t =÷=(秒);光束N 回转时间180230120t =÷+=(秒);∵120180<,∴光束N 先回转,故答案为:N ;②解:当30120t <<时,如图1,∵AB CD ,∴BMM MM C ''∠=∠, ∵MM NN ''∥,∴N NC MM C ''∠=∠, ∴BMM N NC ''∠=∠,∴()230t t =−,解得60t =;当120180t <<时,如图2,∵AB CD ,∴180BMM MM D ''∠+∠=︒, ∵MM NN ''∥,∴N ND MM D ''∠=∠, ∴180BMM N ND ''∠+∠=︒,∴()230180180t t +−−=⎡⎤⎣⎦,解得140t =,综上所述,当t 的值为60或140时,两灯的光束互相平行;(2)解:不变,BME MEF ∠=∠.理由如下:∵AB CD ,∴180BMN MND ∠+∠=︒,∵2BMN MND ∠=∠,∴12060BMN MND ∠=︒∠=︒,,∵2BME t CNF t ∠=︒∠=︒,,∴1202120NME t MNF t ∠=︒−︒∠=︒−︒,,∴()()1801202120180MEN t t t ∠=︒−︒−︒−︒−︒=︒−︒,∴MEF t ∠=︒,∠=∠.∴BME MEF【点睛】本题考查了平行线的性质的应用,一元一次方程的应用.解题的关键在于明确角度之间的数量关系.2.(2022下·江苏泰州·七年级校考阶段练习)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,例如:在图1中,有∠1=∠2.(1)如图2,已知镜子MO与镜子ON的夹角∠MON=90°,请判断入射光线AB与反射光线CD的位置关系,并说明理由;(2)如图3,有一口井,已知入射光线AO与水平线OC的夹角为50°,当平面镜MN与水平线OC的夹角为°,能使反射光线OB正好垂直照射到井底;(3)如图4,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=120°,∠DCF=40°,射线AB、CD 分别绕A点、C点以3度/秒和1度/秒的速度同时逆时针转动,设时间为t秒,在射线AB转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.【答案】(1)AB∥CD,理由见解析(2)70(3)在射线AB转动一周的时间内,存在时间t,使得CD与AB平行,其t=10s或100s.【分析】(1)计算∠ABC+∠BCD的值便可得出结论;(2)先计算出∠AOB,进而得∠AOM+∠BON的值,再根据入射光线与镜面的夹角与反射光线与镜面的夹角相等,得出结果;(3)分四种情况讨论:当0s≤t≤20s时,当20s<t≤40s时,当40s<t≤80s时,当80s<t≤120s时,根据角度大小变化关系锁确AB∥CD时的t值.【详解】(1)解:AB∥CD.理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-∠1-∠2=180°-2∠2,∠BCD=180°-∠3-∠4=180°-2∠3,∴∠ABC+∠BCD=360°-2(∠2+∠3),∵∠BOC=90°,∴∠2+∠3=90°,∴∠ABC+∠BCD=180°,∴AB∥CD;(2)解:∵∠AOC=50°,∠BOC=90°,∴∠AOM+∠BON=180°-90°-50°=40°,∵∠AOM=∠BON,∴∠AOM=∠BON=20°,∴∠COM=20°+50°=70°,∠CON=20°+90°=110°,∴当平面镜MN与水平线OC的夹角为70°时,能使反射光线OB正好垂直照射到井底,故答案为:70;(3)解:①当0s≤t≤20s时,如下图,若AB∥CD,则∠BAC=∠ACD,即120+3t=140+t,解得t=10,∴当t=10s时AB∥CD;②当20s<t≤40s时,如下图,有∠BAE <90°<∠ACD ,则AB 与CD 不平行;③当40s <t≤80s 时,如下图,有∠BAC <∠ACD ,AB 与CD 不平行;④当80s <t≤120s 时,如下图,若AB ∥CD ,则∠BAC=∠DCF ,即3t -240=t -40,解得t=100,∴当t=100s 时,AB ∥CD ;综上可知,在射线AB 转动一周的时间内,存在时间t ,使得CD 与AB 平行,其t=10s 或100s .【点睛】本题主要考查了平行线的性质与判定,关键是应用分类讨论思想解决问题. 3.(2023下·吉林松原·七年级统考期末)如图,PQ MN ∥,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点A 顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是/a ︒秒,射线BQ 转动的速度是/b ︒秒,且a 、b 满足2|6|(1)0a b −+−=.(友情提醒:钟表指针走动的方向为顺时针方向)(1)=a ,b = ;(2)若射线AM 、射线BQ 同时旋转,问至少旋转多少秒时,射线AM 、射线BQ 互相垂直.(3)若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动多少秒时,射线AM 、射线BQ 互相平行?【答案】(1)6,1(2)907t =s(3)射线AM 再转动907秒或18秒时,射线AM 、射线BQ 互相平行【分析】(1)依据()2610a b −+−=,即可得到a ,b 的值;(2)依据90ABO BAO ∠+∠=︒,180ABQ BAM ∠+∠=︒,即可得到射线AM 、射线BQ 第一次互相垂直的时间;(3)分两种情况讨论,依据ABQ BAM '''∠=∠时,BQ AM ''',列出方程即可得到射线AM 、射线BQ 互相平行时的时间.【详解】(1)2|6|(1)0a b −+−=, 60a ∴−=,10b −=,6a ∴=,1b =,故答案为:6,1;(2)设至少旋转t 秒时,射线AM 、射线BQ 互相垂直.如图,设旋转后的射线AM 、射线BQ 交于点O ,则BO AO ⊥,90ABO BAO ∴∠+∠=︒,PQ MN ∥,180ABQ BAM ∴∠+∠=︒,90OBQ OAM ∴∠+∠=︒,又OBQ t ∠=︒,6OAM t ∠=︒,690t t ∴︒+︒=︒,90()7t s ∴=;(3)设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行.如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,186108MAM '∠=⨯=︒,分两种情况:①当918t <<时,QBQ t '∠=︒,6M AM t '''∠=︒,45BAN ABQ ∠=︒=∠,45ABQ t '∴∠=︒−︒,645BAM M AM M AB t ''''''∠=∠−∠=−︒,当ABQ BAM '''∠=∠时,BQ AM ''', 此时,45645t t ︒−︒=−︒, 解得907t =;②当1827t <<时,QBQ t '∠=︒,690NAM t ''∠=︒−︒,45BAN ABQ ∠=︒=∠,45ABQ t '∴∠=︒−︒,45(690)1356BAM t t ''∠=︒−︒−︒=︒−︒,当ABQ BAM '''∠=∠时,BQ AM ''',此时,451356t t ︒−︒=︒−,解得18t =; 综上所述,射线AM 再转动907秒或18秒时,射线AM 、射线BQ 互相平行.【点睛】本题主要考查了平行线的性质,非负数的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:若两个非负数的和为0,则这两个非负数均等于0.【经典例题四 平行线中的旋转问题】 【例4】(2023上·吉林长春·七年级校考期末)将一副直角三角板按如图①方式摆放在直线MN 上(直角三角板ABC 和直角三角板EDC ,90EDC ∠=︒,60DEC ∠=︒,30DCE ∠=︒,90ABC ∠=︒,45BAC BCA ∠=∠=︒),保持三角板EDC 不动,将三角板ABC 绕点C 以每秒5︒的速度顺时针旋转,旋转时间为t 秒,当AC 与射线CN 重合时停止旋转.(1)如图②,当AC 为DCE ∠的平分线时,t =____________;(2)当18t =时,求BCD ∠的度数;(3)在旋转过程中,当三角板ABC 的AB 边平行于三角板EDC 的某一边时(不包含重合的情形),直接写出t 的值.【答案】(1)3(2)15︒(3)t 的值为15或27或35【分析】本题考查旋转的性质、角平分线的性质、平行线的性质,关键在于数形结合,分类讨论.(1)根据角平分线的定义求出1152ACE DCE ∠=∠=︒,然后求出t 的值即可;(2)当18t =时,旋转角为90︒,可求出ACE ∠,即可求出BCD ∠;(3)分三种情况进行讨论,分别画出图形,求出t 的值即可.【详解】(1)解:如图2,∵90EDC ∠=︒,60DEC ∠=︒,∴30DCE ∠=︒,∵AC 平分DCE ∠, ∴1152ACE DCE ∠=∠=︒, ∴1535t ==,(2)当18t =秒时,CA 的旋转角度为185=90⨯︒︒,即90ACE ∠=︒,如图,∴=BCD ACE ACB DCE ∠∠−∠−∠=904530︒−︒−︒15=︒;(3)①当AB DE ∥时,如图,此时BC 与CD 重合,旋转角度为75BCA ECD ∠+∠=︒,∴()3045515t =+÷=;②当AB CE ∥时,如图,∵AB CE ∥,∴90BCE B ∠=∠=︒,∴9045135ACE ∠=︒+︒=︒,∴135527t =÷=;③当AB CD ∥时,如图,∵AB CD ∥,∴90BCD D ∠=∠=︒,∴309045175ACE ∠=︒+︒+︒=︒,∴175535t =÷=.【变式训练】 1.(2023下·江苏连云港·七年级校考阶段练习)为了美化夜景,在某段道路两旁安置了两座可旋转激光灯.如图,灯A 射线自AM 开始顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a ︒/秒,灯B 转动的速度是b ︒/秒,且a 、b 满足()2340a a b −++−=.假定主道路是平行的,即PQ MN ∥,且:1:3BAN ABP ∠∠=.(1)填空:=a _______,b =_______,BAN ∠=_______︒;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,灯A 射线转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【答案】(1)3 1 45(2)15秒或82.5秒(3)不发生改变32BAC BCD ∠=∠【分析】(1)根据绝对值与平方数的非负性即可求解;根据同旁内角互补并结合已知条件可求得BAN ∠的度数.(2)根据题意,当两灯的光束互相平行时,内错角相等即可列出方程求解.(3) 设灯B 射线转动的角度PBC x ∠=,则灯A 射线转动的角度3MAC x ∠=设法把BAC ∠与BCD ∠用含x 的代数式表示出来即可获得两角的关系式.【详解】(1)∵()2340a a b −++−=,∴30,40a a b −=+−=∴3,1a b ==.∵PQ MN ∥,∴180BAN ABP ∠+∠=︒.由:1:3BAN ABP ∠∠=得3ABP BAN ∠=∠∴4180BAN ∠=︒,∴45BAN ∠=︒.(2)如图.设在灯B 射线赶到达BQ 之前,灯A 射线转动t 秒,两灯的光束平行,①在灯射线到达AN 之前,由题意得,303t t +=,解得:15t =(秒)②在灯A 射线到达AN 之后,由题意得:()()318030180t t −︒++︒=︒(同旁内角互补,两直线平行)解得:82.5t =(秒)∴灯转动15秒或82.5秒时,两灯的光束互相平行.(3)BAC ∠与BCD ∠的数量关系不发生变化.理由如下:如图.由⑴知45BAN ∠=︒,∴18045135ABP MAB ∠=∠=︒−︒=︒.设灯B 射线转动的角度PBC x ∠=,则灯A 射线转动的角度3MAC x ∠=∴3x 135BAC MAC MAB ∠=∠−∠=−︒,①135ABC ABP PBC x ∠=∠−∠=︒−,∴()()18018031351351802BCA BAC ABC x x x ∠=︒−∠−∠=︒−−︒−︒−=︒−∵CD AC ⊥,∴()90901802290BCD BCA x x =︒−=︒−︒−=−︒∠∠②由①②得,23BAC BCD ∠=∠ ∴32BAC BCD ∠=∠【点睛】本题考查了绝对值与平方数的非负性、平行线的判定、三角形内角和、用含字母的代数式表示角度等知识点,熟练掌握平行线的性质是解题的关键. 2.(2023下·河南新乡·七年级统考期末)综合与实践数学社团的同学以“两条平行线AB ,CD 和一块含45︒角的直角三角尺()90EFG EFG ∠=︒”为主题开展数学活动,已知点E ,F 不可能同时落在直线AB 和CD 之间.探究:(1)如图1,把三角尺的45︒角的顶点E ,G 分别放在AB ,CD 上,若150BEG ∠=︒,求FGC ∠的度数;类比:(2)如图2,把三角尺的锐角顶点G 放在CD 上,且保持不动,若点E 恰好落在AB 和CD 之间,且AB 与EF 所夹锐角为25︒,求FGC ∠的度数;迁移:(3)把三角尺的锐角顶点G 放在CD 上,且保持不动,旋转三角尺,若存在()545FGC DGE DGE ∠=∠∠<︒,直接写出射线GF 与AB 所夹锐角的度数.【答案】(1)105︒(2)115︒(3)67.5︒或11.25°【分析】(1)根据平行线的性质得出180BEG EGD +=︒∠∠,得出30EGD ∠=︒,即可求解.(2)设AB 交EF 于点M ,则25BME ∠=︒,过点E 作EN CD ∥,推出EN AB ∥.根据平行线的性质得出则25NEM BME ∠=∠=︒.求出NEG ∠,即可求解;(3)根据题意,进行分类讨论:①当点E 在CD 上方时,②当点E 在CD 下方时,正确画出图形,根据平行线的性质求解即可.【详解】解:(1)∵AB CD ∥,180BEG EGD ∴∠+∠=︒.又150BEG ∠=︒,30EGD ∴∠=︒,1803045105FGC ∴∠=︒−︒−︒=︒.(2)如图1,设AB 交EF 于点M ,则25BME ∠=︒,过点E 作EN CD ∥,∵AB CD ∥,EN CD ∥EN AB ∴∥.25NEM BME ∴∠=∠=︒.452520NEG ∴∠=︒−︒=︒.又EN CD ∥,20DGE NEG ∴∠=∠=︒,1802045115FGC ∴∠=︒−︒−︒=︒.(3)67.5︒或11.25°.如图2,AB 交GF 于点H ,当点E 在CD 上方时,设EGD x ∠=,则5FGC x ∠=,∴545180x x +︒+=︒,解得22.5x =︒.∴4522.567.5AHG HGD ∠=∠=︒+︒=︒;如图3,延长GF 交AB 于点H ,当点E 在CD 下方时,设EGD y ∠=,则5FGC y ∠=,∴()545180y y +︒−=︒,解得33.75y =︒,∴4533.7511.25AHG HGD ∠=∠=︒−︒=︒.综上所述,AHG ∠的度数为67.5︒或11.25°.【点睛】本题主要考查了平行线的性质,解题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补. 3.(2022上·陕西延安·七年级统考阶段练习)如图1,已知PQ MN ∥,点A ,B 分别在MN ,PQ 上,且45BAN ∠=︒,射线AM 绕点A 顺时针旋转至AN 便立即逆时针回转(速度是a ︒/秒),射线BP 绕点B 顺时针旋转至BQ 便立即逆时针回转(速度是b ︒/秒)、且a 、b 满足()2310a b −+−=.(1)如图2,两条射线同时旋转,设旋转时间为t 秒()60t <,两条旋转射线交于点C ,过C 作CD AC ⊥交PQ 于点D ,求BAC ∠与BCD ∠的数量关系;(2)若射线BP 先旋转20秒,射线AM 才开始旋转,设射线AM 旋转时间为t 秒()160t <,若旋转中AM BP ∥,求t 的值.【答案】(1)23BAC BCD ∠=∠;(2)若旋转中AM BP ∥,t 的值为10或85.【分析】(1)根据非负数的性质即可得到a ,b 的值,由题意可得3135BAC t ∠=−︒,再根据PQ MN ∥即可得到ACB CBD CAN ∠=+∠,从而可得1802BCA t ∠=︒−,再根据=90ACD ∠︒,可得290BCD t ∠=−︒,从而可得32BAC BCD ∠∠=::,即可得出结论;(2)分三种情况讨论,列出方程即可得到射线AM 、射线BP 互相平行时的时间.【详解】(1)解:∵a 、b 满足()2310a b −+−=.∴3010a b −=−=,,∴31a b ==,,由题意得3CAM t CBD t ∠=∠=,,∵180345CAN t BAN ∠=︒−∠=︒,, ∴4518033135BAC t t ∠=︒−︒−=−︒(), 过点C 作CE PQ ∥,∴CBD BCE t ∠=∠=,∵PQ MN ∥,∴PQ CE MN ∥∥,∴1803CAN ACE t ∠=∠=︒−,∵ACE BCE ACB ∠+∠=∠,∴18031802ACB CBD CAN t t t ∠=+∠=+︒−=︒−,∵CD AC ⊥,∴=90ACD ∠︒,∴()90901802290BCD ACB t t ∠=︒−∠=︒−︒−=−︒,∴32BAC BCD ∠∠=::, 即23BAC BCD ∠=∠;(2)解:∵160t <,∴()2011803480t t +⨯<<,,即射线BP 旋转的角度小于180︒,①当3180t <,即060t <<时,()3201t t =+⨯,解得:10t =;②当1803270t <<且()20190t +⨯>,即7090t <<时, ()3180201180t t −++⨯=, 解得:85t =;③当()360348020190t t <<+⨯>且,即120160t <<时, ()3360201t t −=+⨯, 解得:190t =(不合题意,舍去);∴若旋转中AM BP ∥,t 的值为10或85.【点睛】本题主要考查了平行线的性质,非负数的性质,旋转的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:若两个非负数的和为0,则这两个非负数均等于0. 4.(2023上·广西贵港·七年级校考期末)如图,直线AB CD ∥,MN AB ⊥分别交AB ,CD 于点M 、N ,射线MP 、MQ 分别从MA 、MN 同时开始绕点M 顺时针旋转,分别与直线CD 交于点E 、F ,射线MP 每秒转10︒,射线MQ 每秒转5︒,ER ,FR 分别平分PED ∠,QFC ∠,设旋转时间为t 秒()018t <<.(1)用含t 的代数式表示:AMP ∠=________︒,QMB ∠=________︒;(2)当4t =时,REF ∠=________︒.(3)当130MEN MFN ∠+∠=︒时,求出t 的值.【答案】(1)10t ,()905t −(2)70(3)8t =或283t =.【分析】(1)由题意不难得出10AMP t ∠=︒,5NMF t ∠=︒,继而得到()905QMB t ∠=−︒;(2)由平行线的性质可得10MEF AMP t ∠=∠=︒,再结合ER 是PED ∠的平分线,即可求解;(3)由平行线的性质可得10MEN AMP t ∠=∠=︒,再由MN AB ⊥得到MN CD ⊥,从而求得905MFN t ∠=︒−︒,分两种情况讨论:当点E 在N 左侧时和当点E 在N 右侧时,结合已知条件,即可求解;【详解】(1)解:由题意得:10AMP t ∠=︒,5NMF t ∠=︒,AB CD ∥,MN AB ⊥,()90905905QMB NMF t t ∴︒∠=︒−∠=︒−︒=−;故答案为:10t ,()905t −; (2)AB CD ∥,10MEF AMP t ∴∠=∠=︒,ER Q 是PED ∠的平分线,()()111801801090522REF MEF t t ∴∠=︒−∠=︒−︒=︒−︒,∴当4t =时,905470REF ∠=︒−⨯︒=︒;故答案为:70;(3)①当点E 在N 左侧时,AB CD ∥,10MEN AMP t ∴∠=∠=︒,MN AB ⊥,MN CD ∴⊥,5NMF t ∠=︒,905MFN t ∴∠=︒−︒,130MEN MFN ∠+∠=︒,10905130t t ∴︒+︒−︒=︒,解得:8t =;②当点E 在N 右侧时,如图,AB CD ∥,10AMP t ∠=︒,180MEN AMP ∴∠+∠=︒,18010MEN t ∴∠=︒−︒,MN AB ⊥,MN CD ∴⊥,5NMF t ∠=︒,905MFN t ∴∠=︒−︒,130MEN MFN ∠+∠=︒,180********t t ∴︒−︒+︒−︒=︒, 解得:283t =;【点睛】本题主要考查平行线的性质,解题的关键是对这些知识点的掌握和熟练应用. 5.(2022下·天津南开·七年级校联考期中)将一副三角板中的两个直角顶点C 按如图方式叠放在一起.(1)若45DCE ∠=︒,则ACB ∠的度数为________;若140ACB ∠=︒,则DCE ∠的度数为________;(2)猜想ACB ∠与DCE ∠的大小关系,并说明理由;(3)若将三角板BCE ∠绕点C 按顺时针方向继续旋转,当90ACE ∠<︒时,这两块三角尺是否存在一组边互相平行?请画出图形,并直接写出ACE ∠的大小.【答案】(1)135︒;40︒(2)180ACB DCE ∠+∠=︒,见解析(3)存在,见解析,当AC EB ∥时45ACE ∠=︒,当AD BC ∥时,30ACE ∠=︒【分析】(1)根据角度之间的和、差计算即可;(2)根据角度之间的和、差计算即可;(3)分两种情况讨论:AC EB ∥和AD BC ∥,根据图形,利用平行线的性质和角度之间的和、差关系求解即可.【详解】(1)解:若45DCE ∠=︒,90ACD BCE ∠=∠=︒,904545ACE ACD DCE ∴∠=∠−∠=︒−︒=︒,4590135ACB ACE DCE ∴∠=∠+∠=︒+︒=︒;若140ACB ∠=︒,90ACD BCE ∠=∠=︒,1409050ACE ACB BCE ∴∠=∠−∠=︒−︒=︒,905040DCE ACD ACE ∴∠=∠−∠=︒−︒=︒;故答案为:135︒;40︒;(2)证明:90ACB DCB ∠=︒+∠,90DCE DCB ∠=︒−∠,9090180ACB DCE DCB DCB ∴∠+∠=︒+∠+︒−∠=︒;(3)解:如图所示,当AC EB ∥时,45CEB ∠=︒,∴45ACE CEB ∠=∠=︒;。

初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

专题02 平行线解答题压轴(解析版)

专题02 平行线解答题压轴(解析版)

专题02 平行线解答题压轴1.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系.并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=130°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ=80°时,请直接写出∠PFQ的度数.【答案】(1)∠PEQ=∠APE+∠CQE;(2)115°;(3)140°.【解答】解:(1)∠PEQ=∠APE+∠CQE,如图1,过点E作EH∥AB,则EH∥AB∥CD,∵AB∥EH,∴∠APE=∠PEH,又∵CD∥EH,∴∠CQE=∠HEQ,∵∠PEQ=∠PEH+HEQ,∴∠PEQ=∠APE+∠CQE;(2)如图2,由(1)得,∠PEQ=∠APE+∠CQE=130°;∵∠APE+∠BPE=180°,∠CQE+∠DQE=180°,∴∠BPE+∠DQE=360°﹣130°=230°,又∵PF平分∠BPE,QF平分∠EQD,∴∠1=∠2,∠3=∠4,∴∠1+∠3=(∠BPE+∠DQE)=×230°=115°,在四边形PEQF中,∠PFQ=360°﹣(∠1+∠2+∠PEQ)=360°﹣(115°+130°)=115°;(3)140°,如图3,延长PF交CD与点M,∵PF平分∠BPE,QH平分∠EQD,∴∠1=∠2,∠3=∠4,∵AB∥CD,∴∠BPE=∠DNE,∠2=∠PMC=∠1,又∵∠DQE=∠DNE+∠E,即2∠4=2∠1+80°,∴∠4﹣∠1=40°,∴∠PFQ=∠FQD+∠PMC=180°﹣∠4+∠1=180°﹣(∠4﹣∠1)=180°﹣40°=14 0°.2.【问题情景】如图1,若AB∥CD,∠AEP=45°,∠PFD=120°.过点P作PM∥AB,则∠EPF= 105° ;【问题迁移】如图2,AB∥CD,点P在AB的上方,点E,F分别在AB,CD上,连接PE,PF,过P点作PN∥AB,问∠PEA,∠PFC,∠EPF之间的数量关系是 ∠PFC=∠PEA+∠FPE ,请在下方说明理由;【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=36°,∠PEA的平分线和∠PFC的平分线交于点G,过点G作GH∥AB,则∠EGF= 18° .【答案】(1)105°;(2)∠PFC=∠PEA+∠FPE;(3)18°.【解答】解:(1)∵AB∥PM,∴∠1=∠AEP=45°,∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°,∵∠PFD=120°,∴∠2=180°﹣120°=60°,∴∠1+∠2=45°+60°=105°.即∠EPF=105°,故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥AB,AB∥CD,∴PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴,由(2)可知,∠CFP=∠FPE+∠AEP,∴∠HGF=(∠FPE+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.3.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:①的值不变;②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.【答案】见试题解答内容【解答】解:(1)∠C=∠1+∠2.理由:如图1,过C作CD∥PQ,∵PQ∥MN,∴CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)结论①的值不变是正确的,设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2(定值),即的值不变,值为2.4.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为 60 °(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数.②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).【答案】(1)60°;(2)①∠B=75°;②当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.【解答】解:(1)设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,解得,x=60,∠H的4系补周角的度数为60°,故答案为60;(2)①过E作EF∥AB,如图1,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∠D=60°,∴∠D=∠DEF=60°,∵∠B+60°=∠BEF+∠DEF,即∠B+60°=∠BED,∵∠B是∠BED的3系补周角,∴∠BED=360°﹣3∠B,∴∠B+60°=360°﹣3∠B,∴∠B=75°;②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.5.如图1,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠DEC+∠ECD=90°;(2)如图2,BF平分∠ABD交CD的延长线于点F,若∠ABC=100°,求∠F的大小;(3)如图3,若H是BC上一动点,K是BA延长线上一点,KH交BD于点M,交AD 于点O,KG平分∠BKH,交DE于点N,交BC于点G,当点H在线段BC上运动时(不与点B重合),求的值.【答案】(1)证明见解答;(2)∠F=40°;(3)2.【解答】(1)证明:如图1,∵AD∥BC,∴∠ADC+∠BCD=180°,即∠BCD+∠BDC+∠ADB=180°,∵DE平分∠ADB,∴∠ADB=2∠EDB,∵∠BDC=∠BCD,∴2(∠BDC+∠EDB)=180°,∴∠BDC+∠EDB=90°,即∠CDE=90°,∴∠DEC+∠ECD=90°;(2)解:如图2,∵BF平分∠ABD,∴∠ABF=∠DBF,设∠ABF=∠DBF=α,∵∠ABC=100°,∴∠CBD=100°﹣2α,∵∠BDC=∠BCD,∴∠BDC=∠BCD=(180°﹣∠CBD)=40°+α,∵∠BDC=∠F+∠DBF,∴∠F=∠BDC﹣∠DBF=40°+α﹣α=40°;(3)解:在△BMK中,∠BMK=∠DMH=180°﹣∠ABD﹣∠BKH,又∵∠BAD=180°﹣(∠ABD+∠ADB),∴∠DMH+∠BAD=(180°﹣∠ABD﹣∠BKH)+(180°﹣∠ABD﹣∠ADB)=360°﹣∠BKH﹣2∠ABD﹣∠ADB=2[180°﹣(∠BKH+∠ADB)﹣∠ABD],∵KG平分∠BKH,DE平分∠ADB,∴∠BKG=∠BKH,∠BDE=∠ADB,∴∠DNG=∠KNE=180°﹣∠BKG﹣∠AED=180°﹣∠BKH﹣∠ABD﹣∠BDE=180°﹣(∠BKH+∠ADB)﹣∠ABD,∴==2.6.已知:直线EF分别交直线AB,CD于点G,H,且∠AGH+∠DHF=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M,N分别在射线GE,HF上,点P,Q分别在射线GA,HC上,连接MP,NQ,且∠MPG+∠NQH=90°,分别延长MP,NQ交于点K,求证:MK⊥NK;(3)如图3,在(2)的条件下,连接KH,KH平分∠MKN,且HE平分∠KHD,若,求∠KMN的度数.【答案】(1)见详解;(2)见详解;(3)50°.【解答】(1)证明:∵∠CHG=∠DHF,∠AGH+∠DHF=180°,∴∠AGH+∠CHG=180°,∴AB∥CD;(2)证明:过K作KR∥AB,如图,∵AB∥CD,∴RK∥AB∥CD,∴∠MPG=∠MKR,∠NQH=∠RKN,∵∠MPG+∠NQH=90°,∴∠MKR+∠NKR=90°∴∠MKN=90°,∴MK⊥NK;(3)解:如图,过M作MT∥AB,过K作KR∥AB,∵AB∥CD,∴MT∥AB∥CD∥KR,∵KH平分∠MKN,∴∠MKH=∠NKH=45°∵,∴设∠DHG=17x,∠MPG=7x,∵HE平分∠KHD,∴∠KHM=∠DHG=17x,∴∠KHD=34x∴∠KHQ=180°﹣34x,∵CD∥KR,∴∠RKH=∠KHQ=180°﹣34x,∵MT∥AB∥KR∴∠TMP=∠MKR=∠MPG=7x,∠TMH=∠MHD=17x,∵∠MKH=45°,∴∠RKH+∠MKR=180°﹣34x+7x=45°,∴x=5°,∵∠KMN=∠TMH﹣∠TMP,∴∠KMN=17x﹣7x=10x=50°.7.在数学实践活动课上,小亮同学利用一副三角尺探索与研究共直角顶点的两个直角三角形中的位置关系与数量关系.(其中∠A=30°,∠B=60°,∠C=∠D=45°)(1)将三角尺如图1所示叠放在一起.①∠AOD与∠BOC大小关系是 相等 ,依据是 同角的余角相等 .②∠BOD与∠AOC的数量关系是 互补 .(2)小亮固定其中一块三角尺△COD不动,绕点O顺时针转动另一块三角尺,从图2的OA与OC重合开始,到图3的OA与OC在一条直线上时结束,探索△AOB的一边与△COD的一边平行的情况.①求当AB∥CD时,如图4所示,∠AOC的大小;②直接写出∠AOC的其余所有可能值.【答案】(1)①相等,同角的余角相等;②互补;(2)①75°;②30°,45°,120°,135°.【解答】解:(1)①∵∠AOB=∠COD=90°,∴∠AOC+∠AOD=90°,∠AOC+∠BOC=90°,∴∠AOD=∠BOC,(同角的余角相等),故答案为:相等,同角的余角相等;②∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补,故答案为:互补;(2)①如图,过点O作OE∥AB,则OE∥AB∥CD,∵OE∥AB∥CD,∴∠A=∠AOE=30°,∠C=∠COE=45°,∴∠AOC=∠AOE+∠COE=30°+45°=75°;②当AB∥OC时,如图,此时∠AOC=∠A=30°;当OA∥CD时,如图,此时,∠AOC=∠C=45°;当AB∥CD时,由①得,∠AOC=75°;当AB∥OD时,如图,此时,∠BOD=∠B=60°,∴∠AOC=360°﹣90°﹣90°﹣60°=120°;当OB∥CD时,如图,此时,∠BOD=∠D=45°,∴∠AOC=360°﹣90°﹣90°﹣45°=135°;综上,∠AOC的其余所有可能值为30°,45°,120°,135°.8.已知:直线EF分别交直线AB,CD于点G,H,且∠AGH+∠DHF=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M,N分别在射线GE,HF上,点P,Q分别在射线GA,HC上,连接MP,NQ,且∠MPG+∠NQH=90°,分别延长MP,NQ交于点K,求证:MK⊥NK;(3)如图3,在(2)的条件下,连接KH,若KH平分∠MKN,且HE平分∠KHD,若∠DHG=5∠MPG,请直接写出∠KMN的度数.【答案】(1)见解析;(2)见解析;(3)∠KMN的度数为60°.【解答】(1)证明:∵∠AGH+∠DHF=180°,又∵∠DHF=∠EHC,∴∠AGH+∠EHC=180°,∴AB∥CD;(2)证明:如图,由(1)知,AB∥CD,过K作KO∥AB,∵AB∥CD,∴KO∥CD∵KO∥AB∴∠MPG=∠MKO,∵KO∥CD,∴∠NQH=∠NKO,∵∠MPG+∠NQH=90°,∴∠MKO+∠NKO=90°,则∠MKN=90°,即MK⊥NK.(3)解:如图,过M作MT∥AB,过K作KR∥AB,∵AB∥CD,∴MT∥AB∥CD∥KR,∵KH平分∠MKN,∴∠MKH=∠NKH=45°,∵∠DHG=5∠MPG,∴设∠DHG=5x,∠MPG=x,∵HE平分∠KHD,∴∠KHM=∠DHG=5x,∴∠KHD=10x,∴∠KHQ=180°﹣10x,∵CD∥KR.∴∠RKH=∠KHQ=180°﹣10x,∵MT∥AB∥KR,∴∠TMP=∠MKR=∠MPG=x,∠TMH=∠MHD=5x,∵∠MKH=45°,∴∠RKH+∠MKR=180°﹣10x+x=45°,∴x=15°,∵∠KMN=∠TMH﹣∠TMP,∴∠KMN=5x﹣x=4x=60°.9.已知直线a∥b,直线c分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线c的左侧,点P是直线c上一动点(不与点E,F重合),设∠PAE=∠1,∠APB =∠2,∠PBF=∠3.(1)如图,当点P在线段EF上运动时,试探索∠1,∠2,∠3之间的关系,并给出证明;(2)当点P在线段EF外运动时,请你在备用图中画出图形,并判断(1)中的结论是否还成立?若不成立,请你探索∠1,∠2,∠3之间的关系(不需要证明).【答案】见试题解答内容【解答】(1)∠1+∠3=∠2,证明:过P作PM∥a,∵a∥b,∴a∥b∥PM,∴∠1=∠APM,∠3=∠BPM,∴∠1+∠3=∠APM+∠BPM,即∠1+∠3=∠2;(2)不成立,有两种情况:①如图2,此时∠1+∠2=∠3,理由是:∵a∥b,∴∠3=∠PQE,∵∠1+∠2=∠PQE,∴∠1+∠2=∠3;②如图3,此时∠2+∠3=∠1,理由是:∵a∥b,∴∠1=∠PQF,∵∠2+∠3=∠PQF,∴∠2+∠3=∠1.10.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB 上.若∠AEG=α,则∠CFG等于 60°﹣α (用含α的式子表示).【答案】见试题解答内容【解答】解:(1)如图1,∵AB∥CD,∴∠1=∠EGD,又∵∠2=2∠1,∴∠2=2∠EGD,又∵∠FGE=60°,∴∠EGD=(180°﹣60°)=40°,∴∠1=40°;(2)如图2,∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°,又∵∠FEG+∠EGF=90°,∴∠AEF+∠FGC=90°;(3)如图3,∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°,又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.11.【阅读与思考】如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD 分别平分∠ABP和∠PBN,分别交射线AM于点C,D.【思考与探究】(1)①∠ABN的度数是 116° ;②∵AM∥BN,∴∠ACB=∠ CBN ;③∠CBD的度数是 58° ;【猜想与探究】(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律;(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是多少?【答案】(1)①116°;②CBN;③58°;(2)不变,2:1;(3)29°.【解答】解:(1)①∵AM∥BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM∥BN,∴∠ACB=∠CBN,故答案为:CBN;③∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(2)不变,∠APB:∠ADB=2:1,∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(3)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.12.课题学习:平行线的“等角转化”功能.(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.解:过点A作ED∥BC,∴∠B= ∠EAB ,∠C= ∠DAC ,∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,求∠BED度数.(用含n的代数式表示)【答案】(1)∠EAB;∠DAC;(2)360°;(3)①43°;②.【解答】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);故答案为:∠EAB;∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∵CF∥AB,∴∠B+∠FCB=180°,∴∠B+∠FCB+∠FCD+∠D=360°,∴∠B+∠BCD+∠D=360°;(3)①过E作EG∥AB,∵AB∥DC,∴EG∥CD,∴∠GED=∠EDC,∵DE平分∠ADC,∴,∴∠GED=25°,∵BE平分∠ABC,∴,∵GE∥AB,∴∠BEG=∠ABE=18°,∴∠BED=∠GED+∠BEG=25°+18°=43°;②过E作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠PED=∠EDC=25°,∵BE平分∠ABC,∠ABC=n°,∴,∵AB∥PE,∴∠ABE+∠PEB=180°,∴,∴.13.如图1,AM∥NC,点B位于AM,CN之间,∠BAM为钝角,AB⊥BC,垂足为点B.(1)若∠C=40°,则∠BAM= 130° ;(2)如图2,过点B作BD⊥AM,交MA的延长线于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,BE平分∠DBC交AM于点E,若∠C=∠DEB,求∠DEB的度数.【答案】见试题解答内容【解答】(1)解:过点B作BE∥AM,则AM∥BE∥NC,∵BE∥NC,∠C=40°,∴∠CBE=∠C=40°.∵AB⊥BC,∴∠ABC=90°,∴∠ABE=90°﹣40°=50°.∵AM∥BE,∴∠BAM+∠ABE=18°,∴∠BAM=180°﹣50°=130°.故答案为:130°;(2)证明:如图2,过点B作BF∥DM,则∠ADB+∠DBF=180°.∵BD⊥AM,∴∠ADB=90°.∴∠DBF=90°,∠ABD+∠ABF=90°.又∵AB⊥BC,∴∠CBF+∠ABF=90°.∴∠ABD=∠CBF.∵AM∥CN,∴BF∥CN,∴∠C=∠CBF.∴∠ABD=∠C.(3)解:设∠DEB=x°,由(2)可得∠ABD=∠C,∵∠C=∠DEB,∴∠ABD=∠C=∠DEB=x°.过点B作BF∥DM,如图3,∴∠DEB=∠EBF,∠C=∠FBC.∴∠CBE=∠EBF+∠FBC=∠DEB+∠C=2x°.∵∠DBC=∠ABC+∠ABD=90°+x°.∵BE平分∠DBC,∴∠DBC=2∠CBE=4x°,即4x=90+x,解得x=30.∴∠DEB的度数为30°.14.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.【答案】见试题解答内容【解答】解:(1)证明:∵AB∥CD,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴EF∥GH;(2)如图2,过点N作NK∥CD,∴KN∥CD∥AB,∴∠KNE=∠4,∠6=∠7,设∠4=x,∠7=y,∵EN、FN分别平分∠BEF、∠DFM,∴∠ENK=∠5=∠4=x,∠6=∠8=∠7=y,又∵AB∥CD,∴∠EFD=180°﹣(∠4+∠5)=180°﹣2x,又∵FM⊥GH,∴∠EFM=90°,∴180°﹣2x+2y=90°,∴x﹣y=45°,∴∠ENF=∠ENK﹣∠6=x﹣y=45°,(3)∵3∠FEN=4∠HFM,即3x=4×2y,∴x=,∴x﹣y=﹣y=45°∴y=27°,x=72°,又∵EN和GQ是角平分线,∴GQ⊥EN,∴∠GQH=∠EGQ=180°﹣90°﹣72°=18°,又∵∠MPN=∠FEN=x=72°,∴,故答案为.15.已知,DE平分∠ADB交射线BC于点E,∠BDE=∠BED.(1)如图1,求证:AD∥BC;(2)如图2,点F是射线DA上一点,过点F作FG∥BD交射线BC于点G,点N是FG 上一点,连接NE,求证:∠DEN=∠ADE+∠ENG;(3)如图3,在(2)的条件下,连接DN,点P为BD延长线上一点,DM平分∠BDE 交BE于点M,若DN平分∠PDM,DE⊥EN,∠DBC﹣∠DNE=∠FDN,求∠EDN的度数.【答案】(1)证明过程见解答;(2)证明过程见解答;(3)∠EDN的度数为45°.【解答】(1)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠BDE=∠BED,∴∠ADE=∠BED,∴AD∥BE;(2)证明:过点E作EH∥BD,∴∠DEH=∠BDE,∵∠BDE=∠ADE,∴∠ADE=∠DEH,∵BD∥FG,∴EH∥FG,∴∠HEN=∠ENG,∵∠DEN=∠DEH+∠HEN,∴∠DEN=∠ADE+∠ENG;(3)解:设∠BDM=2x,∵DM平分∠BDE,∴∠BDM=∠MDE=2x,∴∠ADE=∠BDE=2∠BDM=4x,∴∠ADB=2∠BDE=8x,∵AD∥BC,∴∠B=180°﹣∠ADB=180°﹣8x,∵DE⊥EN,∴∠DEN=90°,由(2)得:∠DEN=∠ADE+∠ENG,∴∠ENG=∠DEN﹣∠ADE=90°﹣4x,∵DN平分∠PDM,∴∠MDN=∠PDM=(180°﹣∠BDM)=(180°﹣2x)=90°﹣x,∴∠EDN=∠MDN﹣∠MDE=90°﹣x﹣2x=90°﹣3x,∴∠DNE=90°﹣∠EDN=3x,∠FDN=∠ADE﹣∠EDN=4x﹣(90°﹣3x)=7x﹣90°,∵∠DBC﹣∠DNE=∠FDN,∴180°﹣8x﹣3x=7x﹣90°,解得:x=15°,∴∠EDN=90°﹣3x=45°,∴∠EDN的度数为45°.16.将一副三角板中的两个直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)猜想∠BCD与∠ACE的数量关系,并说明理由;(2)若∠BCD=4∠ACE,求∠BCD的度数;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时CE∥AB,并简要说明理由.【答案】(1)∠BCD+∠ACE=180°,理由见解析;(2)144°;(3)∠BCD等于150°或30°时,CE∥AB.【解答】解:(1)∠BCD+∠ACE=180°,理由如下:∵∠BCD=∠ACB+∠ACD=90°+∠ACD,∴∠BCD+∠ACE=90°+∠ACD+∠ACE=90°+90°=180°;(2)如图①,设∠ACE=α,则∠BCD=4α,由(1)可得∠BCD+∠ACE=180°,∴4α+α=180°,∴α=36°,∴∠BCD=4α=144°;(3)分两种情况:①如图1所示,当∠BCD=150°时,AB∥CE.∵∠BCD=150°,∠ACB=∠ECD=90°,∴∠ACE=30°,∴∠A=∠ACE=30°,∴AB∥CE.②如图2所示,当∠BCD=30°时,AB∥CE.∵∠BCD=30°,∠DCE=90°,∴∠BCE=∠B=60°,∴AB∥CE.综上所述,∠BCD等于150°或30°时,CE∥AB.17.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.【答案】见试题解答内容【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.18.【探究结论】(1)如图1,AB∥CD,E为形内一点,连结AE、CE得到∠AEC,则∠AEC、∠A、∠C 的关系是 ∠AEC=∠A+∠C (直接写出结论,不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2,AB∥CD,直线MN分别交AB、CD于点E、F,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.(3)如图3,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=3∠CEF,若8°<∠BAE<20°,∠C的度数为整数,则∠C的度数为 42°或41° .【答案】(1)∠AEC=∠A+∠C;(2)证明过程见解答;(3)42°或41°.【解答】(1)解:过点E作EF∥AB,∴∠A=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C(等量代换),故答案为:∠AEC=∠A+∠C;(2)证明:由(1)可知:∠EG2F=∠1+∠DFG2,∵FG2平分∠MFD,∴∠EFG2=∠DFG2,∵∠1=∠2,∴∠EG2F=∠2+∠EFG2,∵∠EG1F+∠2+∠EFG2=180°,∴∠FG1E+∠G2=180°;(3)由(1)知:∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=3x,∵∠EFD=60°,∴x+3x=∠BAE+60°,∴∠BAE=4x﹣60°,又∵8°<∠BAE<20°,∴8°<4x﹣60°<20°,解得17°<x<20°,又∵∠DFE是△CEF的外角,∴∠C=∠DFE﹣∠CEF=∠DFE﹣x,∵∠C的度数为整数,∴x=18°或19°,∴∠C=60°﹣18°=42°或∠C=60°﹣19°=41°,故答案为:42°或41°.19.已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD的平分线,作HN∥PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)【答案】(1)证明过程见解析;(2)∠GMH=100°;(3)∠QHN=40°.【解答】(1)证明:∵∠AGE+∠BGE=180°,∠AGE+∠DHE=180°,∴∠BGE=∠DHE,∴AB∥CD.(2)解:∵AB∥CD,∴∠AGH+∠CHG=180°,即∠AGM+∠MGH+∠MHG+∠MHC=180°,∵∠MGH+∠MHG+∠GMH=180°,∴∠GMH=∠AGM+∠MHC,∵∠AGM=32°,∠MHC=68°,∴∠GMH=100°.(3)解:∠QHN的度数不发生改变,理由如下,由(2)得,∠AGM+∠MHC=∠GMH=100°,∴∠MGH+∠MHG=80°,∵GP、HQ分别平分∠MGA和∠MHD,∴∠MGP=∠MGA,∠MHQ=∠MHD=(180°﹣∠MHC)=90°﹣∠MHC,∴∠PGH=∠MGP+∠MGH=∠MGA+∠MGH,∵HN∥PG,∴∠GHN=∠PGH=∠MGA+∠MGH,∴∠QHN=∠GHN﹣∠GHQ=(∠MGA+∠MGH)﹣(∠MHQ﹣∠MHG)=∠MGA+∠MGH﹣∠MHQ+∠MHG=∠MGA+80°﹣∠MHQ,∴∠QHN=∠MGA+80°﹣(90°﹣∠MHC)=﹣10°+(∠MGA+∠MHC)=﹣10°+×100°=40°.20.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.【答案】(1)证明过程见解答;(2)证明过程见解答;(3)5或.【解答】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:∵∠BGA=∠F+∠BCF,∴∠BGA﹣∠F=∠BCF,∵∠BAG=∠BGA,∴∠∠BAG﹣∠F=∠BCF,∵∠BAG﹣∠F=45°,∴∠BCF=45°,∵∠BCD=90°,∴CF平分∠BCD;(3)解:有两种情况:①当M在BP的下方时,如图5,设∠ABC=4x,∵∠ABP=3∠PBG,∴∠ABP=3x,∠PBG=x,∵AG∥CH,∴∠BCH=∠AGB==90°﹣2x,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x,∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=2x﹣x=x,∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时,如图6,同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,∠GBM=2x+x=3x,∴∠ABM:∠GBM=x:3x=.综上,的值是5或.21.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【答案】见试题解答内容【解答】解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.22.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD.(1)直接写出∠ACB与∠BED的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,求∠PBM的度数.(本题中的角均为大于0°且小于180°的角)【答案】(1)∠ACB+∠BED=180°;(2)100°;(3)40°.【解答】解:(1)如答图1所示,延长DE交AB于点F.∵AB∥CD,∴∠D=∠EFB,∵∠A=∠D,∴∠A=∠EFB,∴AC∥DF,∴∠ACB=∠CED.∵∠CED+∠BED=180°,∴∠ACB+∠BED=180°.(2)如答图2所示,过点E作ES∥AB,过点H作HT∥AB.设∠ABG=∠EBG=α,∠FDH=∠EDH=β,∵AB∥CD,AB∥ES,∴∠ABE=∠BES,∠SED=∠CED,∴∠BED=∠BES+∠SED=∠ABE+∠CDE=2α+180°﹣2β,∵AB∥TH,AB∥CD,∴∠ABG=∠THB,∠FDH=∠DHT,∴∠GHD=∠THD﹣∠THB=β﹣α,∵∠BED比∠BHD大60°,∴2α+180°﹣2β﹣(β﹣α)=60°,∴β﹣α=40°,∴∠BHD=40°,∴∠BED=100°;(3)如答图3所示,过点E作EQ∥DN.设∠CDN=∠EDN=α,∠EBM=∠KBM=β,由(2)易知∠DEB=∠CDE+∠ABE,∴2α+180°﹣2β=100°,∴β﹣α=40°,∴∠DEB=∠CDE+∠EDN+180°﹣(∠EBM+∠PBM)=α+180°﹣β﹣∠PBM,∴∠PBM=80°﹣(β﹣α)=40°.23.如图,射线CB∥OA,∠C=∠OAB.(1)求证:AB∥OC;(2)若点E,F在CB上,且∠FOB=∠AOB,OE平分∠COF.①当∠C=110°时,求∠EOB的度数;②如果平移AB,那么的值是否随之发生变化?若不变,求出这个值;若变化,请说明理由.【答案】(1)见解答;(2)①35°;②∠OBC:∠OFC的值不发生变化,∠OBC:∠OFC=1:2.【解答】(1)证明:∵CB∥OA,∴∠C+∠COA=180°,∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴AB∥OC.(2)①∠COA=180°﹣∠C=70°,∵∠FOB=∠AOB,OE平分∠COF,∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=35°.②∠OBC:∠OFC的值不发生变化,∵CB∥OA,∴∠OBC=∠BOA,∠OFC=∠FOA,∵∠FOB=∠AOB,∴∠FOA=2∠BOA,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=1:2.24.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【答案】(1)见解答过程;(2)∠ABC﹣∠F=90°;(3)45°.【解答】(1)证明:过点C作CM∥AB,如图1,∴∠ABC=∠BCM,∵AB∥ED,∴∠CDE=∠DCM,∵∠BCM=∠BCD+∠DCM,∴∠ABC=∠BCD+∠CDE;(2)解:∠ABC﹣∠F=90°,理由:过点C作CN∥AB,如图2,∴∠ABC=∠BCN,∵AB∥ED,∴CN∥EF,∴∠F=∠FCN,∵∠BCN=∠BCF+∠FCN,∴∠ABC=∠BCF+∠F,∵CF⊥BC,∴∠BCF=90°,∴∠ABC=90°+∠F,即∠ABC﹣∠F=90°;(3)延长HG交EF于点Q,过点G作GP∥EF,如图3,∴∠BGD=∠CGQ,∵AB∥DE,∴∠ABH=∠EQG,∵GP∥EF,∴∠EQG=∠PGQ,∠EFG=∠PGF,∴∠PGQ=∠ABH,∴∠BGD﹣∠CGF=∠CGQ﹣∠CGF=∠FGQ,∵∠FGQ=∠PGQ﹣∠PGF,∴∠FGQ=∠ABH﹣∠EFG,∵BH平分∠ABC,FG平分∠CFD,∴∠ABH=∠ABC,∠EFG=∠CFD,∴∠FGQ=∠ABC﹣∠CFD=(∠ABC﹣∠CFD),由(2)可得:∠ABC﹣∠CFD=90°,∴∠FGQ=×90°=45°,即∠BGD﹣∠CGF=45°.25.如图1,G,E是直线AB上两点,点G在点E左侧,过点G的直线GP与过点E的直线EP交于点P.直线PE交直线CD于点H,满足点E在线段PH上,∠PGB+∠P=∠PHD.(1)求证:AB∥CD;(2)如图2,点Q在直线AB,CD之间,PH平分∠QHD,GF平分∠PGB,点F,G,Q在同一直线上,且2∠Q+∠P=120°,求∠QHD的度数;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,请直接写出∠MNB和∠PHM的数量关系.(题中所有角都是大于0°且小于180°的角)【答案】(1)证明过程详见解答部分;(2)160°;(3)点N在点B左侧,∠MNB和∠PHM的数量关系是∠MNB+∠PHM=100°或∠MNB+∠PHM=280°或∠MNB﹣∠PHM=80°或∠MNB+∠PHM=80°.【解答】(1)证明:∵∠PGB+∠P=∠PHD,∠PGB+∠P=∠PEB,∴∠PEB=∠PHD,∴AB∥CD;(2)解:过点Q作QK∥AB,如图,则∠GQK=∠EGF,由(1)知:AB∥CD,∴QK∥CD,∴∠HQK=∠CHQ,∴∠GQH=∠GQK+∠HQK=∠EGF+∠CHQ,∵GF平分∠PGB,∴∠PGB=2∠EGF=2∠GQK,∵PH平分∠QHD,∴∠QHD=2∠PHD,∵∠PGB+∠P=∠PHD,∴∠QHD=2∠PHD=2∠PGB+2∠P=4∠GQK+2∠P,∵2∠GQH+∠P=120°,∴2∠GQK+2∠HQK+∠P=120°,∴2∠GQK+∠P=120°﹣2∠HQK=120°﹣2∠QHC,∴∠QHD=4∠GQK+2∠P=2(120°﹣2∠QHC)=240°﹣4∠QHC,∵∠QHC=180°﹣∠QHD,∴∠QHD=240°﹣4(180°﹣∠QHD),解得∠QHD=160°;即∠QHD的度数为160°;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,∠MNB和∠PHM的数量关系是∠MNB+∠PHM=100°或∠MNB﹣∠PHM =80°或∠MNB+∠PHM=80°,理由如下:在(2)的条件下,∠PHD=∠QHD=80°,若点M在PG的延长线上,或∵AB∥CD,∴∠HEN=∠PHD=80°,∠HEN=∠CHP=100°,∵∠MNB+∠PHM+∠HEN=180°,∴∠MNB+∠PHM=180°﹣∠HEN=100°或∠MNB+∠PHM=∠CHN+∠PHM=180°+∠CHP=280°.若点M在PG上,∵AB∥CD,∴∠HEN=∠PHD=80°,∵∠MNB=∠PHM+∠HEN,∴∠MNB﹣∠PHM=∠HEN=80°;若点M在GP的延长线上,∵AB∥CD,∴∠HEN+∠PHD=180°,∴∠HEN=180°﹣∠PHD=100°,∵∠HME+∠PHM+∠HEN=180°,∠MNB=∠HNE,∴∠MNB+∠PHM=180°﹣∠HEN=80°.综上所述,点N在点B左侧,∠MNB和∠PHM的数量关系是∠MNB+∠PHM=100°或∠MNB+∠PHM=280°或∠MNB﹣∠PHM=80°或∠MNB+∠PHM=80°.26.已知AB∥CD,P是截线MN上的一点,MN与CD、AB分别交于E、F.(1)若∠EFB=50°,∠EDP=35°,求∠MPD的度数;(2)如图1,当点P在线段EF上运动时,∠CDP与∠ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;(3)①如图2,当点P在线段FE的延长线上运动时,∠CDP与∠ABP的平分线交于Q,则的值为 ;②当点P在直线EF上运动时,∠CDP与∠ABP的n等分线交于Q,其中∠CDQ=∠CDP,∠ABQ=∠ABP,设∠DPB=α,求∠Q的度数(直接用含n,α的代数式表示,不需说明理由).【答案】(1)15°;(2);(3).【解答】解:(1)如图,当点P在线段AB,CD之间时,过点P作PG∥AB.∵AB∥CD,∴PG∥CD.∵∠EFB=50°,∠EDP=35°∴∠EPG=∠EFB=50°,∠DPG=∠EPD=35°.∴∠MPD=∠EPG﹣∠DPG=50°﹣35°=15°.当点P在CD的上方时,可得∠MPD=85°,综上所述,∠MPD为15°或85°;(2).由(1)可知PG∥CD.∴∠DPG=∠CDP,∠BPG=∠ABP.∴∠DPB=∠DPG+∠BPG=∠CDP+∠ABP.同理可得∠Q=∠CDQ+∠ABQ.又∵DQ,BQ分别平分∠CDP与∠ABP,∴∠CDQ=∠CDP,∠ABQ=∠ABP.∴∠Q=∠CDQ+∠ABQ=(∠CDP+∠ABP)=∠DPB.(3)①.如图,过点P作PG∥AB.过点Q作QH∥AB.∵AB∥CD,∴PG∥CD,QH∥CD.∴∠DPG=∠CDP,∠BPG=∠ABP.∴∠DPB=∠BPG﹣∠DPG=∠ABP﹣∠CDP.同理可得∠BQD=∠ABQ﹣∠CDQ.又∵DQ,BQ分别平分∠CDP与∠ABP,∴∠CDQ=∠CDP,∠ABQ=∠ABP.∴∠BDQ=∠ABQ﹣∠CDQ=(∠ABP﹣∠CDP)=∠DPB.∴.②∠BQD=.分三种情况讨论:(Ⅰ)当点P在线段FE的延长线上运动时,如图,可得∠DPB=∠ABP﹣∠CDP,∠BQD=∠ABQ﹣∠CDQ.∵,.∴.(Ⅱ)当点P在线段EF上运动时,如图,可得∠DPB=∠ABP+∠CDP,∠BQD=∠ABQ+∠CDQ.∵,.∴.∴.(Ⅲ)当点P在线段EF的延长线上运动时,如图,可得∠DPB=∠ABP+∠CDP,∠BQD=∠ABQ+∠CDQ.∵,.∴.∴。

专题12 平行线的证明压轴题的三种考法(原卷版)-2024年常考压轴题攻略(8年级上册北师大版)

专题12 平行线的证明压轴题的三种考法(原卷版)-2024年常考压轴题攻略(8年级上册北师大版)

专题12平行线的证明压轴题的三种考法类型一、三角形折叠问题(1)如图1,当点C 落在边BC 上时,若58ADC '∠=︒,则C ∠=,可以发现ADC ∠的数量关系是;(2)如图2,当点C 落在ABC 内部时,且42BEC '∠=︒,20ADC '∠=︒,求C ∠的度数;(3)如图3,当点C 落在ABC 外部时,若设BEC '∠的度数为x ,ADC '∠的度数为y ,请求出C ∠与x ,y 之间的数量关系.(1)如图1,点P 与点E 重合时,用含α的式子表示DEF ∠;(2)当点P 与点E 不重合时,①如图2,若22.5,AP α=︒平分,BAE PD ∠交AB 于点G ,猜想,,AC AF DG 关系,并说明你的理由;②若BAD β∠=,请直接写出APD ∠的大小(用含,αβ的式子表示).【变式训练1】(1)如图1,把三角形纸片ABC 折叠,使3个顶点重合于点P .这时,123456∠+∠+∠+∠+∠+∠=__________︒;(2)如果三角形纸片ABC 折叠后,3个顶点并不重合于同一点,如图2,那么(1)中的结论是否仍然成立?请说明理由;(3)折叠后如图3所示,直接写出1∠、2∠、3∠、4∠、5∠、6∠之间的数量关系_______;(4)折叠后如图4,直接写出1∠、2∠、3∠、4∠、5∠、6∠之间的数量关系:_______;【变式训练2】(1)如图,把ABC 沿DE 折叠,使点A 落在点1A 处,试探究1∠、2∠与A ∠的关系;(2)如图2,若1140∠=︒,280∠=︒,作ABC ∠的平分线BN ,与ACB ∠的外角平分线CN 交于点N ,求BNC ∠的度数;(3)如图3,若点1A 落在ABC 内部,作ABC ∠,ACB ∠的平分线交于点1A ,此时1∠,2∠,1BA C ∠满足怎样的数量关系?并给出证明过程.(1)如图1,当点B落在直线A′E上时,猜想两折痕的夹角∠(2)当∠A′EB′=13∠B′EB时,设∠A′EB′=x.①试用含x的代数式表示∠FEG的度数.②探究EB′是否可能平分∠FEG,若可能,求出此时∠由.类型二、三角形内角和定理与外角和定理(1)求证:CD AB ⊥;(2)若2ACB ABE ∠=∠,求证:AC BC =;(3)如图2,在(2)的条件下,延长BE 至点G ,连接AG ,CG 求线段AB 的长.(注:不能应用等腰三角形的相关性质和判定)(1)如图1,BD ,CD 分别是ABC ∆的两个内角ABC ∠,ACB ∠的平分线,说明D ∠=的理由.【深入探究】(2)①如图2,BD ,CD 分别是ABC ∆的两个外角EBC ∠,FCB ∠的平分线,D ∠间的等量关系是;②如图3,BD ,CD 分别是ABC 的一个内角ABC ∠和一个外角ACE ∠的平分线,类型三、平行线性质与判定例.如图①,已知AB CD ,一条直线分别交AB 、CD 于点E 、F ,EFB B ∠=∠,FH FB ⊥,点Q 在BF 上,连接QH .(1)已知70EFD ∠=︒,求B ∠的度数;(2)求证:FH 平分GFD ∠.(3)在(1)的条件下,若30FQH ∠=︒,将FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请求出当α为多少度时,QH 与EBF △某一边平行?(4)在(3)的条件下,直接写出DFQ ∠与GFH ∠之间的关系.【变式训练1】如图,AB CD ,点P 在直线AB 上,作50BPM ∠=︒,交CD 于点M ,点F 是直线CD 上的一个动点,连接PF ,PE CD ⊥于点E ,PN 平分MPF ∠.(1)若点F 在点E 左侧且32PFM ∠=︒,求NPE ∠的度数;(2)当点F 在线段EM (不与点M ,E 重合)上时,设PFM α∠=︒,直接写出NPE ∠的度数(用含α的代数式表示);(3)将射线PF 从(1)中的位置开始以每秒10︒的速度绕点P 逆时针旋转至PM 的位置,转动的时间为t 秒,求当t 为何值时,FPM 为直角三角形.【变式训练2】【基础巩固】(1)如图1,已知AD BC ∥EF ∥,求证:AEB DAE CBE ∠=∠+∠;【尝试应用】(2)如图2,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点.70AEB ∠=︒,30DAE ∠=︒,求CBE ∠的度数;【拓展提高】(3)如图3,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点,若AE 平分DAC ∠,CAB ABC ∠=∠.①试求出BAE ∠的度数;②已知AEB ABE ∠=∠,30EBC ∠=︒,点G 是直线AD 上的一个动点,连接CG 并延长.2.1若CA 恰好平分BCD ∠,当CG 与四边形ABCD 中一边所在直线垂直时,ACG ∠=________;2.2如图4,若CG 是ACD ∠的平分线,与BA 的延长线交于点F ,与AE 交于点P ,且BFC α∠=︒,则ADC ∠=________︒(用含α的代数式表示).课后训练4.(1)如图1,将ABC 纸片沿A A DC A EB ''∠∠∠、、之间的数量关系为:(2)如图2,若将(1)中“点A 落在四边形外点A '的位置”,则此时,A ∠∠(3)如图3,将四边形纸片ABCD (90C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若115D EC '∠=︒,45A FB '∠=︒,求ABC ∠的度数;(4)在图3中作出D EC A FB ''∠∠、的平分线EG 、FH ,试判断射线EG 、FH 的位置关系,当点E 在DC 边上向点C 移动时(不与点C 重合),D EC A FB ''∠∠、的大小随之改变(其它条件不变),上述EG ,FH 的位置关系改变吗?为什么?5.如图1至图2,在ABC 中,BAC α∠=,点D 在边AC 所在直线上,作DE 垂直于直线BC ,垂足为点E ;BM 为ABC 的角平分线,ADE ∠的平分线交直线BC 于点G .(1)如图1,延长AB 交DG 于点F ,若BM DG ∥,30F ∠=︒.①ABC ∠=________;②求证:AC AB ⊥;(2)如图2,当90α<︒,DG 与BM 反向延长线交于点H ,用含α的代数式表示BHD ∠;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线
例1 翻折
1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1
的度数是

2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .
例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为 度.
1
A
E D B C
例3 平行线的性质
1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .
(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
2、如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5=.
3、已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.
例4 平移
1、如图1所示,已知BC∥OA,∠B=∠A=120°
(1)说明OB∥AC成立的理由.
(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.
(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.
2、如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.
例5 作图—应用
1、(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.
(2)如图2,在一条河的两岸有A,B两个村庄,现在要在河上建一座小桥,桥的方向与河岸方
向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.
图2图1
B
A
2、如图,平面上有直线a及直线a外的三点A、B、P.
(1)过点P画一条直线m,使得m∥a;
(2)过B作BH⊥直线m,并延长BH至B′,使得BB′为直线a、m之间的距离;
(3)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.
【巩固练习】
1、如图,AB
∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P ﹣2∠C=57°,则∠C等于()
A.24°B.34°C.26°D.22°第1题图第2题图
2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()
A.76°B.78°C.80°D.82°
3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()
A.平行B.垂直C.平行或垂直D.无法确定
4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有()
A.1个B.2个C.3个D.4个
第4题图第5题图
5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.
第7题图第8题图第9题图
7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为.
8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .
9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是.
10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;
(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;
(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.
11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
12、如图1,AB∥CD,E是AB、CD之间的一点.
(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;
(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.
13、已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)
(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.
(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;
(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)
14、已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED 的数量关系.。

相关文档
最新文档