湘教版-数学-八年级上册-1.1 第2课时 分式的基本性质2 教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的基本性质 学习目标
1.掌握分式的基本性质,并会运用分式的基本性质把分式变形;(重点,难点)
2.理解最简分式的概念,会根据分式的基本性质把分式约分,化为最简分式;(重点)
3.通过与分数的类比学习,掌握这一基本而常用的数学思想方法.
教学过程
一、情境导入
1.我们学过下列分数:21,42,63
,它们是否相等?为什么?
2.请叙述分数的基本性质.
3.类比分数的基本性质,你能猜想分式的基本性质吗?
二、合作探究
探究点一 分式的基本性质
【类型一】分式基本性质的应用
例1 填空:(1)
y
ax
xy2
3
)
(
3
=
;(2)
)
(
)
(2
2
2y
x
y
x
y
x+
=
-
-
.
解析:(1)小题中,分母由xy变为3ax2y,只需乘以3ax,根据分式的基本性质,分子也应乘以3ax,所以括号中应填9ax.(2)小题中,分子由x2-y2变为x+y,只需除以x-y,根据分式的基本性质,分母也应除以x-y,所以括号中应填x-y.
方法总结:利用分式的基本性质求未知的分子或分母时,若求分子,则看分母发生了何种变化,这时分子也应发生相应的变化;若求分母,则看分子发生了何种变化,这时分母也应发生相应的变化.
变式训练
【类型二】分式的符号法则
例2 下列各式从左到右的变形不正确的是()
A.
y
y3
2
3
2
-
=
-
B.x
y
x
y
6
6
=
-
-
C.
y
x
y
x
3
8
3
8
-
=
-
-
D.
y
x
a
b
x
y
b
a
-
-
=
-
-
-
解析:选项A中,同时改变分式的分子及分式本身的符号,其值不变,正确;选项B中,同时改变分式的分子、分母的符号,其值不变,正确;选项C中,同时改变分式的分母及分式本身的符号,其值不变,正确;选项D中,分式的分子、分母及分式本身的符号,同时改变三个,其值变化,错误.故选D.
方法总结:根据分式的符号法则,分式的分子、分母、分式本身的符号,同时改变其中的两个,分式的值不变。
探究点二分式的约分
【类型一】运用约分,化简分式
例3 约分:
(1)
5
3
2
32
8
xyz
yz
x
-
;(2)2
2
2
2b
ab
a
ab
a
+
+
+
.
解析:约分的关键是确定分式中分子、分母的公因式,(1)中分子与分母的公因式是8xyz3 ,(2)小题先因式分解,分子与分母的公因式是(a+b).
解:(1)原式=
)
8
(
4
8
3
2
3
xyz
z
xyz
x
-
⋅
⋅
=2
4z
x
-
;
(2)原式=
2
)
(
)
(
b
a
b
a
a
+
+
=b
a
a
+.
方法总结:①约分的依据是分式的基本性质,关键是找出分子与分母的公因式.②约分时必须将分子、分母先写成乘积的形式,再进行约分,不能只对分子、分母中的某一项或某一部分进行约分.③约分一定要彻底,约分的结果应是最简分式或整式.
变式训练
【类型二】 运用约分,化简求值
例4 先约分,再求值:222442b ab a ab
a +--,其中a=-1,b=2.
解:原式=
b a a b a b a a -=--2)2()2(2. 当a=-1,b=2时,412)1(212=
--⨯-=-b a a .
方法总结:利用分式的基本性质约分求值时,要先把分式化为最简分式再代值计算. 变式训练
探究点三 最简分式
例5 下列分式是最简分式的( )
A .b a a 232
B .a a a 32-
C .22b a b a ++
D .222b a ab a --
解析:选项A 中的分子分母能约去公因式a ,故选项A 不是最简分式;选项B 中的分子分母能约去公因式a ,故选项B 不是最简分式;选项C 中的分子分母没有公因式,选项C 是最简分式,故选C ;选项D 中的分子分母能约去公因式a-b ,故选项D 不是最简分式。
方法总结:判断最简分式的标准是分子与分母是否有公因式,如果有公因式就不是最简分式。 当分子分母是多项式时,一般要进行因式分解,以便判断是否能约分。
三、板书设计