(常考)二元一次方程组基础训练

合集下载

二元一次方程组练习题100道

二元一次方程组练习题100道

二元一次方程组练习题100道二元一次方程组练题100道(卷一)(范围:代数:二元一次方程组)一、判断1.判断以下方程组是否是方程组y5=26的解:x-3y=1x+2y=3改写:判断以下方程组是否是方程组y=5/26的解:x-3y=1x+2y=32.判断以下方程组是否是方程3x-2y=13的一个解:y=1-x3x+2y=5改写:判断以下方程组是否是方程3x-2y=13的一个解:y=1-x3x+2y=53.由两个二元一次方程组成方程组一定是二元一次方程组。

改写:错误,没有必要改写。

4.判断以下方程组是否可以转化为(2y-3)x+6y=-27x+8:2y-3x=45x+3y=2改写:判断以下方程组是否可以转化为(2y-3)x+6y=-27x+8:2y-3x=45x+3y=25.若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1.改写:若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1.6.若x+y=0,且|x|=2,则y的值为2.改写:若x+y=0,且|x|=2,则y的值为-2.7.判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:mx+my=m-3x4x+10y=8改写:判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:mx+my=m-3x4x+10y=88.判断以下方程组是否有无数多个解:x+y=23x+y=6改写:判断以下方程组是否有无数多个解:x+y=23x+y=69.判断以下方程是否有5组整数解:x+y=5x|<5.|y|<5改写:判断以下方程是否有5组整数解:x+y=55<x<5.-5<y<510.判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:3x-y=1x+5y=3改写:判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:3x-y=1x+5y=311.若|a+5|=5,a+b=1,则a的值为-2.改写:若|a+5|=5,a+b=1,则a的值为-2.12.在方程4x-3y=7里,如果用x的代数式表示y,则x=7+3y/4.改写:在方程4x-3y=7里,如果用x的代数式表示y,则x=7+3y/4.二、选择:13.任何一个二元一次方程都有无数多个解。

(完整版)解二元一次方程组基础练习

(完整版)解二元一次方程组基础练习

(完整版)解二元一次方程组基础练习4x y 5 3x 2y 1知识点 (1) 解二元一次方程组基础练习肖老师一:代入消元法解方程组: y 2x 3 7x 5y 3 ((23x 2y 1 2x y 4(3)x y 2 3 3x 4y 18 x 5y 6 3x 6y 4 0知识点 (1) 二:用加减法解方程组:x y 3x y 14x 3y 0 12x 3y 8(3)4x 3y 5 4x 6y 145x 4y 6 2x 3y 1 3x 2y 7 2x 3y 17拓展训练: 解下列方程:(1)(先化简) 3(y 2) x 12(x 1) 5y 8(2)(化简后整体法)3x 4y 18(3)(整体法) 4x 15y 17 06x 25y 23 0(4)(先化简)13-23一2y-y 1 x 2(5)(化简后整体法)"7 丁2x 3y 1 (6)(整体法)21x 23y 24323x 21y 241综合训练:一.填空题 1. 在方程y __________________ 3x 2中若x 2,则y ____ 若y 2,则x;2. 若方程2x y 3写成用含x 的式子表示y 的形式: _______________________ 写成用含y 的式子表示x 的形式: _____________________________ ;x 23. 已知是方程2x+ay=5的解,贝U a= ______ .y 1x 14. 二元一次方程3x my 4和mx ny 3有一个公共解,则y 1(7)(先化简)2x 1 3y 2 243x 1 3y 2 门 054(8)(可化简或整体法)3x 2y 2x 3y i73x 2y 2x 3y 567(9)(你懂的)3K - 2y 5K 4-/(10)(先化简)気 _ y+1L0?2 "O T S(11)(先化简)f 廿产50018O%x+eoay= 500X 74^(12))整体法)宣■上号丄二4 (i-l)3x-2 (2y+l) ~im= 5.已知 |a b 2| (b 3)2 0,那么 ab 6.方程 3x+y=7 的正整数解为、选择题 1.对于方程组 xy3 x10,(2) x5 ,(4)y y r 是二元次方程组的为 A.(1)和(2) )B.(3)和(4)C.(1)和⑶D.(2)和⑷22是方程 5kx 2y 2的一个解,则k 等于( A .85 B .53C.6D.3.方程组 3x 1 x 2 4y 1 y 31的解为( 8x A. y x B.yC.丄2 3 8D.4.已知a,b 满足方程组 a 2a 2bb ,则ab 的值为(A.-1B.0 5.如果方程组C.1 xD.2 y 1by 有唯一的一组解,那么 a , b , C 的值应当满足() A . a=1, C =1 B . a M b C . a=b=1 , C M 1D x m 4 6.已知 x , y 满足方程组,则无论m 取何值, x , y y 5 mA . x+y=1B . x+y= — 1C . x+y=9D . x+y=9ax .a=1, C M 1 恒有关系式是() C、解答题x 3m 11、若,是方程组4x 3y 10的一组解,求m的值y 2m 22X_3Xy_的值.2.已知y=3xy+x,求代数式x 2xy y3、已知等式(2A —7B)x+(3A —8B)=8x+10,对一切实数x都成立,求A、B的值。

《第八章_二元一次方程组》基础训练.(1、2节)doc

《第八章_二元一次方程组》基础训练.(1、2节)doc

8.1二元一次方程组(基础)1.下列方程是二元一次方程的是( )A.x-1y=2 B.x+2y=0 C.x2-x=5 D.3x-1=02.已知方程x m-3+y2-n=6是二元一次方程,则m-n=______.3.下列方程组是二元一次方程组的是( )A.x2y1y3z⎧=+⎨=-⎩B.xy12x y7⎧=⎨+=⎩C.x3y4⎧=⎨=⎩D.112x y3x2y4⎧+=⎪⎨⎪-=⎩4.二元一次方程x-2y=l有无数组解,下列四组值是该方程的解的是( )A.x01y2⎧=⎪⎨=⎪⎩B.x1y1⎧=⎨=⎩C.x1y1⎧=⎨=-⎩D.x1y0⎧=⎨=⎩5.已知x1y2⎧=⎨=⎩是二元一次方程2x+ay=4的一组解,则a的值为( )A.2 B.-2 C.1 D.-16.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m长的彩绳,用来做手工编织,在不造成浪费的前提下,不同的截法有( )A.1种B.2种C.3种D.4种7.已知二元一次方程组5x4y5①3x2y9②⎧+=⎨+=⎩下列说法正确的是( )A.同时适合方程①和方程②的的值是方程组的解B.适合方程①的x,y的值是方程组的解C.适合方程②的x,y的值是方程组的解D.适合方程①或方程②的x,y的值是方程组的解8.解为x1y2⎧=⎨=⎩的方程组是( )A.x y13x y5⎧-=⎨+=⎩B.x y13x y5⎧-=-⎨+=-⎩C.x y33x y1⎧-=⎨-=⎩D.x2y33x y5⎧-=-⎨+=⎩9.用16元买了60分、80分两种邮票共22枚,则60分与80分的邮票分别买了( )A.6枚,16枚B.7枚,15枚C.8枚,14枚D.9枚,13枚10.若关于x,y的方程组3x y mx my n⎧-=⎨+=⎩的解是x1y1⎧=⎨=⎩,求|m-n|的值.代入消元法(基础)1.用代入法解方程组4x3y17①5x y7②⎧-=⎨+=⎩,使得代入后化简比较容易的变形是( )A.由①,得x=173y4+B.由①,得y=174y3--C.由②,得y=7-5xD.由②,得x=7y5-2.用代入法解方程组2x3y2①4x9y1②⎧+=⎨-=-⎩时,变形正确的是( )A.先将①变形为x=3y-22,再代入② B.先将①变形为y=22x3-,再代入②C.先将②变形为x=94y-1,再代入① D.先将②变形为y=9(4x+1),再代入①3.用代入法解方程组2x y53x2y8⎧-=⎨-=⎩时,消去y后得到的方程是( )A.3x-4x—10=0B.3x-4x+5=8C.3x-2(5-2x)=8D.3x-2(2x-5)=84.用代入法解方程组7x2y3①x2y12②⎧-=⎨-=-⎩有以下步骤:(1)由①,得y=7x32-③; (2)将③代入①,得7x-2×7x32-=3;(3)整理,得3=3; (4)所以x可取一切实数,原方程组有无数组解.以上解法,造成错误的一步是( ) A.(1) B.(2) C.(3) D.(4)5.方程组y2x3x y15⎧=⎨+=⎩的解是______. 6.已知a:b=3:1,且a+b=8,则a-b=______.7.(1)2x y2①y x4②⎧+=⎨=-⎩(2)2x y1①5x3y8②⎧-=⎨-=⎩(3)x y=3①5x3(x y)1②⎧+⎨-+=⎩8.某文具店练习本和水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.则练习本和水笔的单价分别为( )A.0.8元、2.2元B.0.6元、2.4元C.2.2元、0.8元D.2.4元、0.6元9.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.代入消元法(能力)1.已知x,y满足方程组x m4y5m⎧+=⎨-=⎩,则无论m取何值,x,y恒有的关系式是( )A.x+y=1B.x+y=-1C.x+y=9D.x-y=-92.已知x2y1⎧=⎨=⎩是二元一次方程组mx ny8nx my1⎧+=⎨-=⎩的解,则2m-n的平方根为______.3.若-2a m b4与5a n+2b2m+n可以合并成一项,则mn的值是______.4.3(y2)x12(x1)5y8⎧-=+⎨-=-⎩(2)4(x y1)3(1y)2x y223⎧--=--⎪⎨+=⎪⎩5.某市对八年级综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学的测试成绩和平时成绩各为多少分?(2)某同学测试成绩为70分,他的综合评价得分可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少为多少分?加减消元法(基础)1.对于方程组4x7y194x5y17⎧+=-⎨-=⎩,用加减法消去x得到的方程是( )A.2y=-2B.2y=-36C.12y=-2D.12y=-362.用加减法解方程组3x2y2x y5⎧-=⎨+=⎩,下列变形正确的是( )A.3x2y2x2y5⎧-=⎨+=⎩B.3x2y23x y5⎧-=⎨+=⎩C.3x2y23x3y15⎧-=⎨+=⎩D.3x2y22x2y5⎧-=⎨+=⎩3.利用加减法解方程组2x5y10①5x-3y6②⎧+=-⎨=⎩,下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×24.用加减法解方程组2x y8①x y1②⎧+=⎨-=⎩,其解题步骤如下:(1)①+②得3x=9,解得x=3;(2)①-②×2得3y=6,解得y=2. 所以原方程组的解为x3y2⎧=⎨=⎩.则下列说法正确的是( )A.步骤(1)(2)都不对B.步骤(1)(2)都对C.本题不适宜用加减法解D.加减法不能用两次5.x y52x y4⎧+=⎨-=⎩的解为______. 6.5x2y13x4y3⎧+=⎨+=⎩.则x-y的值是______.7.(1)x2y53x y1⎧+=⎨-=⎩; (2)9x2y153x4y10⎧+=⎨+=⎩; (3)3(x1)y55(y1)3(x5)⎧-=+⎨+=-⎩.8.有一个两位数,它的十位数字比个位数字大2,且十位数字与个位数字之和为12,则这个两位数为( )A.46B.64C.57D.759.某少年宫管弦乐队共有46人,其中管乐队人数少于23,弦乐队人数不足45.现准备购买演出服装,下面是某服装厂给出的演出服装的价格.如果管乐队、弦乐队分别单独购买服装,一共需付2500元.(1)管乐队、弦乐队各有多少人?(2)如果管乐队、弦乐队联合起来购买服装,那么比两队各自购买服装共可以节省多少钱?解二元一次方程组(基础)1.用适当的方法解下列方程组:(1)x2y81y x14⎧-=⎪⎨=+⎪⎩(2)x4y23x2y8⎧+=-⎨-=⎩(3)5(y1)3(x5)3(x1)4(y4)⎧-=+⎨-=-⎩(4)3x2y10x y1123⎧+=⎪⎨+=+⎪⎩(5)2(x y)x y134125y x3⎧-+-=-⎪⎨⎪-=⎩(6)3(x y)2(x y)10x y x y7422⎧++-=⎪⎨+-+=⎪⎩2.某次考试结束后,班主任老师和小强进行了对话:老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分. 请问:小强这次考试的英语、数学成绩各是多少?参考答案1.C2.B先将①移项,得3y=2-2x,再两边同除以3,得y=22x3-.故选B.3.D【解析】2x y5①3x2y8②⎧-=⎨-=⎩,由①,得y=2x-5③,将③代入②,得3x-2(2x-5)=8.故选D.4.B【解析】造成错误的一步是(2).因为③是由①得到,所以应该将③代入②而不是①.故选B.5.x3y6⎧=⎨=⎩【解析】y2x①3x y15②⎧=⎨==⎩把①代入②,得3x+2x=15,解得x=3.把x=3代入①,得y=6.所以这个方程组的解为x3 y6⎧=⎨=⎩.6.4【解析】∵a:b=3:1,且a+b=8,∴a3b①a b8②⎧=⎨+=⎩,把①代入②,得3b+b=8,解得b=2.把b=2代入①,得a=6.a-b=6-2=4.7.【解析】(1)把②代入①,得2x+x-4=2,解这个方程,得x=2.把x=2代入②,得y=-2.所以这个方程组的解为x2y2⎧=⎨=-⎩.(2)由①,得y=2x-1③把③代入②,得5x-3(2x-1)=8,解这个方程,得x=-5.把x=-5代入③,得y=-11,所以这个方程组的解为x5y11⎧=-⎨=-⎩.(3)把①代入②,得5x-3×3=1,解这个方程,得x=2.把x=2代入①,得y=1.所以这个方程组的解是x2 y1⎧=⎨=⎩.8.B【解析】设练习本和水笔的单价分别为x元、y元,根据题意,得x y3①20x10y36②⎧+=⎨+=⎩,由①,得y=3-x③,把③代入②,得20x+10(3-x)=36,解得x=0.6.把x=0.6代入③,得y=2.4.所以练习本和水笔的单价分别为0.6元、2.4元.故选B.9.【解析】设隧道累计长度为xkm,桥梁累计长度为ykm,根据题意,得x y342①2x y36②⎧+=⎨=+⎩由①,得y=342-x③把③代入②,得2x=342-x+36,解得x=126.把x=126代入③,得y=342-126=216.所以这个方程组的解为x126 y216⎧=⎨=⎩.答:隧道累计长度为126km,桥梁累计长度为216km.代入消元法(过能力)参考答案1.C【解析】将m=y-5代入x+m=4,得x+y-5=4,所以x+y=9.故选C.2.±2【解析】将x2y1⎧=⎨=⎩代入mx ny8nx my1⎧+=⎨-=⎩,得2m n8①2n m1②⎧+=⎨-=⎩,由②,得m=2n-1,将m=2n-1代入①,得2(2n-1)+n=8,解得n=2.再将n=2代入m=2n-1,得m=3.所以2m-n=6-2=4,所以2m-n的平方根为±2. 3.0【解析】因为-2a m b4与5a n+2b2m+n可以合并成一项,所以n2m2m n4⎧+=⎨+=⎩,解得m2n0⎧=⎨=⎩,所以mn=0.4.11【解析】根据题意,得a4b52a b3⎧+=⎨+=⎩,解得a1b1⎧=⎨=⎩,∴x※y=x+y2,∴2※3=2+32=11.名师点睛:本题是新定义题,解题的关键是把陌生的问题转化为方程组问题.5.【解析】(1)整理得3y x7①2x5y6②⎧-=⎨-=-⎩所以这个方程组的解为x17y8⎧=⎨=⎩.(2)整理,得4x-y5①3x2y12②⎧=⎨+=⎩所以这个方程组的解为x2y3⎧=⎨=⎩.(1)设孔明同学的测试成绩为x分,平时成绩为y分,依题意得x y18580%x20%y91⎧+=⎨+=⎩,解得x90y95⎧=⎨=⎩,所以孔明同学的测试成绩为90分,平时成绩为95分.(2)不可能.理由如下:80-70×80%=24,24÷20%=120>100,故该同学的综合评价得分不可能达到A等.(3)依题意,得(80-100×20%)÷80%=75(分).故他的测试成绩至少为75分.课时2 加减消元法(过基础)参考答案1.D【解析】4x7y19①4x5y17②⎧+=-⎨-=⎩,①-②得7y+5y=-19-17,所以12y=-36.故选D.2.C3.D4.B5.x3y2⎧=⎨=⎩,【解析】x y5①2x y4②⎧+=⎨-=⎩。

湘教版数学七年级下册_《二元一次方程组的应用》基础训练

湘教版数学七年级下册_《二元一次方程组的应用》基础训练

《二元一次方程组的应用》基础训练一、选择题1.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y 棵,根据题意列出的方程组正确的是()A.B.C.D.2.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?()A.144套B.9套C.6套D.15套3.购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.4.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.125.如果鸡和兔共15个头,46只脚,那么鸡有()只.A.6B.7C.8D.9二、填空题6.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货吨.7.根据图中所给信息,可知一只玩具猫的价格为元.8.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买1束鲜花和1个礼盒的总价为元.9.某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x名工人加工桌子,y名工人加工椅子,则列出的方程组为.10.某小学捐给一所山区小学一些图书,如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册,若设这所山区小学有学生x人,图书有y册,则根据题意列方程组,得《二元一次方程组的应用》基础训练参考答案与试题解析一、选择题1.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y 棵,根据题意列出的方程组正确的是()A.B.C.D.【分析】设购买甲种花木x棵、乙种花木y棵,根据总价=单价×数量结合购买两种树苗共200棵,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设购买甲种花木x棵、乙种花木y棵,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?()A.144套B.9套C.6套D.15套【分析】设用制盒身的铁皮为x张,用制盒底的铁皮为y张,根据铁皮共15张且制作的盒底的数量为盒身数量的2倍,即可得出关于x,y的二元一次方程组,解之即可得出x的值,再将其代入16x中即可求出结论.【解答】解:设用制盒身的铁皮为x张,用制盒底的铁皮为y张,根据题意得:,解得:,∴16x=16×9=144.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.【分析】设有x人,物品价格是y元,根据“每人出8元,还余3元,每人出7元,还差4元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有x人,物品价格是y元,根据题意得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.12【分析】设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据总价=单价×数量结合30个球的总价值为440元,即可得出关于x、y的二元一次方程,再由x、y均为正整数,即可求出结论.【解答】解:设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据题意得:30x+60y+10(30﹣x﹣y)=440,∴x=7﹣y.∵x、y为正整数,∴y=2,x=2.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5.如果鸡和兔共15个头,46只脚,那么鸡有()只.A.6B.7C.8D.9【分析】设鸡有x只,兔有y只,根据“鸡和兔共15个头,46只脚”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设鸡有x只,兔有y只,根据题意得:,解得:.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题6.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货 6.5吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据“2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入x+y中即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,解得:,∴x+y=4+2.5=6.5.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.根据图中所给信息,可知一只玩具猫的价格为10元.【分析】设一只玩具猫的价格为x元,一只玩具狗的价格为y元,根据总价=单价×数量结合图中的信息,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设一只玩具猫的价格为x元,一只玩具狗的价格为y元,根据题意得:,解得:.故答案为:10.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买1束鲜花和1个礼盒的总价为88元.【分析】设一束鲜花的价格为x元,一个礼盒的价格为y元,观察图中两种购买方案,可得出关于x、y的二元一次方程组,用(①+②)÷3即可求出结论.【解答】解:设一束鲜花的价格为x元,一个礼盒的价格为y元,根据题意得:,(①+②)÷3,得:x+y=88.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x名工人加工桌子,y名工人加工椅子,则列出的方程组为.【分析】设安排x名工人加工桌子,y名工人加工椅子,根据共有22名工人及每名工人每天可加工3张桌子或10把椅子且1张桌子与4把椅子配成一套,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设安排x名工人加工桌子,y名工人加工椅子,根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.某小学捐给一所山区小学一些图书,如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册,若设这所山区小学有学生x人,图书有y册,则根据题意列方程组,得【分析】设这所山区小学有学生x人,图书有y册,根据“如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设这所山区小学有学生x人,图书有y册,根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.。

《解二元一次方程组》基础训练1(含答案)

《解二元一次方程组》基础训练1(含答案)

《解二元一次方程组》基础训练(1)【知识盘点】1.用代入法解二元一次方程组的一般步骤是:(1)将方程组中的一个方程______,使得一个未知数能用含有另一个未知数的代数式表示;(2)用这个代数式代替_______中相应的未知数,得到一个________,求得一个未知数的值;(3)把这个未知数的值代入________,求得另一个未知数的值;(4)写出______________.2.把方程3x -2y=1变形: (1)用含x 的代数式表示y ,得y=_______.(2)用含y 的代数式表示x ,得x=_______.3.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程_________(不要化简).4.•用代入法解方程组3212x y x y +=⎧⎨-=⎩应先将方程_______•变形为______,•然后再代入方程______,可得方程.5.若方程组53x y x y +=⎧⎨-=⎩的解也是方程10x-my=7的解,则m=_______.【基础过关】6.用代入法解方程组52231x y x y -=⎧⎨-=⎩时,下列代入正确的是( )A .2x-3x=1B ..2x-3(5x-2)=1 D .2x-15x-6=17.已知方程组23421x y y x -=⎧⎨=-⎩,把②代入①,正确的是( ) A .4y-2-3y=4 B .2x-6x-1=4 D .2x-6x+3=48.用代入法解方程组34225x y x y +=⎧⎨-=⎩ ) A .由①得x=243y - B .由①得y=234x - C .由②得x=52y + D .由②得y=2x-5 9.方程组1325x y x y -=⎧⎨-=⎩的解是( ) A .3510...2 1.80215x x x x B C D y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩10.已知方程ax+by=10的两个解为1105x xy y=-=⎧⎧⎨⎨==⎩⎩与,则a、b的值为()A.10101010...4410a a a aB C Db b b b==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩【应用拓展】11.用代入法解下列二元一次方程组(1)242231(2)(3)13211498 x y y x s tx y x y s t+==-+=-⎧⎧⎧⎨⎨⎨-=+=-=⎩⎩⎩12.如果2151x xy y==⎧⎧⎨⎨=-=-⎩⎩和是方程mx+ny=15的两个解,求m,n的值.13.已知│4x+3y-5│+│x-2y-4│=0,求x,y的值.【综合提高】14.请用整体代入法解方程组:22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩15.已知方程组31242x y x ay +=⎧⎨+=⎩有正整数解(a 为整数),求a 的值.答案:1.略 2.(1)y=6x -12(2)x=6y+3 3.y=2(3y-5)+3 4.② x=y+2 ① 3(y+2)+2y=15.33 6.C 7.D 8.D 9.A 10.B11.(1)1232(2)(3)2113s x x y y t ⎧=⎪==⎧⎧⎪⎨⎨⎨==⎩⎩⎪=-⎪⎩12.52413.14.2012n x x m y y ===⎧⎧⎧⎨⎨⎨==-=⎩⎩⎩ 15.a=-1。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;□x +5y =13 ①4x -□y =-2 ② 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

《二元一次方程组》基础测试题+能力测试题及参考答案(精编)

《二元一次方程组》基础测试题+能力测试题及参考答案(精编)

《二元一次方程》基础测试题一、选择题1.方程2x+y =0,3x-xy =1,2x+y ﹣x =7,x −1y =0二元一次方程的个数是( ) A .1个 B .2个 C .3个 D .4个2.把方程2x-y=3改写成用含x 的式子表示y 的形式( )A .y=2x-3B .y=2x+3C .1322x y =+D .132x y =+ 3.若{x =5y =2是关于x 和y 的二元一次方程2x ﹣by =6的解,则b 的值是( ) A . 2 B .﹣2 C . 4 D .﹣44.关于二元一次方程组{y =x +1x −2y =7,消去y 可得( ) A .x-x ﹣1=7 B .x-2x ﹣1=7 C .x-2x ﹣2=7 D .x+2x-2=75.已知二元一次方程组{2x −y =7x −2y =−3,则x+y 的值为( ) A .﹣4 B .4 C .﹣5 D .56.若方程x+y =2,x ﹣2y =8和kx-y =6有公共解,则k 的值是( )A .1B .﹣1C .2D .﹣27.现在小强的年龄是小玲的2倍,2年前小强的年龄是小玲的3倍,今年小强和小玲的年龄是多少岁?设小强今年x 岁,小玲今年y 岁,可列方程组( )A .{x +2=3(y +2)x =2yB .{x −2=3(y −2)x =2yC .{x +2=2(y +2)x =3yD .{x −2=3(y −2)x =3y8.若|4x+2y ﹣1|+√x −y +2=0,则x+y 的值为( )A .4B .2C .1D .09.一个两位数数位上的数字之和是8,将它的十位数字和个位数字交换后,得到新的两位数,若新两位数比原两位数小18,则原两位数为( )A .26B .53C .35D .6210.已知关于x 、y 的二元一次方程组的解3+2=+22+3=x y k x y k ⎧⎨⎩满足x+y=2,则k 的值为( ) A .0 B .1 C .2 D .411.已知方程组213616x y z x y z -+=-⎧⎨+-=⎩,则x+y 的值为( ) A .3 B .4 C .5 D .612.今有牛五、羊二,值金十两.牛二、羊五,值金八两,牛、羊各值金几何?题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?解:设一头牛值金x 两,一只羊值金y 两,则列方程组( )A .{5y −2x =102y −5x =8B .{5y −2x =82y −5x =10C .{5y +2x =102y +5x =8D .{5y +2x =82y +5x =10二、填空题13.方程ax+(a +1)y =3a -1是关于x 、y 的二元一次方程,则a 的范围是_______。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道二元一次方程组练题100道(卷一)1、判断1、方程组xy526的解是()。

解:这不是一个完整的方程组,缺少另一个方程,无法判断解。

2、方程组1是方程组yx3 2的解是方程3x-2y=13的一个解()。

解:将方程组代入3x-2y=13中,得到3x-2(-x/3-1/2)=13,化简得到x=5,y=-4,代入方程组可验证是解,因此选(√)。

3、由两个二元一次方程组成方程组一定是二元一次方程组()。

解:不一定,例如x+y=1和2x+2y=2就不是二元一次方程组。

4、方程组x3y 573x2y12235 3可以转化为方程组解:将第一个方程移项得到x+3y=2,代入第二个方程中消去x得到-7y=-18,解得y=18/7,代入第一个方程得到x=-41/7,因此可以转化为方程组5x-6y=-27和2y-3x+4=2,选(√)。

5、若(a-1)x+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()。

解:将XXX提取出来得到(a-1)(x+y)+(2a-3)y=0,因此x+y=-2a+3y/y-2,这是一个关于a的一次函数,当a=±1时,x+y=±1,此时方程组化为x+y=±1和-2x-2y=0,是二元一次方程组,因此选(√)。

6、若x+y=0,且|x|=2,则y的值为2()。

解:由x+y=0得到y=-x,代入|x|=2中得到|x|=|x+y|=|-x+y|=2,解得x=±1,因此y=±1,不等于2,选(×)。

7、方程组mx my m3x4x10y8有唯一的解,那么m的值为m≠-5()。

解:将第一个方程移项得到(m+3)x+my=m,代入第二个方程中消去x得到(3m+2)y=8-m,因为有唯一解,所以3m+2≠0,即m≠-2/3,代入方程组中验证,当m≠-5时,有唯一解,因此选(√)。

8、方程组1x y 233有无数多个解()。

二元一次方程组计算题

二元一次方程组计算题

二元一次方程组计算题一、基础计算题1. 解方程组:x + y = 5 2x - y = 1解析:- 对于这个方程组,我们可以采用加减消元法。

- 将方程x + y = 5和2x - y = 1相加,这样可以消去y。

- 即(x + y)+(2x - y)=5 + 1,展开括号得到x+y+2x - y=6,合并同类项得3x=6,解得x = 2。

- 把x = 2代入x + y = 5中,得到2+y=5,解得y = 3。

- 所以方程组的解为x = 2 y = 32. 解方程组:2x+3y = 8 3x - 2y=-1解析:- 这里我们采用消元法,先给第一个方程乘以2,第二个方程乘以3。

- 第一个方程变为4x + 6y=16,第二个方程变为9x-6y=- 3。

- 然后将这两个新方程相加,即(4x + 6y)+(9x-6y)=16+(-3),得到13x = 13,解得x = 1。

- 把x = 1代入2x+3y = 8中,得到2 + 3y=8,3y=6,解得y = 2。

- 所以方程组的解为x = 1 y = 2二、含有参数的二元一次方程组1. 若关于x、y的方程组mx+ny = 6 nx+my = - 3的解是x = 1 y = 2,求m和n的值。

解析:- 把x = 1 y = 2代入方程组mx+ny = 6 nx+my=-3中,得到:- m + 2n=6 n+2m=-3- 由第一个方程m+2n = 6可得m=6 - 2n。

- 将m = 6 - 2n代入第二个方程n + 2m=-3中,得到n+2(6 - 2n)=-3。

- 展开括号得n + 12-4n=-3,移项合并同类项得- 3n=-15,解得n = 5。

- 把n = 5代入m = 6 - 2n,得到m=6-2×5=-4。

- 所以m=-4,n = 5。

2. 已知方程组3x - y = 5 4ax+5by=-22与方程组2x+3y=-4 ax - by = 8有相同的解,求a、b的值。

人教版七年级数学下册《二元一次方程组》基础练习(含答案)

人教版七年级数学下册《二元一次方程组》基础练习(含答案)

人教版七年级数学下册《二元一次方程组》基础练习(含答案)1、填空题1、当x=0时,y=-4;当x=1时,y=1;当x=2时,y=6;当x=3时,y=11.2、用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。

3、当k=2时,方程为一元一次方程;当k=-1时,方程为二元一次方程。

4、当x=0时,y=6;当y=0时,x=11/2.5、方程2x+y=5的正整数解是x=2,y=1.6、由于平方和不可能为负数,所以|2y+1|=0,解得y=-1/2,代入x+2=0,解得x=-2.7、解得a=5,b=-1.8、解得a=5/2,b=2/5,代入a-2b的式子,解得a-2b=21/5.2、选择题1、B。

只有第一和第二个方程是二元一次方程。

2、B。

解得x=1,y=3和x=3,y=1,共有两个正整数解。

3、D。

解得此方程组的解为x=2/5t+2/5,y=1/5t+2/5,代入选项D中的方程,两边化简后可得到恒等式。

4、B。

将5x2ym和4xn m1y2n2分别表示为x2y和xy2的形式,得到2m+n=3,即m2n=1.5、C。

当k=2或k=-2时,二次项系数为0,此方程为二元一次方程。

6、A。

解得此方程组的解为x=2,y=-1,符合选项A。

7、A。

将y表示为x的代数式,代入方程中,化简后可得到选项A。

8、B。

将x=3-k和y=k+2代入x+y或x-y中,可得到选项B。

3、某班同学去北山郊游,分为甲组和乙组。

由于只有一辆汽车,甲组先乘车,到达A处后下车步行,汽车返回接乙组,最终两组同时到达北山站。

已知汽车速度为60千米/时,步行速度为4千米/时,请问A点距北山站的距离是多少?4、某校体操队和篮球队的人数比为5:6,排球队的人数比体操队的人数少2倍5人,篮球队的人数与体操队的人数的3倍之和等于42人。

请问三支队伍各有多少人?5、甲乙两地相距60千米,A、B两人骑自行车从甲乙两地相向而行。

已知A比B先出发半小时,B的速度比A每小时多2千米,他们相遇时行程相等。

《二元一次方程》基础训练(含答案)

《二元一次方程》基础训练(含答案)

《二元一次方程》基础训练一、填空题(每空2分,共26分): 1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________; 当y =-2时,x =___ ____.2.在:(1)⎩⎨⎧-==23y x 、(2)453x y =⎧⎪⎨=-⎪⎩、(3)1472x y ⎧=⎪⎪⎨⎪=-⎪⎩这三组数值中,_________是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组3924x y x y -=⎧⎨+=⎩的解.3.已知⎩⎨⎧=-=54y x 是方程41x +2 my +7=0的解,则m =_______.4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_. 5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________. 二、选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩, 其中属于二元一次方程组的个数为( )(A )1 (B )2 (C )3 (D )4 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b是同类项,则b a 的值为( )(A )2 (B )-2 (C )1 (D )-111.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为( ) (A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m 12.三元一次方程组156x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是( )(A )105x y z =⎧⎪=⎨⎪=⎩ (B )124x y z =⎧⎪=⎨⎪=⎩ (C )104x y z =⎧⎪=⎨⎪=⎩ (D )410x y z =⎧⎪=⎨⎪=⎩13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为( )(A )-4 (B )4 (C )2 (D )1 14.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23 15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是( )(A )2,1 (B )32,35 (C )-2,1 (D )31,-32 16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( ) (A )7483x y x y +=⎧⎨-=⎩ (B )7483y x y x =+⎧⎨+=⎩ (C )7483y x y x =-⎧⎨=+⎩ (D )7483y x y x =+⎧⎨=+⎩三、解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 18.230.5344575615x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x yx 20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x四、解答题(每小题6分,共18分)22.已知方程组⎩⎨⎧+=+=+25332n y x n y x 的解x 、y 的和为12,求n 的值.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.24.已知代数式x2+ax+b当x=1和x=-3时的值分别为0和14,求当x=3时代数式的值.五、列方程组解应用问题(每1小题10分,共20分)25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.26.A、B两地相距20千米,甲、乙两人分别从A、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A地,乙继续前进,当甲回到A地时,乙离A地还有2千米,求甲、乙两人的速度.参考答案1.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32. 2.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1). 【点评】方程组的解一定是方程组中各个方程共同的解. 3.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53.4.【提示】将⎩⎨⎧-=-=12y x 代入713ax by ax by +=⎧⎨-=⎩中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组.【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法. 6.【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法. 7.【提示】先解方程组2227x y x y +=⎧⎨+=⎩,将求得的x 、y 的值代入方程mx -y =0,或解方程组22270x y x y mx y +=⎧⎪+=⎨⎪-=⎩.【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据. 8.【提示】将各数位上的数乘相应的位数,再求和. 【答案】100 x +10 y +2(x -y ).9.【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1, 故(2)、(3)都不是二元一次方程组.【答案】B . 10.【提示】由同类项定义,得⎩⎨⎧-==+b a a b 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C . 11.【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D .12.【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍.13.【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C . 14.【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B . 15.【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .17.【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x 18.【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x19.【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x 20.【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解.【答案】⎩⎨⎧-=+=.b a y b a x【点评】迭加消元,是未知数系轮换方程组的常用解法. 21.【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】357x y z =⎧⎪=⎨⎪=⎩.【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径. 22.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12.【答案】n =14. 23.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b . 【答案】⎩⎨⎧=-=52b a . 【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组. 24.【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤.25.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x【答案】x =280,y =200.26.【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中考试常考必考题 二元一次方程组
一.选择题
1、下列各方程哪个是二元一次方程( )
A 、8x -y =y
B 、xy =3
C 、2x2-y =9
D 、21
=-y x
2、下列各方程组中,属于二元一次方程组的是( )
A 、 ⎩⎨⎧==+5723xy y x
B 、 ⎩⎨⎧=+=+212z x y x
C 、 ⎪⎩⎪⎨⎧=+=-24312
3y x y x
D 、 ⎪⎩⎪⎨⎧=+=+322
1
35y x y x
3.已知二元一次方程3x -y =1,当x =2时,y 等于( )
A .5
B .-3
C .-7
D .7
4.若是关于x 、y 的二元一次方程ax ﹣3y=1的解,则a 的值为( )
5. 方程39x y +=在正整数范围内的解的个数是( )A .1个 B .2个 C .3个
D .有无数个 6、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )
A 、1
B 、-1
C 、-3
D 、以上答案都不对
7. 方程组327
413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .
3
1
x y =-⎧⎨=-⎩ D
.13x y =-⎧⎨=-⎩ 8、若⎩⎨⎧-==12
y
x 是二元一次方程组的解,则这个方程组是( )
A 、⎩⎨⎧=+=-5253y x y x
B 、⎩⎨⎧=--=523x y x y
C 、
⎩⎨⎧=+=-152y x y x D 、
⎩⎨⎧+==
1
32y x y x
9、在方程2(x+y)-3(y -x)=3中,用含x 的一次式表示y ,则( )
A 、 y=5x -3
B 、y=-x -3
C 、 y=22
3-x D 、 y=-5x -3
10.关于x 、y 的方程组⎩⎨⎧-=+=+31
by x y ax 的解为⎩⎨⎧=-=2
1y x ,则b a +的值是( )
A .-2
B .-1
C .0
D .1
二.填空题
1、请你写出一个二元一次方程组,使它的解为⎩⎨⎧=
=21
y x ,这个方程组是_________。

2、在x+3y=3中,若用x 表示y ,则y= , 用y 表示x ,则x=
3、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

4、方程2x+y=5的正整数解是 。

5、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = .
6、在方程3x -ay =8中,如果⎩⎨⎧==13
y x 是它的一个解,那么a 的值为 .
⎩ 三、用下列方程组
1、(代入法解方程)
(1)⎩⎨⎧=+=-24352y x y x (2)⎩⎨⎧=-=+52,
74n m n m
⎧x -y = 1+ 3m ,
2、关于 x ,y 的方程组⎨x +3y = 1+ m . ,当 y =2 时,求 m 的值;
3. 在三角形ABC 中,设∠A=x o , ∠B=y o ,且x ,y 满足方程组⎩⎨⎧-=--=+4932
12131086
292n y x n y x
(n 是整数),则三角形ABC 是锐角三角形吗?请说明理由.
4.当a ,b 都是实数,且满足26a b -=,就称点P (1,
1)2
b a -+为完美点. (1)判断点A (2,3)是否为完美点. (2)已知关于x ,y 的方程组42x y x y m
+=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (,)x y 是完美点,请说明理
由.
5.已知,都是关于x ,y 的二元一次方程y=x +b 的解,且m ﹣n=b 2+2b ﹣4,求b 的值.
课堂检测
一.填空
1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、23+的相反数是 ,23-的绝对值是 。

4.命题“两直线平行,内错角相等”的题设_________,结论____________. 5.如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________. 6.点P (5,3)到x 轴的距离是 。

7.已知点B (3,a+3)在第四象限,则a 的取值范围是 。

9.a 、b 、c 是直线,且a ∥b , b ∥c , 则a __ _c ;
a 、
b 、
c 是直线,且a ⊥b , b ⊥c , 则a __ _c .
10、把一张长方形纸条按图7中,那样折叠后,若得到
∠AOB ′= 70º,则∠B ′OG = 。

11.若方程组⎩⎨⎧=+=+5231
y x y x 的解也是3x+ay=10的一个解,则a= .
12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
13.若054=-++-y x x ,则xy 的值是 .
14.把下列各数分别填入相应的集合里:
2,3.0,10,1010010001.0,125,722
,0,1223π
---•-Λ
有理数集合:{ };
无理数集合:{ };
负实数集合:{ };
二.计算:
1.(1)2551--- (2))35(52-- (3)3274
1
36++-
(4)42283+--- (5)2(1)9x -= (6)2622x y x y -=⎧⎨+=-⎩ ①

第(5)题
A。

相关文档
最新文档