广东省广州市第一一三中学2019-2020学年高一上学期12月月考数学试题 Word版含解析

合集下载

高要区第三中学校2019-2020学年上学期高二数学12月月考试题含解析

高要区第三中学校2019-2020学年上学期高二数学12月月考试题含解析

高要区第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,b =3c =,30B =,则等于( )A B . C 或 D .22. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x 3. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .34. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .315. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣36. i 是虚数单位,计算i+i 2+i 3=( ) A .﹣1B .1C .﹣iD .i7. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)8. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+19. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A.i≤21 B.i≤11 C.i≥21 D.i≥1110.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P(单位:毫克/升)与时间t(单位:小时)间的关系为0e ktP P-=(P,k均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要()小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.11.若方程C:x2+=1(a是常数)则下列结论正确的是()A.∀a∈R+,方程C表示椭圆B.∀a∈R﹣,方程C表示双曲线C.∃a∈R﹣,方程C表示椭圆D.∃a∈R,方程C表示抛物线12.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣1二、填空题13.给出下列命题:①把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣);②若α,β是第一象限角且α<β,则cosα>cosβ;③x=﹣是函数y=cos(2x+π)的一条对称轴;④函数y=4sin(2x+)与函数y=4cos(2x﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .14.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.15.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 .16.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .17.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)三、解答题19.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.20.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(单位:元),求X的分布列及数学期望.22.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)23.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.24.设0<||≤2,函数f(x)=cos2x﹣||sinx﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.高要区第三中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】考点:余弦定理.2.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.3.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.4.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.5.【答案】B【解析】解:∵=(2+3)(k﹣4)=2k+(3k﹣8)﹣12=0,又∵=0.∴2k﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.7.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.8.【答案】A【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,∴x∈(1,2),(x﹣2)∈(﹣1,0),f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,故选A.9.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.10.【答案】15【解析】11.【答案】B【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆∴∃a∈R+,使方程C不表示椭圆.故A项不正确;∵当a<0时,方程C:表示焦点在x轴上的双曲线∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确∵不论a取何值,方程C:中没有一次项∴∀a∈R,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B12.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.二、填空题13.【答案】【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos(2x+π)的一条对称轴,故③正确.对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,故答案为:①③④.14.【答案】15 (,)4315.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1 16.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4),∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.17.【答案】 .【解析】解:∵sin α+cos α=,<α<,∴sin 2α+2sin αcos α+cos 2α=,∴2sin αcos α=﹣1=,且sin α>cos α,∴sin α﹣cos α===.故答案为:.18.【答案】 3.3【解析】解:如图BC 为竿的高度,ED 为墙上的影子,BE 为地面上的影子. 设BC=x ,则根据题意=,AB=x ,在AE=AB ﹣BE=x ﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.三、解答题19.【答案】【解析】证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,于是,当1<x<3时,f(x)<…12′20.【答案】【解析】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x1<x2则f(x1)﹣f(x2)=﹣=因为函数y=2x在R上是增函数且x1<x2∴f(x1)﹣f(x2)=>0即f(x1)>f(x2)∴f(x)在(﹣∞,+∞)上为减函数(III)f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.21.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X22.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.23.【答案】【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以由f′(x)=3x2﹣6x>0得心x<0或x>2;所以当x∈(0,2)时,函数单调递减;当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立只需1﹣4c2<c﹣4恒成立,所以c<或c>1.故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.24.【答案】【解析】解:f(x)=cos2x﹣||sinx﹣||=﹣sin2x﹣||sinx+1﹣||=﹣(sinx+)2++1﹣||,∵0<||≤2,∴﹣1≤﹣<0,由二次函数可知当sinx=﹣时,f(x)取最大值+1﹣||=0,当sinx=1时,f(x)取最小值﹣||﹣||=﹣4,联立以上两式可得||=||=2,又∵与的夹角为45°,∴|+|===【点评】本题考查数量积与向量的夹角,涉及二次函数的最值和模长公式,属基础题.。

2019-2020学年上海市进才中学高一上学期12月月考数学试题(解析版)

2019-2020学年上海市进才中学高一上学期12月月考数学试题(解析版)

2019-2020学年上海市进才中学高一上学期12月月考数学试题一、单选题1.已知x y z >>,且0x y z ++=,下列不等式中成立的是( ) A .xy yz >B .xz yz >C .xy xz >D .||||x y z y >【答案】C【分析】根据x y z >>和0x y z ++=,有30x x y z >++=,30z x y z <++=,从而得到0x >,0z <.再不等式的基本性质,可得到结论. 【详解】解:x y z >>30x x y z ∴>++=,30z x y z <++=,0x ∴>,0z <.由0x y z>⎧⎨>⎩得:xy xz >. 故选:C .【点睛】本题主要考查不等式的放缩及不等式的基本性质的灵活运用,属于基础题. 2.设,a b ∈R ,则“a b >”是“a a b b ”成立的( )A .充要不必要条件B .必要不充分条件C .充要条件D .既不充要也不必要条件【答案】C【解析】试题分析:当0a b >≥时,22a b a b a a b b >⇔>⇔>,当,a b 一正一负时,0a b a b >⇔>>0a a b b ⇔>>,当0a b ≥>时,220a b a b a a b b a a b b ≥>⇔<⇔--⇔,所以a b a a b b >⇔>,故选C .【解析】充分必要条件.3.如图所示,OAB 是边长为2的等边三角形,直线x t =截这个三角形位于此直线左方的图形面积为y (见图中阴影部分),则函数()y f t =的大致图形为( )A .B .C .D .【答案】D【分析】根据题意,分01t ≤≤和12t <≤讨论三角形的面积,求得()y f t =的解析式,分析选项即可得答案.【详解】因为OAB 是边长为2的等边三角形,所以(3A , 当01t ≤≤时,()21332y f t t t ==⨯=, 当12t <≤时,()()))2113232323222y f t t t t ==⨯⨯--=- 故函数()y f t =的大致图形当01t ≤≤时,为开口向上的抛物线,当12t <≤时为开口向下的抛物线,故选项D 符合, 故选:D【点睛】本题的关键点是根据题意得出()y f t =的解析式,需要分01t ≤≤是直接利用三角形面积公式,12t <≤是用OAB 的面积减去三角形的面积可得阴影部分面积,根据解析式可选择正确的图象.4.已知ABC 的三边长分别为a 、b 、c ,有以下4个命题: (1为边长的三角形一定存在; (2)以2a 、2b 、2c 为边长的三角形一定存在;(3)以2a b +、2b c +、2c a+为边长的三角形一定存在;(4)以ab 、bc 、ca 为边长的三角形一定存在;其中正确命题的个数为( )A .1个B .2个C .3个D .4个【答案】B【分析】ABC 的三边长分别为a 、b 、c ,不妨设a b c ≥≥,则b c a +>,通过平方作差判断(1)正确,直接作差判断(2)(3),举反例判断(4),进而可得正确答案. 【详解】ABC 的三边长分别为a 、b 、c ,不妨设a b c ≥≥,则b c a +>, 对于(1):220b c a -=+-+>>1)正确;对于(2):()2222220b c a b c bc a +-=+-->不一定成立,因此以2a 、2b 、2c 为边长的三角形不一定存在;故(2)不正确; 对于(3):0222b c c a a b c ++++-=>,因此以2a b +、2b c +、2c a+为边长的三角形一定存在;故(3)正确;对于(4): 取5,4,2a b c ===,b c a +>,因此a 、b 、c ,能构成一个三角形的三边,而ac bc ab +<,因此以ab 、bc 、ca 为边长的三角形不一定存在,故(4)不正确,所以正确的命题有2个, 故选:B【点睛】关键点点睛:本题关键是设不妨设a b c ≥≥,则b c a +>,然后(1)中带根号,所以平方后作差满足两边之和大于第三边,对于(2)(3)直接作差,利用两个小编之和大于第三边,即可求解.二、填空题5.若函数()0,1,x D x x ⎧=⎨⎩为有理数为无理数,则()D D x ⎡⎤=⎣⎦______.【答案】0【分析】由函数关系式可知,当x 为有理数或无理数时,()D x 为有理数0或1,从而可得()D D x ⎡⎤⎣⎦的值【详解】解:因为()0,1,x D x x ⎧=⎨⎩为有理数为无理数,所以当x 为有理数时,()0D x =,当x 为无理数时,()1D x =, 所以 ()D D x ⎡⎤=⎣⎦0, 故答案为:06.设全集U =R ,集合{}22A x x x =+≥,则用区间表示集合UA 为______.【答案】()2,1-【分析】先解不等式求集合A ,再求补集即可.【详解】{}{}()(){}{22220|210|1A x x x x x x x x x x x =+≥=+-≥=+-≥=≥或}2x ≤-, 所以{}|21UA x x =-<<,用区间表示为()2,1-,故答案为:()2,1- 7.不等式2133xx -<的解集是______.【答案】()1,+∞【分析】令13x t =,所以2133x x -<等价于21t t <,即可求解.【详解】令13x t =,则2321xt-=, 所以2133x x -<等价于21t t <,所以31t >,解得:1t >,即131x t =>两边同时三次方的1x >, 故不等式的解集为:()1,+∞, 故答案为:()1,+∞8.函数()32xf x =的值域是______. 【答案】()1,+∞【分析】首先求3x t =的值域,再求函数()f x 的值域. 【详解】x ∈R ,30x t =>,所以3221xt =>,所以函数()32xf x =的值域是()1,+∞.故答案为:()1,+∞ 9.函数y =______.【答案】1【分析】先求函数的定义域,对y =y =,即可判断其单调性,进而可求最值. 【详解】由100x x +≥⎧⎨≥⎩可得0x ≥,y===因为y =[)0,+∞单调递增,所以y=在[)0,+∞单调递减,所以0x =时y =最大为1,故函数y =1,故答案为:1【点睛】关键点点睛:本题的关键点是求函数y=式化简得y ==,再判断y =[)0,+∞单调递增,即可判断y =在[)0,+∞单调递减,利用单调性可求最值.10.记lg 2a =,lg3b =,用a 、b 表示5log 72=______. 【答案】321a ba+- 【分析】利用对数的换底公式对5log 72化简,表示成含lg 2,lg3的式子即可得答案【详解】解:5lg 72lg(89)lg8lg93lg 22lg3log 7210lg51lg 21lg 2lg 2⨯++====--, 因为lg 2a =,lg3b =,所以5log 72=321a ba +-, 故答案为:321a ba+- 11.已知函数()f x 是定义域为()(),00,-∞⋃+∞的奇函数,且()()1,02 ,0xx f x g x x ⎧⎛⎫>⎪ ⎪=⎨⎝⎭⎪<⎩,则()g x =______. 【答案】2x -【分析】将所求解析式转化到已知区间解析式,根据奇函数定义就可以得到所求区间解析式.【详解】解:当0x <时,0x ->,又0x >时,()12xf x ⎛⎫⎪⎝⎭= ,且()f x 是定义域为()(),00,-∞⋃+∞的奇函数,所以当0x <时,122()()xx f x f x -⎛⎫⎪⎝=--=-=-⎭,即2()(0)x g x x =-<. 故答案为:2x -.【点睛】方法点睛:根据奇偶性求函数解析式方法如下: (1)先将待求区间上的自变量转化到已知区间上;(2)利用奇偶性求出,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式.12.函数()()()11f x x x =+-的递减区间是______. 【答案】(),1-∞-和()0,∞+【分析】分别讨论0x ≥和0x <时()()()11f x x x =+-转化为二次函数,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时,()()()2111f x x x x =+-=-+为开口向下的抛物线,对称轴为0x =,此时在期间()0,∞+单调递减,当0x <时,()()()()2111f x x x x =++=+,开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减,综上所述:函数()()()11f x x x =+-的递减区间是()(),10,-∞-+∞,故答案为:(),1-∞-和()0,∞+【点睛】关键点点睛:本题的关键点是去绝对值转化为分段函数,两段都是二次函数,利用二次函数的性质即可求解单调区间. 13.已知函数(){}min 3,2xf x x =-,若函数()()g x f x a =-恰有两个不同的零点,则实数a 的取值范围是______. 【答案】()0,2【分析】先根据条件得到()f x 的单调区间和最值,作出()f x 的图象,根据函数()()g x f x a =-恰有两个不同的零点,得到()y f x =与y a =图象有且仅有两个交点,数形结合即可求解.【详解】函数()3h x x =-在R 上单调递减,()2xt x =在R 上单调递增,令32x x -=,可得1x =当1x <时32x x -> ,当1x >时32x x -<,(){}3,1min 3,22,1x x x x f x x x -≥⎧=-=⎨<⎩,()f x 在(),1-∞单调递减,在()1,+∞单调递增,()()max 12f x f == ()f x 的图象,如图所示若函数()()g x f x a =-恰有两个不同的零点,得到()y f x =与y a =图象有且仅有两个交点,故02a <<, 故答案为()0,2【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解14.现有一个三位密码锁,已知以下五个条件,可以推断正确的密码是______.【答案】042【分析】依据五个条件逐一分析即可.【详解】由682一个号码正确,而且位置正确和614一个号码正确,,但是位置不正确可知6不可能是正确的数字;由206两个号码正确,但是位置都不正确,以及6不可能是正确的数字可知2,0是正确数字,而且2一定在个位上,因为682一个号码正确,而且位置正确,那么0一定在百位上,由614一个号码正确,但是位置不正确可知1 若是正确数字,但位置不正确,即1,6都不是正确数字,那么正确数字是4在十位上,则密码为042, 这样满足738没有一个号码正确,870一个号码正确但位置不正确, 故答案为:042【点睛】关键点点睛:本题的关键点是由682和614的情况可知6不可能是正确的数字;由206两个号码正确,但是位置都不正确,以及6不可能是正确的数字可知2,0是正确数字,而且2一定在个位上,因此0一定在百位上,再由614一个号码正确,但是位置不正确可知正确数字是4在十位上,可得正确密码. 15.已知x 为无理数,且代数式2133x x x +-+的值为整数,则x =__________.【答案】2x =±【分析】先设2133x k x x +=-+(整数),整理后根据定义域不空得到关于x 的方程对应判别式大于等于0,求出值,再代入假设即可求出对应的x .【详解】解:设2133x k x x +=-+,k Z ∈,即2(31)310kx k x k -++-=,由0∆>,k <<, 即0,1,2,3k =,,可得1k =,∴代数式211233x x x x +=⇒=±-+【点睛】本题主要考查函数的值.本题比较特殊的地方在于要求的是个无理数,增加了本题的难度,解决问题的关键在于设2133x k x x +=-+(整数),整理后根据定义域不空得到关于x 的方程对应判别式大于等于0,求出k 的值.16.已知函数2()f x ax bx c =++,,,a b c R ∈,且0a ≠.记(,,)M a b c 为()f x 在0,1上的最大值,则2(,,)a b cM a b c ++的最大值是_______.【答案】2【解析】试题分析:由题意知(,,)(1)M a b c f ≥,(,,)(0)M a b c f ≥,所以2(,,)(1)(0)M a b c f f ≥+≥(1)(0)22f f a b c a b c +=++≥++,所以22(,,)a b cM a b c ++≤.【解析】1、绝对值不等式的性质;2、函数的最值.三、解答题17.已知函数()x af x ax-=,若函数()f x 的定义域和值域都是[](),202t t <<,求实数t 的值. 【答案】12t =【分析】将函数变形为()11f x a x =-,易知函数在()0,∞+上递增求解. 【详解】因为函数()11x a f x ax a x-==-,在()0,∞+上递增, 又函数()f x 的定义域和值域都是[](),202t t <<,所以111122t a ta ⎧-=⎪⎪⎨⎪-=⎪⎩,解得12t =, 所以实数t 的值是12. 18.已知函数()221x f x x -=+. (1)求证:函数()f x 既不是奇函数,也不是偶函数; (2)求证:函数()f x 在区间[]1,2上单调递增. 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)利用奇偶函数的定义进行证明即可; (2)利用增函数的定义证明【详解】证明:(1)函数()f x 的定义域为R , 因为2222()()()11x x f x f x x x -----==≠-++,且222222()()()111x x x f x f x x x x ----+-===-≠--+++, 所以函数()f x 既不是奇函数,也不是偶函数; (2)任取[]12,1,2x x ∈,且12x x <,则22121221122222121222(2)(1)(2)(1)()()11(1)(1)x x x x x x f x f x x x x x ---+--+-=-=++++ 21122212()[(2)(2)5](1)(1)x x x x x x ----=++,因为[]12,1,2x x ∈,且12x x <,所以210x x ->,12120,120x x -<-<-<-<,所以12(2)(2)50x x ---<,所以12())0(f x f x -<,即12()()f x f x <, 所以函数()f x 在区间[]1,2上单调递增.19.已知函数2()32f x x ax b =--,其中,a b ∈R . (1)若不等式()0f x ≤的解集是[]0,6,求a 与b 的值; (2)若3b a =,求同时满足下列条件的a 的取值范围. ①对任意的x ∈R 都有()0f x ≥恒成立; ②存在实数x ,使得2()23f x a ≤-成立. 【答案】(1)9a =,0b = (2)[9,6][1,0]a ∈--⋃-【分析】(1)根据一元二次不等式的解集的端点值是对应函数的零点,列出关于,a b 方程组完成求解;(2)将b 用3a 替换,若要满足条件①只需对应的0∆≤即可,如要满足条件②只需要()min 223f x a ≤-,据此列出不等式完成求解.【详解】(1)因为()0f x ≤的解集是[]0,6,所以有()()006108120f b f a b ⎧=-=⎪⎨=--=⎪⎩,解得:90a b =⎧⎨=⎩; (2)因为3b a =,所以()2323f x x ax a =--,因为对任意的x ∈R 都有()0f x ≥恒成立,所以24360a a ∆=+≤,解得:90a -≤≤;又因为存在实数x 使得2()23f x a ≤-成立,所以()2min 333a a f x f a ⎛⎫==-- ⎪⎝⎭,所以222333a a a ≤---,解得:6a ≤-或1a ≥-, 综上可知:[][]9,61,0a ∈---.【点睛】(1)一元二次不等式()200ax bx c a ++<≠的解集为()12,x x ,则12,x x 为对应的二次函数的零点;(2)存在性问题:存在实数x 满足()f x M ≤(()f x M ≥),则只需要:()min f x M ≤(()max f x M ≥).20.定义在R 上的函数()f x 满足:对于任意实数x ,存在非零常数t ,都有()()f x t tf x +=-成立.(1)若函数()3f x kx =+,求实数k 和t 的值;(2)当2t =时,若[]0,2x ∈,()()2f x x x =-,求函数()f x 在区间[]0,6上的值域.【答案】(1)0k =,1t =-;(2)[]2,4-.【分析】(1)由定义可得()()33k x t t kx ++=-+,得到关于k 和t 的方程组,求解即可;(2)由函数()f x 在[]0,2x ∈的解析式求出其值域,结合新定义分别求出[]2,4x ∈和[]4,6x ∈上的值域,即可得出结果.【详解】(1)因为()3f x kx =+,由题即可得存在非零常数t 使得()()33k x t t kx ++=-+,即33++=--kx kt tkx t ,所以33k tk kt t =-⎧⎨+=-⎩,解得01k t =⎧⎨=-⎩;(2)当2t =时,有()()22f x f x +=-,所以()()22f x f x =-- 当[]0,2x ∈,()()()[]22110,1=-=--+∈f x x x x , 当[]2,4x ∈时,[]20,2x -∈,所以()[]20,1-∈f x 所以()()[]22,02=--∈-f x f x ,当[]4,6x ∈时,[]22,4x -∈,所以()[]22,0-∈-f x ,所以()()[]20,42=-∈-f x f x ,综上可得函数()f x 在区间[]0,6上的值域为[][][][]0,12,00,42,4-=-.【点睛】本题主要考查新定义的理解和应用,考查学生理解运用能力,属于中档题. 21.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,称()f x 为“局部奇函数”.(1)求证:函数()24f x x x =+-是“局部奇函数”;(2)若函数()421xxg x m =-+-是定义域为R 上的“局部奇函数”,求实数m 取值范围;(3)类比“局部奇函数”,写出“局部偶函数”的定义,并由此类判断函数()()31h x x x =-⋅+是这两种函数吗?说明理由.【答案】(1)证明见解析;(2)(],1-∞;(3)对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=,称()f x 为“局部偶函数”;()h x 是“局部偶函数”,不是“局部奇函数”.【分析】(1)根据题意分析方程()()f x f x -=-,即()2244x x x x --=-+-的解的情况,即可得证;(2)根据题意分析可得()()g x g x -=-在R 上有解,即()421421x x x x m m ---+-=--+-在R 上有解,设22x x t -=+,转化为()2220t t m -+-=在[)2,+∞上有解,结合而成函数的性质即可求解;(3)由“局部奇函数”的定义类比可得“局部偶函数”的定义,再分析()()h x h x =-,()()h x h x -=-的解得情况,即可得答案.【详解】(1)因为()24f x x x =+-,所以()24f x x x -=--,若()()f x f x -=-,即()2244x x x x --=-+-,整理可得:240x -=,解得:2x =±, 所以方程()()f x f x -=-有解,则函数()24f x x x =+-是“局部奇函数”;(2)函数()421xxg x m =-+-是定义域为R 上的“局部奇函数”,则()()g x g x -=-在R 上有解, 即()421421xx x x m m ---+-=--+-在R 上有解,整理得:()4422220x x x x m --+-++-=,即()()22222240x x x xm --+-++-=,令22x x t -=+,则()2220t t m -+-=,因为222x x t -=+≥,所以若()421421xx x x m m ---+-=--+-在R 上有解,则()2220t t m -+-=在[)2,+∞上有解,必有()42220m -+-≤,解得1m ,所以实数m 取值范围是(],1-∞,(3)根据题意“局部偶函数”的定义为:对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=,称()f x 为“局部偶函数”.对于函数()()31h x x x =-⋅+,()()()3131h x x x x x -=--⋅-+=-+⋅-, 当0x =时,()()h x h x =-成立,而()()h x h x -=-无解, 故()()31h x x x =-⋅+是“局部偶函数”不是“局部奇函数”.【点睛】关键点点睛:本题的关键点是理解“局部奇函数”的定义,在定义域内存在实数0x ,满足()()00f x f x -=-,对于()()g x g x -=-在R 上有解,421x x m ---+-()421x x m =--+-在R 上有解,即()()22222240x x x x m --+-++-=,令22x x t -=+,则()2220t t m -+-=,则()2220t t m -+-=在[)2,+∞上有解,利用二次函数性质可求m 取值范围;第(3)问类比可写出“局部偶函数”的定义,直接判断()()h x h x =-, ()()h x h x -=-是否有解即可得答案.四、双空题22.设函数()y f x =的定义域、值域分别为集合A 、B ,满足*N A =,*N B =,并且对所有正整数n ,都有()()1f n f n +>,()()3f f n n =,则:(1)()8f 的值是______; (2)()2019f 的值是______. 【答案】15 3870 【分析】令1n =可得()()13ff =,讨论()11,2,3f =,即可判断()()12,23f f ==,进而可求得()36f =,()69f =,()5481f =,得到n 与()f n 的关系,即可求解.【详解】令1n =可得()()13f f =,()f n 为正整数,若()11f =,吧()11f =代入得()13f =,矛盾,若()12f =,则()23f =,正确,若()13f =,则()33f =,不满足()()1f n f n +>,所以()12f =,()()()236ff f ==,()()()639f f f ==,()()()9618f f f ==,()()()18927f f f ==,()()()271854f f f ==,()()()542781f f f ==,,即有[]1,2n ∈,()[]2,3f n ∈,即()f n 与n 一一对应,[]3,6n ∈,()[]6,9f n ∈,即()f n 与n 一一对应,[]9,18n ∈,()[]18,27f n ∈,即()f n 与n 一一对应, []27,54n ∈,()[]54,81f n ∈,即()f n 与n 一一对应,,则得到一般的规律,任意的n 为自然数,存在m 为自然数,①3,23m m n ⎡⎤∈⋅⎣⎦时,()123,3m m f n +⎡⎤∈⋅⎣⎦,m N ∈,由于3,23m m ⎡⎤⋅⎣⎦和123,3m m +⎡⎤⋅⎣⎦中元素个数相同,都为31m+个,又()()1f n f n +>,所以()323mmf =⋅,()31231mmf +=⋅+,,当3,23m m n ⎡⎤∈⋅⎣⎦时,()3mf n n =+. ②123,3m m n +⎡⎤∈⋅⎣⎦,33,23m m m n ⎡⎤-∈⋅⎣⎦,()3mf n n -=,()()()1333m m f n f f n n +=-=-,12823,3⎡⎤∈⋅⎣⎦,所以()2883315f =⨯-=, 67201923,3⎡⎤∈⋅⎣⎦,所以()720193201933870f =⨯-=, 故答案为:15,3870.【点睛】关键点点睛:本题的关键点是利用赋值法,讨论()1f 的值,即可利用已知条件()()()236ff f ==()69f =,()918f =,即可找出n 与()f n 的关系,即可求解.。

2019-2020学年市第一中学高一上学期12月月考数学试卷

2019-2020学年市第一中学高一上学期12月月考数学试卷

2019-2020学年市第一中学高一上学期12月月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分.) 1.已知集合,则=() A. B. C. D. 2.函数的零点一定位于区间(). A. B. C. D. 3.下列四组函数中,表示同一函数的是(). A.与 B.与 C.与 D.与 4.下列函数中,在其定义域内既是偶函数又在上单调递增的函数是() A. B. C. D.5.已知函数y=x-4+ (x>-1),当x=a时,y取得最小值b,则a+b=( ) A.-3 B.2 C.3 D.8 6.三个数,,的大小关系为(). A. B. C. D. 7. 设定义域为R函数+C有两个单调区间,则a.b.c满足(). A. B. C. D 8. 已知函数,正实数满足,且,若在区间上的最大值为2,则的值分别为(). A. B. C. D. 9.若0则a的范围() A. B. C. D. 10.已知函数,若对于任意,存在,使得,则实数m的范围为 A. B. C. , D. 多选题(共3小题每小题4分共12分) 11.给出下列4个命题: ①命题“若x≥2且y≥3,则x+y≥5”为假命题.②命题,则是③“x>1”是“|x|>0”的充分不必要条件④若则x+y其中所有正确命题是() A(1) B(2) C(3) D(4) 12.已知等式,成立,那么下列结论:;;(3);;;.其中可能成立的是() A. (1)(2) B.(2)(5) C.(3)(4) D. (4)(5) 13.已知函数的图象如图所示,根据图象有下列三个命题:①函数在定义域上是单调递增函数;②函数在定义域上不是单调递增函数,但有单调递增区间;③函数的单调递增区间是.其中所有正确的命题是() A. ① B. ② C. ③ D. ①②③二、填空题:(本大题共4个小题,每小题4分,共16分,请将答案填在答题卡上) 14.若且 ______ _____ 15.若函数.的定义域是,则函数的定义域是__________. 16.若a,b,c为的三边且关于x的一元二次方程+2=0有两个相等的实数根,的形状为___________ 17. . 函数的定义域为D,若对于任意,,当时,都有,则称函数在D上为非减函数,设函数在[0,1]上为非减函数,且满足以下三个条件:①;②;③,则_________;___________. 三、解答题:(本大题共6个题,.解答应写出文字说明,证明过程或演算步骤) 18.(满分12分)U=R,非空集合A={x|},集合B={x|}.(1)a=求∩ (2)若x求实数a的取值范围. 19. (满分12分)已知直线y=2x+3与y轴的交点为A,二次函数的图像过点A,且满足 (1)求函数的解析式 (2)若函数y=的最小值为3求实数m的值 20. (满分13分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估。

市第三中学2019-2020学年高一上学期12月月考数学试题(解析版)

市第三中学2019-2020学年高一上学期12月月考数学试题(解析版)

2019~2020学年度上学期高一月考(三)数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{0A x x =<或}2x >,{}1B x x =>,则()RA B =( )A. [)0,+∞B. [)1,+∞C. [)2,+∞D. ()1,+∞【答案】A 【解析】 【分析】利用补集的定义可得出集合A R,再利用并集的定义可求出集合()R A B .【详解】{0A x x =<或}2x >,[]0,2R A ∴=,因此,()[)0,R A B =+∞.故选:A.【点睛】本题考查补集和并集的混合运算,考查计算能力,属于基础题. 2.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( ) A. 7 B. 6C. 5D. 4【答案】B 【解析】 【分析】求得圆心角的弧度数,用lr α=求得扇形半径.【详解】依题意150为5π6,所以5656l r ππα===.故选B. 【点睛】本小题主要考查角度制和弧度制转化,考查扇形的弧长公式的运用,属于基础题.3.若()20x x f x x x ⎧≥=⎨-<⎩,,,则()()2f f -=( )A. 5B. 4C. 3D. 2【答案】B【解析】 【分析】根据函数解析式,由内到外逐步代入,即可求出函数值.【详解】因为()20x x f x x x ⎧≥=⎨-<⎩,,,所以(2)(2)2-=--=f ,所以()()22(2)24-===f f f .故选B【点睛】本题主要考查由分段函数求函数值的问题,根据函数解析式,直接代入计算即可,属于常考题型. 4.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角【答案】D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得.【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D【点睛】本题考查了三角函数的符号法则,属于基础题.5.幂函数()f x 的图象过点()4,2,那么()2log 64f 的值为( ) A. 3 B. 2 C. 1 D. 4【答案】A 【解析】 【分析】设()af x x =,将点()4,2的坐标代入函数()y f x =的解析式,求出a 的值,然后利用对数的运算性质可求出()2log 64f 的值.【详解】设()af x x =,则()442af ==,解得12a =,()12f x x ∴=. 因此,()12222log 64log 64log 83f ===.故选:A. 【点睛】本题考查利用待定系数法求幂函数的解析式,同时也考查了对数运算性质的应用,考查计算能力,属于基础题.6.角α的终边经过点(3,4),则sin cos sin cos αααα+=-A.35B.45 C. 7D.17【答案】C 【解析】 【分析】若角终边经过点坐标为(),x y , 则2222sin ,cos .tan yyxx y x y ααα,即可求解. 【详解】由角α的终边经过点(3,4),可得4sin 5α,3cos 5α=,则43sin cos 55743sin cos 55αααα++==--. 故选C .【点睛】本题考查任意角的三角函数的定义,2222sin ,cos .tan y yxx y x y ααα,是基础题. 7.函数()25x f x =-的零点所在区间为[1]()m m m N +∈,,则m 为( ) A. 1 B. 2C. 3D. 4【答案】B 【解析】 【分析】利用零点存在性定理,求得m 的值.【详解】依题意()()()()21,33,230f f f f =-=⋅<,由于函数为增函数,根据零点存在性定理可知,函数唯一零点所在区间为[]2,3,故2m =.故选B.【点睛】本小题主要考查零点存在性定理,考查函数值的求法,属于基础题. 8.函数()()212log 2f x x x =-的单调递增区间为( )A. (),1-∞B. ()2,+∞C. (),0-∞D. ()1,+∞【答案】C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C.【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.9.已知函数13(01)x y a a a ,-=+>≠过定点P ,如果点P 是函数2()f x x bx c =++的顶点,那么,b c 的值分别为( ) A. 2,5 B. -2,5 C. -2,-5 D. 2,-5【答案】B 【解析】 【分析】根据函数图像平移法则确定点P ,再将P 点代入2()f x x bx c =++,结合对称轴表达式进行求解即可 【详解】x y a =(0a >且1a ≠)恒过()0,1点,所以13x y a -=+(0a >且1a ≠)恒过()1,4点,又()1,4为2()f x x bx c =++的顶点,满足1412b c b ++=⎧⎪⎨-=⎪⎩,解得25b c =-⎧⎨=⎩故答案选:B【点睛】本题考查函数图像的平移法则,二次函数解析式的求法,平移法则遵循“左加右减,上加下减” 10.已知函数()()()f x x a x b =--(其中)a b >的图象如图所示,则函数()x g x a b =+的图象是( )A. B.C. D.【答案】C 【解析】 【分析】先由函数()f x 的图象判断a ,b 的范围,再根据指数函数的图象和性质即可得到答案. 【详解】解:由函数的图象可知,10b -<<,1a >,则()xg x a b =+为增函数, (0)10g b =+>,()g x 过定点(0,1)b +,故选:C .【点睛】本题考查了指数函数和二次函数图象和性质,属于基础题.11.已知函数()f x 是定义在R 上的奇函数,若对于任意给定的不等实数12,x x ,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()10f x -<的解集为( )A.B.C.D.【答案】C。

2022-2023学年广州市第一一三中学八年级下学期期中数学试题含答案解析

2022-2023学年广州市第一一三中学八年级下学期期中数学试题含答案解析

广东省广州市第一一三中学2022~2023学年八年级下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,哪个是最简二次根式()2.在ABCD中,∠A=80°,∠B=100°,则∠D等于()A.60°B.80°C.100°D.120°【答案】C【分析】根据平行四边形对角相等求解即可【详解】解:∵四边形ABCD是平行四边形,平行四边形对角相等,∴∠D=∠B=100°,故选C.【点睛】本题主要考查了平行四边形的性质,熟知平行四边形对角相等是解题的关键.3.下列计算正确的是()A4=B=C.2=D=【答案】D4.在ABC 中,D 、E 分别是AB AC 、的中点,若4DE =,则BC 的值( )A .2B .4C .8D .165.下列各组数中,能构成直角三角形的是( )A .1,2,3B .6,8,9C .1,1D .3,4,6【答案】C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】解:A 、1+2=3,不能构成三角形,故此选项不符合题意;B 、62+82≠92,不能构成直角三角形,故此选项不符合题意;6.已知函数21y x =-,下列各点在该函数的图象上的是( )A .(1,0)B .(0,1)C .(0,1)-D .(1,0)-【答案】C【分析】将点坐标逐个代入,即可得答案.【详解】A .当1x =时,2110y =-=≠,∴(1,0)不在函数图像上;B .当0x =时,0111y =-=-≠,∴(0,1)不在函数图像上;C .当0x =时,011y =-=-,∴ (0,1)-在函数图像上;D .当=1x -时,2130y =--=-≠,∴(1,0)-不在函数图像上;故选C .【点睛】本题考查函数图象上点坐标的特征,掌握函数图象上的点,其坐标需满足解析式是解本题的关键.7.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB = CDB .AD = BC C .AB =BCD .AC = BD【答案】D 【分析】易得四边形ABCD 为平行四边形,再根据矩形的判定∶对角线相等的平行四边形是矩形即可得出答案.【详解】解:可添加AC =BD ,∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC =BD ,∴四边形ABCD 是矩形.【点睛】此题主要考查了矩形的判定,矩形的判定有:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m二、多选题9.下列命题的逆命题是真命题的是()A.两直线平行,同位角相等B.平行四边形的对角线互相平分C.菱形的四条边相等D.正方形的四个角都是直角【答案】ABC【分析】先写出对应选项中的命题的逆命题,然后判断真假即可.【详解】解:A、原命题的逆命题为:同位角相等,两直线平行,是真命题,符合题意;B、原命题的逆命题为:对角线互相平分的四边形是平行四边形,是真命题,符合题意;C、原命题的逆命题为:四条边相等的四边形是菱形,是真命题,符合题意;D、原命题的逆命题为:四个角都是直角的四边形是正方形,由于四个角都是直角的四【点睛】本题主要考查了判断命题真假,写出原命题的逆命题,平行线的判定,平行四边形,菱形,正方形的判定等等,灵活运用所学知识是解题的关键.10.如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE ,DF 交于G ,连接AG ,H G .下列结论正确的有( )A .CE DF⊥B .AG DG =C .CHG DAG ∠=∠D .2HG AD=同理可得:AH DF⊥,∵12HG HD CD==,∴DK GK=,∴AH垂直平分DG,∴AG AD=.11.函数y =的自变量x 的取值范围是_________.【答案】2x ≥-【分析】根据二次根式的意义,被开方数是非负数,即可求解.【详解】根据题意得:240x +≥,解得2x ≥-.故答案为:2x ≥-.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.矩形的两条对角线的夹角为60 ,对角线长为12,则较短的边长为________.13.在Rt ABC △中,90A ∠=︒,4,2AC AB ==,则斜边上的中线=___.14.已知1a =,则代数式221a a ++的值是___.15.已知边长为5cm 的菱形,一条对角线长为6cm ,则另一条对角线的长为________cm16.在Rt ABC △中,90A ∠= ,10,6BC AB ==,P 为BC 上一动点,作PE AB ⊥于E .PF AC ⊥于F ,求EF 的最小值___.【点睛】本题主要考查了矩形的判定与性质、勾股定理、垂线段最短等知识点,找到EF 的最小值时的情况是解题的关键.四、解答题17.计算;(1)-(2)2218.如图,ABCD Y 中,E 、F 分别是AD 、BC 的中点,求证:BE DF =.19.已知实数a ,b .【答案】2a【分析】直接利用数轴上a ,b 点位置得出(a ﹣b ),(a +b )的取值范围,再利用二次根式的性质化简得出答案.【详解】解:由数轴可得:a +b <0,a ﹣b >0,故原式=a ﹣b +a +b=2a .【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.20.ABC 中,AC BC =,D 是AC 上一点,且5AD =,12BD =,13AB =,求CD 长.21.在Rt ABC △中,已知1,2,AC BC AB x ===,求代数式()224x x -+的值.22.如图,已知四边形ABCD 为矩形,四边形AEDF 为菱形,点E 在边BC 上.(1)求证:ABE DCE △≌△.(2)试探究:当矩形ABCD 的边长AB 、BC 满足什么数量关系时,菱形AEDF 为正方形?请说明理由.【答案】(1)证明见解析(2)当2BC AB =时,菱形AEDF 为正方形,理由见解析【分析】(1)根据矩形的性质,可得90B C ∠=∠=︒,AB DC =,再根据菱形的四条边都相等,可得AE DE =,然后利用“HL ”证明Rt Rt ABE DCE ≌即可;(2)根据全等三角形对应边相等,可得BE CE =,进而求出AB BE =,再根据等边对等角,结合三角形的内角和定理,求出45BAE AEB ∠=∠=︒,同理可得45DEC ∠=︒,然后求出90AED ∠=︒,最后根据有一个角是90︒的菱形是正方形,即可证得结论.【详解】(1)证明:∵四边形ABCD 为矩形,∴90B C ∠=∠=︒,AB DC =,∵四边形AEDF 为菱形,∴AE DE =,在Rt ABE △和Rt DCE V 中,AB DC AE DE=⎧⎨=⎩,∴()Rt Rt HL ABE DCE ≌;(2)解:当2BC AB =时,菱形AEDF 为正方形.理由:∵Rt Rt ABE DCE ≌,∴BE CE =,AEB DEC ∠=∠,又∵2BC AB =,∴AB BE =,∴45BAE AEB ∠=∠=︒,同理可得,45DEC ∠=︒,∵180AEB AED DEC ∠+∠+∠=︒,∴18090AED AEB DEC ∠=︒-∠-∠=︒,∴菱形AEDF 是正方形.【点睛】本题考查了矩形和菱形的性质、全等三角形的判定与性质、正方形的判定、等边对等角,熟练运用矩形和菱形的性质是解本题的关键.23.如图,四边形ABCD 中,点E 、F 、G 、H 分别为AB BC CD DA 、、、的中点,(1)求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足,,PA PB PC PD APB CPD ==∠=∠,点E 、F 、G 、H 分别为AB BC CD DA 、、、的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.∵点E 、H 分别为边AB AD 、∴1,2EH BD EH BD =∥,∵点F 、G 、分别为BC CD 、∵APB CPD ∠=∠,∴APB APD CPD ∠+∠=∠+在APC △和BPD △中,AP PB APC BPD PC PD =⎧⎪∠=∠⎨⎪=,24.如图1,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 在第一象限内,且使得AB = 4,OB = 3.(1)试判断△AOB 的形状,并说明理由;(2)在第二象限内是否存在一点P ,使得△POB 是以OB 为腰的等腰直角三角形,若存在,求出点P 的坐标:若不存在,请说明理由;(3)如图2,点C 为线段OB 上一动点,点D 为线段BA 上一动点,且始终满足OC = BD .求AC + OD 的最小值.如图所示,当∠POB=90°,△PBO是以OB 作BE⊥x轴于E,PF⊥BE交EB延长线于F同理可以求出125BE=,95OE=,同理可以证明△PFB≌△BEO(AAS),∴9BF OE==,12PF BE==,(3)如图所示,过点O作以OB为腰,∠∴HO=BO,∠HOC=∠OBD=90°,【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质,坐标与图形,勾股定理的逆定理,两点距离公式,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.。

高一上学期12月月考

高一上学期12月月考

广东实验中学顺德学校2012学年第一学期12月质量检测高一 数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填涂在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1. 若{}{}0,1,2,3,|2,A B x x a a A ===∈,则A B ⋂=(A ){}0,2 (B ){}0,1 (C ){}0,3 ( D) {}02. cos(3)π-的值是( )(A).0 (B ) — 1 (C ). 1 ( D) 33. 已知22ab <,则a 、b 的大小关系是(A).b a <(B).b a >(C).b a =(D).不能确定。

4. 设11333124log ,log ,log 233a b c ===,则,,a b c 的大小关系是( ) A 、a b c << B 、 b a c << C 、c b a << D 、 b c a <<5. 若tan 3α=,则22sin sin cos 1cos αααα+⋅=-( ) (A).34 (B ) 65 (C ) 43 ( D) 356. 定义在R 上的奇函数()f x 在区间(0,)+∞上单调递减,且(4)0f =,则不等式()0f x >的解集为试 室密封线内不准答题姓 名考 号学 校A 、(,4)(0,4)-∞-B 、(4,0)(4,)-+∞C 、(4,0)(0,4)-D 、(,4)(4,)-∞-+∞7. 函数log 01)a y a a =>≠x (且在[]2,4上的最大值和最小值的和是3,则a 等于(A).6 (B). 16 (C). 21(D). 2 8. 函数xx x f 1lg )(-=的零点个数为 A .0B .1C .2D .39. 已知函数⎩⎨⎧<-≥+=0,0,1)(x x x x x f ,则((3))f f -=(A )-4 (B )3 (C )-3 (D ) 4 10. 设0,1,,0x x x a b a b ><<>且,则a 、b 的大小关系是A 、1<b <aB 、1<a <bC 、b <a <1D 、a <b <1第Ⅱ卷(非选择题 100分)二、填空题:本大题共4小题,每小题5分,共20分,将正确答案填在题中横线上。

广东省广州市一一三中学2020-2021学年高二上学期第一阶段考试化学选考试题 含答案

广东省广州市一一三中学2020-2021学年高二上学期第一阶段考试化学选考试题 含答案

广州市一一三中学2020学年第一学期第一阶段考试高二年级化学选考试题本试卷分第I卷和第II卷两部分,共100分。

考试时间75分钟第I卷(选择题共54分)注意事项:1、答卷前,考生务必将自己的姓名、考号等信息填写在答题纸上。

2、答案必须填写在答题纸的相应位置上,答案写在试题卷上无效。

3、可能用到的相对原子质量C-12 O-16 Mg-24 S-32 K-39 Cu-64 N-14一、选择题(每小题只有一个正确答案,每题3分,共54分)1.对已经达到化学平衡状态的下列反应2X(g)+Y2(g)⇌Z(g),ΔH<0,降低温度时,对反应产生的影响是()A.V逆减小,V正增大,平衡正向移动B.V正、V逆都增大,平衡正向移动C.V逆增大,V正减小,平衡逆向移动D.V正、V逆都减小,平衡正向移动2.用铁片与0.1mol/L的稀硫酸反应制取氢气时,下列措施能使氢气生成速率加快的是()A.改用0.4mol/L的硝酸B.改用98%的浓硫酸C.加大相同浓度的稀硫酸的用量D.滴加少量CuSO4溶液3.恒温下,容器中发生反应N2(g)+3H2(g)⇌2NH3(g),增大压强使容器体积缩小时,化学反应速率加快,其主要原因是()A.改变反应的路径,使反应所需的活化能降低B. 反应物分子的能量增加,活化分子百分数增大;有效碰撞次数增多C. 活化分子百分数未变,但单位体积内活化分子数增加,有效碰撞次数增多D.分子间距离减小,使所有的活化分子间的碰撞都成为有效碰撞4.将4molA 气体和2molB 在2L 的容器中混合并在一定条件下发生如下反应:2A(g)+B(s)⇌2C(g),2s 后测得C 的浓度为0.6 mol ·L -1,下列说法正确的是( )A.用物质A 表示的反应平均速率为0.6 mol ·L -1.s -1B.用物质B 表示的反应的平均速率为0.15 mol ·L -1·s -1C.2s 时物质A 的转化率为30%D.2s 时物质B 的浓度为0.8mol ·L -1·s -15.反应C(s)+H 2O(g)⇌CO(g)+H 2(g)在密闭容器中达到平衡,则下列叙述正确的是( )A.其他条件不变仅将容器的体积缩小一半,反应速率减小B.保持体积不变,充入少量He,则平衡向逆反应方向移动 C 、保持体积不变,充入少量He 使体系压强增大,反应速率增大 D.保持压强不变,充入少量He,则平衡向正反应方向移动6.已知:C(s)+H 2O(g)=CO(g)+H 2(g) ΔH=akJ ·mol -1 2C(s)+O 2(g)=2CO(g)ΔH=-220kJ ·mol -1.断裂1mol H -H 键和1molO -H 键所需要吸收的能量分别为436kJ 和462kJ,断裂1molO 2中的化学键所需要吸收的能量为496kJ,则a 为( )A. -332B. -118C. +350D. +1307.已知反应4NH 3+5O 2⇌4NO+6H 2O,若在反应开始后5s~10s 之间的反应速率分别用v (NH 3)、v (O2)、v(NO)、v(H 2O)表示,则下列判断正确的关系是( )A.54v (NH 3)=v(O 2) B.65v(O 2)=v(H 2O) C.32v(NH 3)=v(H 2O) A.54v (O 2)=v(NO) 8.如图是可逆反应A(g)+2B(g)⇌2C(g)+3D(g)(正反应ΔH>0)的化学反应速率与化学平衡随外界条件改变而变化的关系图,下列条件的改变与图中情况相符的是( )A 、t1时,减小了A 或B 的物质的量浓度 B 、t2时,升高了温度 C.t2时,增大了压强 D.t1时,加入了催化剂9.在一定温度下,体积恒定的密闭容器中发生反应:A(s)+2B(g)⇌C(g)+D(g),以下说法不能表明该反应已达平衡的是()A混合气体的平均相对分子质量不变 B.混合气体的密度不变C、混合气体的压强不变 D.每消耗2molB,同时消耗1molD10.有一化学平衡mA(g)+nB(g)pC(g)+qD(g),如图5所示是A的转化率同压强、温度的关系,分析图中信息可以得出的正确结论是()。

广东署山市南海区2019-2020学年高一数学上学期12月月考试题 (含解析)

 广东署山市南海区2019-2020学年高一数学上学期12月月考试题 (含解析)

【详解】如图所示,设扇形 AOB 中,圆心角 AOB 2 ,弦长 AB 2 ,
过 O 点作 OC AB 于点 C ,延长 OC ,交弧 AB 于 D 点,
AC 1 AB 1
则 AOD BOD 1,
2

AO AC 1
∵在 RtACO 中,
sin AOC sin1 ,
r 1 ∴扇形 AOB 的半径 sin1 ,
【点睛】本题主要考查了三角函数的 正负,属于基础题. 4.已知弧度数为 2 的圆心角所对的弦长为 2,则这个圆心角所对的弧长是( )
1
2
A. 2
B. sin1
C. sin1
D. sin 2
【答案】C
【解析】
【分析】
设圆心角的弧度数为
l
,则扇形的弧长
r
.
由已知得 =2 ,所以要求弧长 l 的大小,需求出半径 r 的大小.
题.
3.
sin
7
cos
5 6
tan 4 3
的值为(

A. 正数
B. 负数
C. 0
D. 不确定
【答案】A
【解析】
【分析】
根据正余弦与正切函数在各个象限中的正负判定即可.
【详解】由题,
sin
7
0,
cos
5 6
0, tan 4 3
0
,故
sin
7
cos
5 6
tan 4 3
0
.
故选:A
时,

f
-x
x
1
(x)3
x(1
x3 )
f
(x)
.
x -,0 f (x) x 1 x3

2020-2021学年广州市第一一三中学高三英语上学期期中试卷及答案解析

2020-2021学年广州市第一一三中学高三英语上学期期中试卷及答案解析

2020-2021学年广州市第一一三中学高三英语上学期期中试卷及答案解析第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThailand is a country with a long and rich history. It is also one of those countries which have many traditions which modern times fortunately have not affected. Thailand is famous for its unique culture. It is well worth noting that Thai culture hasbeen handed down from one generation to the next.Thai Classical DanceThe inspiring culture includes local music and wonderful Thai dances. The dances of course have something to do with its deep-rooted Buddhist religion, fighting arts and beautiful clothing. Thai classical dance performances are generally performed by gracious (高雅的) Thai ladies wearing beautiful Thai local costumes. Most resort (旅游胜地) areas and many hotels frequently offer these Thai culture dance shows for foreign visitors.Thai GreetingThe unique Thai gesture of greeting another person, the wai, is especiallyone of the great aspects of Thai culture. The wai is when a person joins both hands to either head or chest level while bending their head slightly towards his hands. This way of greeting is especially done when a younger person greets an older person and it indicates a sign of respect to their elders. Employees would also wai their managers even if the manager would be younger than themselves.BangkokBangkok is the culture center of Thailand and has been the Thai capital since the end of the eighteenth century. Observing Thai culture in Bangkok can be great experience as the combination of modern times and traditions have created a kind of unique atmosphere. Bangkok offers a package of Thai culture which is shown by numerous beautiful Buddhist temples and many examples of modern Thai architecture.Bangkok National MuseumAnother location in Bangkok where one can enjoy and see Thai culture is at the famed Bangkok national museum, which offers tourists an opportunity to view national treasures and unique Thai art pieces with its culture feature dating back as early as the late sixteenth century.1.Thai classical dance is related to ________.A.its living level and educationB.its history and architectural styleC.its customsD.its religious belief2.In Thailand a worker uses the gesture, the wai , to greet________.A.his close friend.B.a young stranger.C.his younger colleagues.D.his young boss.3.What make Thai culture in Bangkok so unique?A.The long history and fine weather of Bangkok.B.The mixture of the modern culture and traditions.C.A number of beautiful Thai Buddhist templesD.Many examples of modern Thai architecture.BSix Neanderthals who lived in what is now France were eaten by their fellow Neanderthals some 100,000 years ago, according to fearful evidence of the cannibalistic (食人的) event discovered by scientists in a cave in the 1990s. Now, researchersmay have figured out why the Neanderthals, including two children, became victims of cannibalism: Global warming.While previous studies have examined Neanderthal remains to find proof of cannibalistic behavior, this is the first study to offer clues as to what may have led Neanderthals to become cannibals. Scientists found that rapid changes in local ecosystems as the planet warmed may have wiped out the animal species that Neanderthals ate, forcing them to look elsewhere to fill their stomachs.The researchers examined a layer of sediment (沉积物) in a cave known as Baume Moula-Guercy, in southeastern France. In that layer, charcoal (碳) and animal bones were so well-preserved that scientists could reconstruct an environmental picture representing 120,000 to 130,000 years ago. They discovered that the climate in the area was likely even warmer than it is today, and that the change from a cold, dry climate to a warmer one happened quickly. “Maybe within a few generations”, study co-author Emmanuel said. As the animals that once populated the landscape disappeared, some Neanderthals ate what they could find — their neighbors.Cannibalism is by no means unique to Neanderthals, and has been practiced by humans and their s “from the early Palaeolithic to theBronze Age and beyond,” the study authors reported. The behavior adopted by the starving Neanderthals in the Baume Moula-Guercy should therefore not be viewed as “a mark of bestiality (兽性) or sub-humanity”, but as an emergency adaptation to a period of severe environmental stress, according to the study.4. What does the study mainly focus on?A. The social behavior of Neanderthals.B. The reason for cannibalism among Neanderthals.C. The climate change in southeasternFrance.D. The influence of global warming on ancient animals.5. What can possibly be used to describe the climate in southeasternFrance120,000 to 130,000 years ago?A. It was no warmer than it is today.B. It was first warm while later cold and dry.C. Its change was mild and went through quite a long process.D. Its change is a chief factor contributing to cannibalism.6. Which of the following might the study authors agree with?A. Neanderthals’ cannibalism showed their bestiality.B. Cannibalism was actually a measure the Neanderthals had to adopt to survive.C. Neanderthals’ cannibalism guaranteed their rule over other tribes.D. Only Neanderthals were found to have cannibalism in human history.7. Where can you most possibly find this passage?A. In a science journal.B. In a travel brochure.C. In a history book.D. In a geography book.CA growing body of research is revealing associations between birth defects (缺陷) and a father's age, alcohol use and environmental factors, say researchers atGeorgetown University Medical Center. They say these defects result from epigenetic changes that can potentially affect multiple generations.The study, published in theAmerican Journal of Stem Cells, suggest both parents contribute to the health status of their offspring — a common sense conclusion which science is only now beginning to demonstrate, says the study's senior investigator, Joanna Kitlinska, PhD, an associate professor in biochemistry, and molecular and cellular biology.“We know the nutritional, hormonal and psychological environment provided by the mother permanently influences organ structure, cellular response and gene expression in her offspring,” she says.“But our study shows the same thing to be true with fathers — his lifestyle, and how old he is, can be reflected in molecules that control gene function,” she says. “In this way, a father can affect not only hisimmediate offspring, but future generations as well.”For example, a newborn can be diagnosed with fetal (胎儿的) alcohol spectrum disorder (FASD), even though the mother has never consumed alcohol, Kitlinska says. “Up to 75 percent of children with FASD have biological fathers who are alcoholics, suggesting that preconceptual paternal alcohol consumption negatively impacts their offspring.”Advanced age of a father is correlated with elevated rates of certain diseases, and birth defects in his children.A limited diet during a father’s preadolescence has been linked to reduced risk of cardiovascular death in his children and grandchildren. Paternal obesity is linked to enlarged fat cells, changes in metabolic regulation, diabetes, obesity and development of brain cancer. Psychosocial stress on the father is linked to defective behavioral traits in his offspring. And paternal alcohol use leads to decreased newborn birth weight, marked reduction in overall brain size and impaired cognitive function.“This new field of inherited paternal epigenetics needs to be organized into clinically applicable recommendations and lifestyle alternations,” Kitlinska says. “And to really understand the epigenetic influences of a child, we need to study the interplay between maternal and paternal effects, as opposed to considering each in isolation.”8. What’s the message the writer conveys in the passage?A. Both parents contribute to the health status of their offspring.B. Father’s age and lifestyle are tied to birth defects.C. Father plays a more critical role in birth defects.D. Birth defects can potentially affect multiple generations.9. What can we infer from the example in Paragraph 5?A. FASD can only be diagnosed in a newborn whose father is addicted to alcohol.B. A newborn will not contract FASD if his mother has never consumed alcohol.C. A father’s lifestyle can negatively impact his offspring.D. Most children have biological fathers who are alcoholics.10. Which of the following situations is less likely to lead to children’s birth defects?A. Having a father with a limited diet.B. Having a father who is an alcoholic.C. Having an overweight father.D. Having a father with psychosocial stress.11. What will the research probably continue to focus on in the part that follows?A. The maternal epigenetic influences of a child.B. The ways to avoid negative paternal influence on children.C. The clinical application of the research findings.D. The interaction between maternal and paternal effects.DDragon boating is a team sport that has its root in ancient China. The boats are decorated with a dragon head and tail. In recent years cancer survivor groups have got involved in the sport to help make friends and help rebuild their lives.On a recent Saturday morning, a group of 20 women were on a boat in the Anacostia River in Washington DC. They moved their paddles(船桨)in rhythm to the call of a coach. The women belong to the dragon boat team GoPink! DC, which trains weekly. It also races against other breast cancer survivor teams in dragon boat festivals. As a result, GoPink! DC won medals in this Washington dragon boat festival.Lydia Collins joined five years ago after finding out she had breast cancer. “I was diagnosed with breast cancer.I was demoralized because of my illness - I lost all interest in life and wouldn't even get out of bed to eat. But now I love the team spirit. I just love everything about it. It is like a floating support group on the water.”The paddles are breast cancer survivors and their supporters. Annette Rothemel helped establish(建立)the group in 2006. She is a researcher with the National Institutes of Health as well as a breast cancer survivor. “It is sort of an easy entry sport because on the same boat people at different levels can be doing the same sport.” But Ms Rothemel saysdragon boating can be physically demanding, especially for someone who is sick and getting treatment for cancer.“It’s hard but I think you have to challenge yourself in life. This is something I look forward to. I get to be out here with my sisters and supporters that understand what I’m going through and help motivate me. So it makes me stronger and it makes me feel better,” another cancer survivor Rhonda Hartzel said.Annette Rothemel says the cancer survivors feel a sense of sisterhood and share good times when they paddle together. She says both feelings are treasured by the team.12. What do the underline wordsdemoralizedIn para.3 probably mean?A. depressedB. anxiousC. astonishedD. awkward13. What can we know about Lydia Collims from the text?A. she helps establish Go Pink !DCB. she tries to find a cure for the cancerC. she benefits from the dragon boat raceD. she gives up hope because of her illness14. How can the dragon boat race help the cancer survivorsA. forget their tough experiencesB. recover physically and mentallyC. get rid of the pains of their cancerD. enjoy their rest life without sufferings15. What does the text tell us about Annette Rothemel?A. she is an expert in studying the cause of the cancerB. she helps the cancer survivors in financial difficultiesC. she believes there is a healthful result from the dragon boat raceD. she thinks it unwise for the patient to join in the dragon boat race第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

2020-2021学年广州市第一一三中学高三英语期中试题及答案

2020-2021学年广州市第一一三中学高三英语期中试题及答案

2020-2021学年广州市第一一三中学高三英语期中试题及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AIt's just before l pm and hungry guests are starting to emerge out onto the wooden floor at the back of the Victoria Falls Safari Lodge in Zimbabwe. A few have already settled in for lunch, drinking beer and enjoying their sandwiches and salads in the sunshine. It's a normal setting until you look up. Overhead, the sky is filled with several hundred vultures (秃鹭).They too have arrived for their midday snack. Every day the team at this hotel places last night's leftover meat out for the vultures to eat. They call it the "Vulture Restaurant" and it's a vital part of protecting these birds, who have become some of the most endangered species in Africa.In Zimbabwe, where illegal hunting of elephants and rhinos is a major issue, poisoning poses a significant threat to the birds. "In recent years hunters have realized they can use poison to kill animals. It's effective because it's silent and therefore doesn't attract much attention.when the vultures eat the bodies of the dead animals they die too," says Roger Parry, Wildlife Manager at the Victoria Falls Wildlife Trust.The Vulture Restaurant initiative is part feeding programme, part education programme. By attracting the birds to the Vulture Restaurant every day the team can ensure they're regularly getting a safe meal, and while the birds are there they can educate tourists from all over the world about these creatures.“Lunch” is served by Moses Garira. He has the unenviable task of wandering out into the middle of the clearing with a box full of meat, dropping the contents onto the ground and running for his life as the vultures fly downward suddenly for their food. No one, surely, would volunteer for this role, but Garira rather enjoys it. Back in the safety of the viewing seats, he tells the onlookers about the importance of vultures. "They're hugely important in terms of their role of cleaning up the bodies of dead animals," says Garira. "Notably, they're safely able to digest bacteria like anthrax. Without vultures, there'd be a lot more disease in the world."1. What's the biggest threat vultures facing in Zimbabwe?A. Overhunting.B. Unsafe food.C. Loss of habitat.D. A bird disease.2. What would others think of Garira's job?A. Scary.B. Relaxing.C. Well-paid.D. Time-consuming3. What do Garira's words mean?A. Birds are human's best friends.B. People know little about vultures.C. Vultures are environmentally favorable.D. Vultures are in urgentneed of protection.BAs we all know, there are plenty of different parks to visit in theUK. All theme parks inBritainhave cafes, restaurants, picnic areas and gift shops, so you'll still have plenty to see and do when you and the kids have been on enough rides. There are usually smaller “funfair“ rides and games as well, so younger children won't get bored. Several theme parks also have other attractions next to them, e. g. water parks often open all year round, unlike the theme parks.Whenever you are inBritain, there's likely to be a theme park within one or two hours,drive, bus ride or train journey. Several theme parks even have accommodation(膳宿)so you can stay for a day or two if you want to make a trip into a short holiday.Prices forUKtheme parks vary considerably; some have an entrance price which allows you to go on all the rides, while in others you have to pay for every ride individually. It can also make a difference whether you go during peak time or not. For example, tickets always cost more during school holidays and weekends than they do during the weekdays.Theme parks always get very busy during the summer months, so if you don't like crowds ifs usually a good idea to go earlier or later in the year!If you're thinking of visiting aUKtheme park, it's worth having a look for special offers on tickets. Products such as chocolate bars and cereals sometimes have " buy one get one free" offers on theme park tickets, so keep a look out in shops and supermarkets.4. This passage mainly talks about all the following EXCEPT.______.A. things to doB. prices for theme parksC. rules to obeyD. special offers5. If you go to the theme park during the weekdays, you'll probably.______.A. have to spend moreB. save some moneyC. win a big prizeD. get something free6. According to the passage, what should you do if you are tired of crowds in the theme park?A. Avoid the busiest months.B. Go earlier or later in the daytime.C. Choose one with few visitors.D. Go there when no one is in it.7. The best title for the text would be ______.A. What to Do in the Theme ParkB. Theme Parks in theUKC. Visiting the Theme ParkD. Introduction to Famous Theme ParksCSummer heat can be dangerous, and heat leads to tragedy far toooften. According to kidsandcars, org, an average of 37 young children per year die of car heat in the US, when they are accidentally left in a hot vehicle.For Bishop Curry, a fifth grader from Mckinney, Texas, one such incident hit close to home. A six-month-old baby from his neighborhood died after hours in a hot car. After hearing about her death, Curry decided that something needed to be done. Young Curry, who turned 11 this year, has always had a knack for inventing things, and he drew up a sketch (草图) of a device he called “Oasis.”The device would attach to carseats and watch the temperature inside the car. If it reached a certain temperature in the car, and the device sensed a child in the carseat, it would begin to circulate cool air. Curry alsodesigns the device using GPS and Wi-Fi technology, which would alarm the child’s parents and, if there was no response from them, the police.Curry’s father believes that the invention has potential. “The cool thing about Bishop’s thinking is none of this technology is new,” he said. “We feel like the way he’s thinking and combining all these technologies will get to production faster.” His father even introduced the device to Toyota, where he works as an engineer. The company was so impressed that they sent Curry and his father to a car safety conference in Michigan.In January, Curry’s father launched a campaign for the invention. They hope to raise money to finalize the patent, build models, and find a manufacturer. Their goal was $20,000, but so many people believed in Oasis’ potential that they have raised more than twice that — over $46,000.Curry’s father remembers the first time he saw his son’s sketch. “I was so proud of him for thinking of a solution,” he said. “We always just complain about things and rarely offer solutions.”8. What inspired Curry to invent Oasis?A. His narrow escape from death after being locked in a car.B. His knowledge of many children’s death because of car heat.C. The death of his neighbor’s baby after being left in a hot car.D. The injury of 37 children in his school in a car accident.9. What would Oasis do if it was hot in a car with a child?A. It would inform the parents or even the police.B. It would pump out the hot air in the car.C. It would sound the alarm attached to the car.D. It would get the window open to save the child.10. What does Curry’s father think is cool about Curry’s invention?A. It used some of the most advanced technology.B. It simply combined technologies that existed.C. It could accelerate production of new technology.D. It is the most advanced among similar products.11. Why did Curry’s father start a campaign to raise money?A. To conduct experiments to test the invention.B. To get other children devoted to inventions.C. To support a charity of medical aid for children.D. To get the patent and bring it to production.DAlaska—The American city Anchorage is recovering from a powerful earthquake Friday that damaged public buildings, homes and roads.The 7.0 earthquake caused buildings to slake. But there have been no reports of deaths, serious injuries or damage. Officials say the quake has not affected transportation of food and her supplies. “The ships are coming in on schedule, the supply lines are at this point working well,” the government told reporters Sunday.The Glenn Highway was probably the road hit hardest by the earthquake. It connects the state's largest city to other parts in the north. Traffic has been heavy and slow—moving since the quake. Drivers are being guided. Groups of workers are trying to rebuild areas where the quake left large holes in the road.People who are still nervous after the major quake have been more upset by more than 1, 700 aftershocks.“Anything that moves, you feel terrified”said David, whose home suffered structural(结构)damage, including a sunken foundation(地基). Actually, Alaska came up with strict building rules after a 9. 2 earthquake in 1964. That was the second most powerful earthquake on record.Government officials said a public health center promises that moneyfor medical treatment will continue to come. Mental healthy service(心理健康服务)is also available for people hurt by the disaster.Earthquake experts say there is a 4 percent chance of another 7. 0 earthquake or greater in the following week. "The chance is very small, but its not impossible, ” said the expert, Paul Caruso.12. What was the result of the earthquake?A. Buildings were damaged.B. Food supply was cut off.C. Many people were killedD. The ships could not come in.13. Why is the traffic slow on the Glenn Highway?A. Because small quakes hit the city.B. Because falling rocks are a danger.C. Because the highway is badly damaged.D. Because drivers are misled.14. What can you learn from Paul Caruso?A. Another greater earthquake is on the way.B. Chances still exists of another earthquake.C. It will be safe in the 1th week after the quake.D. There is no possibility for more quakes.15. Where can your possibly read the passage?A. Ina story book.B. In a travel journal.C. In a poster.D. In a newspaper.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

2023年新高考数学选填压轴题汇编(十七)(学生版)

2023年新高考数学选填压轴题汇编(十七)(学生版)

2023年新高考数学选填压轴题汇编(十七)一、单选题1.(2022·广东·深圳实验学校光明部高三期中)定义在R 上的偶函数f x 满足f -x +f x -2 =0,当-1≤x ≤0时,f x =1+x e x ,则( )A.f 2023 <f ln13e10<f e 0.3 B.f 2023 <f e 0.3 <f ln 13e 10C.f e 0.3 <f ln 13e10 <f 2023D.f ln13e10<f e 0.3 <f 2023 2.(2022·广东·广州市第一一三中学高三阶段练习)在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b2=1a >b >0 相切,且椭圆C 的右焦点F c ,0 关于直线l :y =cb x 的对称点E 在椭圆C上,则a =( )A.12B.32C.1D.23.(2022·湖南·衡阳师范学院祁东附属中学高三期中)设函数f (x )是定义在区间12,+∞上的函数,f '(x )是函数f (x )的导函数,且xfx ln 2x >f x ,x >12 ,f e 2 =1,则不等式f e x 2 <x 的解集是A.12,1 B.(1,+∞)C.(-∞,1)D.(0,1)4.(2022·湖南·宁乡一中高三期中)设a =15ln13,b =14ln14,c =13ln15,则( )A.a >c >bB.c >b >aC.b >a >cD.a >b >c5.(2022·湖南·宁乡一中高三期中)圆是中华民族传统文化的形态象征,象征着“圆满”和“饱满”,是自古以和为贵的中国人所崇拜的图腾.如图,AB 是圆O 的一条直径,且|AB |=4.C ,D 是圆O 上的任意两点,|CD |=2,点P 在线段CD 上,则PA ⋅PB的取值范围是( )A.-1,2B.3,2C.3,4D.-1,06.(2022·湖北·武汉市武钢三中高三阶段练习)设a >b >0,x =ln 1+a a ,y =ln 1+bb,m =7778,n =7877,则( )A.x >y ,m >nB.x >y ,m <nC.x <y ,m >nD.x <y ,m <n7.(2022·湖北·武汉市武钢三中高三阶段练习)已知P 为椭圆x 2a 2+y 2b2=1a >b >0 上一动点,F 1、F 2分别为该椭圆的左、右焦点,B 为短轴一端点,如果PB 长度的最大值为2b ,则使△PF 1F 2为直角三角形的点P 共有( )个A.8个B.4个或6个C.6个或8个D.4个或8个8.(2022·湖北·高三期中)在A 、B 、C 三个地区爆发了流感,这三个地区A 、B 、C 分别有6%、5%、4%的人患了流感,假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.则下列叙述正确的是( )A.这个人患流感的概率为0.15B.此人选自A 地区且患流感的概率为0.0375C.如果此人患流感,此人选自A 地区的概率为3097D.如果从这三个地区共任意选取100人,则平均患流感的人数为4人9.(2022·湖北襄阳·高三期中)某大学为了制作“迎新杯”篮球赛创意冠军奖杯,在全校学生中开展“迎新杯”篮球赛奖杯的创意设计征集活动.同学甲设计的创意奖杯如图1所示,从其轴截面中抽象出来的平面图形如图2所示,若圆O 的半径为10cm ,AB =BC =CD ,BC ⎳AD ,∠ABC =∠BCD =120°.甲在奖杯的设计与制作的过程中发现,当OB 越长时,该奖杯越美观,则当该奖杯最美观时,AD =( )A.10cmB.102cmC.103cmD.56cm10.(2022·湖北·高三阶段练习)已知x >0,y >0,若1+x 2+1 4y 2+1-2y =x ,则log 2x ⋅log 2y 的最大值为( )A.1B.12C.14D.011.(2022·湖北·高三期中)已知函数f x =k x -1 +14 e x -32x 2,若函数f x 的单调递减区间(理解为闭区间)中包含且仅包含两个正整数,则实数k 的取值范围为( )A.3e 3-112,3e 2-18 B.3e 2-18,3e -14 C.3e3-112,3e 2-18D.3e2-18,3e -1412.(2022·湖北·高三期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且3ca cos B=tan A +tan B ,下列结论正确的是( )A.A =π6B.当a =2,c =4时,△ABC 的面积为43C.若AD 是∠BAC 的角平分线,且AD =23,则1b+1c =2D.当b -c =3a3时,△ABC 为直角三角形13.(2022·山东德州·高三期中)已知定义在[-2,2]上的函数f (x )=x 2+x ,-2≤x ≤-1ln (x +1) ,-1<x ≤2,若g x =f x -a x +1 的图像与x 轴有4个不同的交点,则实数a 的取值范围是( )A.ln33,1eB.ln33,1eC.ln33,13eD.ln33,13e14.(2022·山东·青岛二中高三期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0), 过椭圆中心的一条直线与椭圆相交于A ,B 两点,P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当a b 3-23mn +3mn +92ln m +ln n 取最小值时,椭圆C 的离心率为( )A.15B.45C.223D.3215.(2022·福建省诏安县桥东中学高三期中)已知偶函数f x 在R 上的任一取值都有导数,且f 1 =1,f x +2 =f x -2 ,则曲线y =f x 在x =-5处的切线的斜率为( )A.-1B.-2C.1D.216.(2022·江苏盐城·高三阶段练习)图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为( )A.94B.934C.134D.133417.(2022·江苏盐城·高三阶段练习)已知f x 是定义在R 上的奇函数,对任意两个不相等的正数x 1,x 2,都有x 2f x 1 -x 1f x 2 x 2-x 1>0,记a =f 0.23 0.23,b =f sin1 sin1,c =-f ln 13ln3,则a ,b ,c 的大小关系为( )A.a <b <cB.b <a <cC.c <a <bD.c <b <a18.(2022·江苏·南京市天印高级中学高三期中)设a =sin111,b =ln1.1,c = 1.2-1,则( )A.c <b <aB.a <b <cC.a <c <bD.c <a <b19.(2022·江苏·南京市天印高级中学高三期中)已知菱形ABCD 的边长为2,∠BAD =120°,G 是菱形ABCD 内一点,若GA +GB +GC =0,则AG ⋅AB =( )A.12B.1C.32D.2二、多选题20.(2022·广东·深圳实验学校光明部高三期中)下列命题中真命题有( )A.若a ⋅b <0,则a ,b 是钝角B.数列a n 的前n 项和为S n ,若a 1=1,a n +1=3S n n ∈N ∗ ,则a n =1n =13⋅4n -1n ≥2C.若定义域为R 的函数f (x )是奇函数,函数f (x -1)为偶函数,则f (2)=0D.若2OA +OB +3OC =0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC :S △ABC =1:621.(2022·广东·广州市第一一三中学高三阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,长轴长为4,点P (2,1)在椭圆C 外,点Q 在椭圆C 上,则( )A.椭圆C 的离心率的取值范围是0,22B.当椭圆C 的离心率为32时,QF 1 的取值范围是[2-3,2+3]C.存在点Q 使得QF 1 ⋅QF 2=0D.1QF 1 +1QF 2的最小值为122.(2022·广东·广州市第一一三中学高三阶段练习)设定义在R 上的函数f x 满足f x +y f x -y =f 2x-f 2y ,且f 1 ≠0,则下列说法正确的是( )A.f x 为奇函数B.f x 的解析式唯一C.若f x 是周期为T 的函数,则T ≠1D.若x >0时,f x >0,则f x 是R 上的增函数23.(2022·湖南·衡阳师范学院祁东附属中学高三期中)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e -x (x -1).则下列结论正确的是( )A.当x <0时,f (x )=e x (x +1)B.函数f (x )有两个零点C.若方程f (x )=m 有三个解,则实数m 的取值范围是f (-2)<m <f (2)D.∀x 1,x 2∈R ,f x 1 -f x 2 max =224.(2022·湖南·宁乡一中高三期中)设函数f x 是函数f x 的导函数,且满足f x -f x x =ln x ,f 1e =1e,则( )A.f x 有极大值B.4f 2 <3f 4C.f 1 >f eD.f 1 >1e25.(2022·湖北·武汉市武钢三中高三阶段练习)正方体ABCD -A 1B 1C 1D 1的棱长为2,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( )A.CM 与PN 是异面直线B.平面PAN ⊥平面BDD 1B 1C.存在P 点使得PN ⊥AND.当P 为线段A 1D 1中点时,过A 、M ,N 三点的平面截此正方体所得截面的面积为9226.(2022·湖北·武汉市武钢三中高三阶段练习)已知函数f x =x x -a ,a ∈R ,下列判断中,正确的有( )A.存在k ∈R ,函数y =f x -k 有4个零点B.存在常数a ,使f x 为奇函数C.若f x 在区间0,1 上最大值为f 1 ,则a 的取值范围为a ≤22-2或a ≥2D.存在常数a ,使f x 在1,3 上单调递减27.(2022·湖北·高三期中)已知抛物线C :y 2=2px 过点(2,4),焦点为F ,准线与x 轴交于点T ,直线l 过焦点F 且与抛物线C 交于P ,Q 两点,过P ,Q 分别作抛物线C 的切线,两切线相交于点H ,则下列结论正确的是( )A.PH ⋅QH=0B.抛物线C 的准线过点HC.tan ∠PTQ =22D.当PF PT取最小值时,∠PTF =π428.(2022·湖北·高三期中)已知函数f (x )=e x -x -m (x ∈R ),g (x )=sin x -cos x (x ≥0),则下列说法正确的是( )A.若f (x )有两个零点,则m >1B.若x 1≠x 2且f x 1 =f x 2 ,则x 1+x 2<0C.函数y =g (x )在区间0,5π4有两个极值点D.过原点的动直线l 与曲线y =g (x )相切,切点的横坐标从小到大依次为:x 1,x 2,⋯,x n .则x n =tan x n -π4 29.(2022·湖北襄阳·高三期中)已知正三棱锥S -ABC 的底面边长为6,体积为63,A ,B ,C 三点均在以S 为球心的球S 的球面上,P 是该球面上任意一点,下列结论正确的有( )A.三棱锥P -ABC 体积的最大值为183B.三棱锥P -ABC 体积的最大值为273C.若PA ⊥平面ABC ,则三棱锥P -ABC 的表面积为24+93+343D.若PA ⊥平面ABC ,则异面直线AB 与PC 所成角的余弦值为3132630.(2022·湖北襄阳·高三期中)已知等差数列{a n }的前n 项和为S n ,且S 11<S 7.若存在实数a ,b ,使得a +b =3,且e a -2b -1≤S 17≤ln (a -2b +1),当n =k 时,S n 取得最大值,则k +2a -b 的值可能为( )A.13B.12C.11D.1031.(2022·湖北·高三阶段练习)已知△ABC 外接圆的面积为π,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A ,sin B ,sin C 成等比数列,设△ABC 的周长和面积分别为P ,S ,则( )A.0<B ≤π3B.0<b ≤3C.0<P ≤23D.0<S ≤33432.(2022·湖北·高三阶段练习)已知函数f x =tan cos x +cos sin x ,则( )A.f x 是定义域为R 的偶函数B.f x 的最大值为2C.f x 的最小正周期为πD.f x 在0,π2上单调递减33.(2022·湖北·高三期中)若x >0,y >0,且x +y =xy ,则( )A.x +y ≥4B.xy ≥2C.x +2y +xy ≥5+26D.2xx -1+4y y -1≥6+4234.(2022·山东德州·高三期中)将n 2个数排成n 行n 列的数阵,如图所示:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=3,a 13=a 51+1,记这n 2个数的和为S ,下面叙述正确的是( )a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n⋯⋯a n 1a n 2a n 3⋯a nnA.m =2B.a 78=15×28C.a ij =(2i +1)⋅2j -1D.S =n (n +2)2n -135.(2022·山东·青岛二中高三期中)已知函数f x =-2xe x ,x ≤0ln x ,x >0 若函数y =f x -b 有四个不同的零点:x 1,x 2,x 3,x 4,且x 1<x 2<x 3<4,则以下结论正确的是( )A.x 23+x 24>2B.0<b <2eC.x 1+x 2=-2D.x 1+x 2 x 3x 4<-2.36.(2022·江苏盐城·高三阶段练习)给出定义:若函数f x 在D 上可导,即f x 存在,且导函数f x 在D 上也可导,则称f x 在D 上存在二阶导函数,记f x =f x 若f x <0在D 上恒成立,则函数f x 在D 上为凸函数.以下四个函数在0,3π4 上是凸函数的是( )A.f x =-x 3+2x -1B.f x =ln x -2xC.f x =sin x +cos xD.f x =xe x37.(2022·江苏·南京市天印高级中学高三期中)已知函数y =f (x )满足:对于任意实数x ,y ∈R ,都有2f (x )f y =f (x +y )+f x -y ,且f (1)=-1,则( )A.f (x )是奇函数B.f (x )是偶函数C.12,0 是曲线y =f x 的一个对称中心D.f (2022)=1三、填空题38.(2022·广东·深圳实验学校光明部高三期中)已知数列{a n }的前n 项和为S n ,a 1=1,S n -(2n -1)S n -1=n 2a n n ≥2,n ∈N ∗ ,则数列S n =_____________.39.(2022·广东·广州市第一一三中学高三阶段练习)过点M (2,3)的直线与⊙C :(x -3)2+y 2=16交于A ,B两点,当M 为线段AB 中点时,CA ⋅CB=___________.40.(2022·湖南·衡阳师范学院祁东附属中学高三期中)设f x =ln x ,0<x ≤2f 4-x ,2<x <4若方程f (x )=m 有四个不相等的实根x i i =1,2,3,4 ,且x 1<x 2<x 3<x 4,则x 1+x 2 2+x 23+x 24的取值范围为___________.41.(2022·湖南·宁乡一中高三期中)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且2≤l ≤3,则该正四棱锥体积的取值范围是______.42.(2022·湖北·武汉市武钢三中高三阶段练习)若双曲线x 2a 2-y 2b2=1的右支上存在两点A ,B ,使△ABM 为正三角形(其中M 为双曲线右顶点),则离心率e 的取值范围为______.43.(2022·湖北·高三期中)若不等式e x a≥ln (ax -a )+ln 3a 对任意x >1恒成立,则a 的取值范围是_______________.44.(2022·湖北·高三期中)已知数列a n 满足a 1=1,a 2=2,a 2k +1=a 22k a 2k -1且a 2k +2=2a 2k +1-a 2k ,则a 100=______________.45.(2022·湖北襄阳·高三期中)最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,他用数形结合的方法,给出了勾股定理的详细证明.如图,某数学探究小组仿照“勾股圆方图”,利用6个全等的三角形和一个小的正六边形ABCDEF ,拼成一个大的正六边形GHMNPQ ,若AB =AG =1,则BE ⋅GD=__________.46.(2022·湖北襄阳·高三期中)已知实数x 、y 满足2x 2-3y 2-xy =1,则2x 2+3y 2的最小值为__________.47.(2022·湖北·高三阶段练习)已知函数f x =e x +ax +1a ∈R ,若函数f x 与函数f f x 的单调区间相同,并且既有单调递增区间,也有单调递减区间,则a 的取值范围是______.48.(2022·山东德州·高三期中)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC ,则λ2+μ2的最小值为________.49.(2022·山东·青岛二中高三期中)在三棱锥S -ABC 中,底面ABC 是边长为2的正三角形,SA =AB ,点M 为△SAB 的垂心,且CM ⊥平面SAB ,则三棱锥S -ABC 的外接球的表面积为_________.50.(2022·江苏盐城·高三阶段练习)△ABC 中角的A ,B ,C 的对边分别为a ,b ,c ,若该三角形的面积为5,且sin A -B =3-4cos A sin B ,则c 的最小值为_______.51.(2022·江苏·南京市天印高级中学高三期中)设圆锥的底面半径为2,母线长为22,若正四棱柱上底面的4个顶点在其母线上,下底面的4个顶点在其底面圆内,则该正四棱柱体积的最大值为______.四、双空题52.(2022·湖北·武汉市武钢三中高三阶段练习)平面四边形ABCD 中,AB =AD =3,BC =1,CD =22,BD =3,沿BD 将△ABD 向上翻折,进而得到四面体A -BCD ,①四面体A -BCD 体积的最大值为______;②若二面角A -BD -C 的大小为120°,则AC 2=______.53.(2022·湖北·高三期中)已知f x 是定义在R 上的函数,且函数y =f 2x +1 的图象关于直线x =1对称,当x <12时,f x =ln 1-2x ,则f 6 =__________,曲线y =f x 在x =6处的切线方程是__________.54.(2022·山东德州·高三期中)定义x (x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均值时,x 取较大整数),令函数G (x )=x ,如:G 43 =1,G 53 =2,G (2)=2,G (2.5)=3.则1G (1)+1G (2)+1G (3)+1G (4)+1G (5)+1G (6)=__________;1G (1)+1G (2)+1G (3)+⋯+1G (2023)=_________.55.(2022·江苏盐城·高三阶段练习)已知数列a n 满足a 1=a 2=32,a n +2=a n +2×3n n ∈N * ,且b n =a n +a n +1n ∈N * .则数列b n 的通项公式为________.若b n c n =4(n +1)34n 2-1 n ∈N *,则数列c n 的前n 项和为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州市第一一三中学高一数学12月月考试题本试卷满分150分,考试时间120分钟,不允许使用计算器. 注意事项:1.答卷前,考生务必将自己的姓名、考号等信息填写在答题纸上. 2.答案必须填写在答题纸的相应位置上,答案写在试题卷上无效. 一、选择题(本大题共12小题,每小题5分,共60分) 1.若点(,)p x y 是330︒角终边上异于原点的一点,则xy的值为( ) A. 3 B. 3-C.3 D. 3-【答案】B 【解析】 【分析】由三角函数的定义知tan 330yx︒=,计算即可. 【详解】解:由题意知,3tan 330tan 303y x ︒︒==-=-, 则3xy=-, 故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题. 2.已知圆的半径为cm π,则120的圆心角所对的弧长是( )A.3cm πB.23cm πC. 23cm πD. 223cm π【答案】D 【解析】试题分析:由弧长公式得:,故选项D.考点:弧长公式.3.二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如下表:由此可以判断方程ax 2+bx +c =0的两个根所在的区间是 ( ) A. (-3,-1)和(2,4) B. (-3,-1)和(-1,1) C. (-1,1)和(1,2) D. (-∞,-3)和(4,+∞)【答案】A 【解析】由表格可得二次函数f x () 对称轴为011022x a +==,>, 再根据310240f f f f --()()<,()()< ,可得f x ()的零点所在的区间是31--(,)和24(,),即方程20ax bx c ++= 的两个根所在的区间是31--(,) 和24(,), 故选A .4.sin 600tan 240+的值是( )A. C. 12-+ D.12【答案】B 【解析】 【分析】由题意结合诱导公式求解三角函数式的值即可.【详解】由诱导公式得()()sin 600tan 240sin 180360tan 18060+=⨯+++sin 60tan 60=-+=+=故选B.【点睛】本题主要考查诱导公式及其应用,特殊角的三角函数值的求解等知识,意在考查学生的转化能力和计算求解能力. 5.函数12cos[()]34y x π=+的周期、振幅、初相分别是( )A. 3π,2-,4π B. 3π,2,12πC. 6π,2,712π D. 6π,2,4π 【答案】C 【解析】 【分析】根据函数sin()y A x ωϕ=+的解析式,写出函数的振幅、周期和初相即可.【详解】解:由已知函数1172cos()2sin()312312y x x ππ=+=+, 振幅是2A =,周期是2613T, 初相是712πϕ=.故选:C.【点睛】本题考查了函数sin()y A x ωϕ=+的图象与性质的应用问题,是基础题.6.设f(x)为定义在R 上的奇函数,当x≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)=( ) A. 3 B. 1 C. -1 D. -3【答案】D 【解析】【详解】∵f(x )是定义在R 上的奇函数, 当x≥0时,f (x )=2x+2x+b (b 为常数), ∴f(0)=1+b=0, 解得b=-1∴f(1)=2+2-1=3. ∴f(-1)=-f (1)=-3. 故选D .7.为了得到函数sin 2y x =的图象,只需将函数sin(2)3y x π=-的图象A. 向左平行移动3π个单位 B. 向左平行移动6π个单位 C. 向右平行移动3π个单位D. 向右平行移动6π个单位 【答案】B 【解析】 【分析】由函数y =A sin (ωx +φ)的图象变换规律,可得结论. 【详解】∵将函数y =sin (2x 3π-)的图象向左平行移动6π个单位得到sin[2(x 6π+)3π-]= sin2x , ∴要得到函数y =sin2x 的图象,只需将函数y =sin (2x 3π-)的图象向左平行移动6π个单位.故选B .【点睛】本题主要考查了函数y =A sin (ωx +φ)的图象变换规律的简单应用,属于基础题. 8.函数f (x )=|tan 2x |是( ) A. 周期为π的奇函数 B. 周期为π的偶函数C. 周期为π2的奇函数 D. 周期为π2的偶函数【答案】D 【解析】【详解】∵f (-x )=|tan(-2x )|=|tan 2x |=f (x ), ∴函数f (x )为偶函数.结合图象可得函数f (x )的周期为π2T =. 故选D .9. 下列函数中,图象的一部分如图所示的是( )A. 24sin()33x y π=+B. 224sin()33x y π=- C .24cos()33x y π=+ D. 224cos()33x y π=- 【答案】A 【解析】试题分析:设,根据函数的最大值,得到,函数的周期,所以,,当时,,解得,所以,若要设,那么时,,解得,那么,故选A.考点:的图像【易错点睛】考察了的图像,属于基础题型,本题中的振幅,周期都好求,就是容易求出,函数与X 轴的一个交点是,会错写成,当时,这样求得的,注意是函数与x 轴的交点,是减区间的交点,所以此时代入,这时本题容易出错的一个地方.10.在()0,2π内,使sin cos x x >成立的x 的取值范围为( )A. (,)4ππB. 5(,)44ππ C. 5(,)424ππππ⎛⎫⋃ ⎪⎝⎭, D. 53(,)444ππππ⎛⎫⋃ ⎪⎝⎭, 【答案】B 【解析】 【分析】直接利用三角函数线写出满足不等式的解集即可.【详解】解:在()0,2π内,画出sin x 与cos x 对应的三角函数线是MT ,OM ,如图:满足在()0,2π内,使sin cos x x >的即MT OM >, 所以所求x 的范围是:5(,)44ππ,故选:B.【点睛】本题考查三角函数线解答不等式的应用,考查计算能力,转化思想的应用.注意三角函数线与线段的区别. 11.函数是周期为π的偶函数,且当[0,)2x π∈时,()31f x x =-,则8()3f π的值是( ). A. 4- B. 2-C. 0D. 2【答案】D 【解析】因为函数()f x 是周期为π的偶函数, 所以8()()()3123333f f f ππππ=-==-= 12.给下面的三个命题:①函数sin(2)3y x π=+的最小正周期是2π ②函数3sin()2y x π=-在区间3,2ππ⎡⎫⎪⎢⎣⎭上单调递增 ③54=x π是函数5sin(26y x π=+)的图象的一条对称轴. 其中正确的命题个数( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】①根据函数sin(2)3y x π=+的最小正周期判断正误;②利用函数3sin()2y x π=-在区间上的单调递增区间判断;54=x π代入函数5sin(26y x π=+)的求出最值,说明是否是对称轴,判断③的正误.【详解】解:sin(2)3y x π=+的最小正周期22T ππ==,故sin(2)3y x π=+的最小正周期是2π,①正确; 33,,0222x x ππππ⎡⎫⎡⎫∈⇒-∈-⎪⎪⎢⎢⎣⎭⎣⎭,故3sin()2y x π=-在区间3,2ππ⎡⎫⎪⎢⎣⎭上单调递增,②正确; 5523463ππππ⨯+=+,故sin 13(3y ππ+=≠±),故54=x π不是5sin(26y x π=+)图象的对称轴,③不正确. 故选:C.【点睛】本题考查正弦函数的基本性质,能够利用三角函数的基本性质解决函数的选择问题,是高考常考题型,是基础题.二、填空题(本大题共4小题,每小题5分,共20分)13.63log 2714125g g -++=_______【答案】71 【解析】 【分析】利用指数,对数的运算性质运算即可.【详解】解:()66633233log 271412532log 31425g g g -++=⨯-+⨯983271=⨯-+=,故答案为:71.【点睛】本题考查指数,对数的运算性质,是基础题.14.一个扇形的面积为1,周长为4,则此扇形中心角的弧度数为____. 【答案】2 【解析】 【分析】根据扇形的面积公式和弧长公式,列出关于圆心角和半径的方程,即可求出【详解】设扇形的半径为r ,中心角为α,所以211242r r rαα⎧=⎪⎨⎪=+⎩,解得2α=,1r =, 故答案为2.【点睛】本题主要考查扇形的面积公式和弧长公式的应用.15.函数224sin 4cos y x x =--的最大值是_______函数取最大值时对应的x 的值是_______ 【答案】 (1). 6 (2). 2,2x k k Z ππ=-∈【解析】 【分析】化余弦为正弦,然后利用二次函数最值的求法求得函数的最值,并求得使函数取得最值时x 的取值.【详解】解:()222124sin 41sin 24sin 44sin 2c s 3o x x x y x x ⎛⎫=---=-- ⎪⎝⎭=--,当sin 1x =-,即2,2x k k Z ππ=-+∈时,函数取得最大值,最大值为24(1)4(1)26⨯--⨯--=.故答案为:6;2,2x k k Z ππ=-∈.【点睛】本题考查了三角函数的最值问题,也考查了二次函数在闭区间上的最值问题,是基础题.16.已知函数()2131log 1x x x f x x x ⎧-+≤⎪=⎨⎪⎩,,,>若对任意的x R ∈,不等式()234f x m m ≤-恒成立,则实数m 的取值范围是________. 【答案】14m ≤-或m 1≥ 【解析】 【分析】求出分段函数的最大值,不等式23()4f x m m ≤-恒成立等价于2max 3()4f x m m ≤-,又max 1()4f x =,解不等式求出实数m 的取值范围即可. 【详解】解:①当1x ≤时,211()()24f x x x x =-+=--+,则1(),4f x ⎛⎤∈-∞ ⎥⎝⎦,②当1x >时,13()log f x x =,即 ()(),0f x ∈-∞,综上可知:max 1()4f x =, 则21344m m ≤-, 解得14m ≤-或m 1≥,故答案为: 14m ≤-或m 1≥.【点睛】本题考查了分段函数值域的求法,主要考查了由不等式恒成立求参数的范围,重点考查了运算能力,属中档题.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17. 已知02πα<<,4sin 5α. (1)求tan α值;(2)求sin()2cos 2sin()cos()παπααπα⎛⎫+-+ ⎪⎝⎭--++的值.【答案】(1) 4tan 3α=;(2) 4. 【解析】 【分析】(1)由条件利用同角三角函数的基本关系求出3cos 5α=,即可求得tan α的值;(2)把要求的式子利用诱导公式化为sin sin cos ααα-,进而而求得结果.【详解】(1) 因为02πα<<,4sin 5α, 故3cos 5α=,所以4tan 3α=,(2) sin()2cos sin 2sin 2sin()cos()sin cos παπααααπααα⎛⎫+-+ ⎪-+⎝⎭=--++-4sin tan 44sin cos ta 1313n ααααα====--- 【点睛】本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.对诱导公式的记忆不但要正确理解“奇变偶不变,符号看象限”的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.18.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图.列表:作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的. (3)求函数()f x 图象的对称轴方程.【答案】(1)见解析(2) 见解析(3) 22,3x k k Z ππ=+∈. 【解析】 【分析】(1)先列表如图确定五点的坐标,后描点并画图,利用“五点法”画出函数1sin()26y x π=+在长度为一个周期的闭区间的简图;(2)依据sin y x =的图象上所有的点向左平移6π个单位长度,sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到1sin 26y x π⎛⎫=+⎪⎝⎭的图象,再把所得图象的纵坐标伸长到原来的2倍(横坐标不变),得到12sin 26y x π⎛⎫=+ ⎪⎝⎭的图象;(3)令1262x kx ππ+=+,求出x 即可. 【详解】解:(1)先列表,后描点并画图126x π+ 02ππ32π 2πx3π-23π 53π 83π 113πy 0 1-1;(2)把sin y x =的图象上所有的点向左平移6π个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin()26y x π=+的图象,即1sin()26y x π=+的图象; (3)由12,2,2623x kx x k k Z ππππ+=+=+∈, 所以函数的对称轴方程是22,3x k k Z ππ=+∈. 【点睛】本题考查五点法作函数sin()y A x ωϕ=+的图象,函数sin()y A x ωϕ=+的图象变换,考查计算能力,是基础题.19.已知()()2sin 206f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π.(1)求ω的值,并求()f x 的单调递增区间; (2)求()f x 在区间50,12π⎡⎤⎢⎥⎣⎦上的值域. 【答案】(1)1ω=,(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)[]1,2-【解析】试题分析:(1)由最小正周期为π,得1ω=,由222262k x k πππππ-+≤-≤+,()k Z ∈,即可解得()f x 的单调递增区间; (2)由50,12x π⎡⎤∈⎢⎥⎣⎦,得22,663x πππ⎡⎤-∈-⎢⎥⎣⎦,进而可得值域. 试题解析:解:(1)由()2sin 26f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为π,得22ππω=,∵0ω>,∴1ω=,()2sin 26f x x π⎛⎫=- ⎪⎝⎭,令26z x π=-,则2sin y z =,sin z 的单调递增区间为()2,222k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 由2222k z k ππππ-+≤≤+得63k x k ππππ-+≤≤+,故()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)因为50,12x π⎡⎤∈⎢⎥⎣⎦,所以22,663x πππ⎡⎤-∈-⎢⎥⎣⎦, sin 26x π⎛⎫- ⎪⎝⎭的取值范围是1,12⎡⎤-⎢⎥⎣⎦,故()f x 的值域为[]1,2-.点睛:研究三角函数()()f x Asin x ωϕ=+的性质,最小正周期为2πω,最大值为A .求对称轴只需令π2,2x k k Z ωϕπ+=+∈,求解即可, 求对称中心只需令,x k k Z ωϕπ+=∈,单调性均为利用整体换元思想求解.20.已知函数f (x )=log a (x +2)-1(a >0,且a ≠1),g (x )=12⎛⎫ ⎪⎝⎭x -1. (1)若函数y =f (x )的图象恒过定点A ,求点A 的坐标;(2)若函数F (x )=f (x )-g (x )的图象过点12,2⎛⎫ ⎪⎝⎭,试证明函数F (x )在x ∈(1,2)上有唯一零点.【答案】(1) 过点A (-1,-1),(2) 函数F (x )在(1,2)上有唯一零点 【解析】试题分析:(1)由对数函数log ay x =恒过点(1,0)可得,令x+2=1,则()log 2log 10a a x +==,即图象恒过A(-1,-1);(2)先求出函数F(x)的解析式,根据图象恒过点12,2⎛⎫ ⎪⎝⎭,可求出a 值,代回进而确定函数在(1,2)上是增函数,根据零点存在性定理可判断出零点唯一. 试题解析:(1)∵函数y =log a x 的图象恒过点(1,0),∴函数f (x )=log a (x +2)-1(a >0,且a ≠1)的图象恒过点A (-1,-1).(2)F (x )=f (x )-g (x )=log a (x +2)-1-12⎛⎫ ⎪⎝⎭x -1,∵函数F (x )的图象过点12,2⎛⎫ ⎪⎝⎭,∴F (2)=12,即log a 4-1-12⎛⎫⎪⎝⎭2-1=12, ∴a =2.∴F (x )=log 2(x +2)-12⎛⎫⎪⎝⎭x -1-1. ∴函数F (x )在(1,2)上是增函数. 又∵F (1)=log 23-2<0,F (2)=12>0, ∴函数F (x )在(1,2)上有零点, 故函数F (x )在(1,2)上有唯一零点.21.如图,函数2sin()y x πϕ=+,x ∈R 其中02πϕ≤≤的图象与y 轴交于点(0,1).(1)求ϕ的值;(2)求函数2sin()y=x πϕ+的单调递增区间; (3)求使1y ≥的x 的集合.【答案】(1)6π,(2)2212233k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,(3)2|22,3x k x k k ⎧⎫≤≤+≡⎨⎬⎩⎭Z 【解析】【分析】(1)由函数图像过定点,代入运算即可得解; (2)由三角函数的单调增区间的求法求解即可; (3)由1y ≥,求解不等式1sin 62x ππ⎛⎫+≥ ⎪⎝⎭即可得解.【详解】解:(1)因为函数图象过点(0,1), 所以2sin 1=ϕ,即1sin 2ϕ=.因为02πϕ≤≤,所以6π=ϕ.(2)由(1)得2sin 6y x ππ⎛⎫=+ ⎪⎝⎭,所以当22262k x k ππππππ-+≤+≤+,k Z ∈,即212233k x k -+≤≤+,k Z ∈时, 2sin 6y x ππ⎛⎫=+ ⎪⎝⎭是增函数,故2sin 6y x ππ⎛⎫=+ ⎪⎝⎭的单调递增区间为212,233k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈.(3)由1y ≥,得1sin 62x ππ⎛⎫+≥ ⎪⎝⎭, 所以522666k x k ππππππ+≤+≤+,k Z ∈, 即2223k x k ≤≤+,k Z ∈, 所以1y ≥时,x 的集合为2|22,3x k x k k Z ⎧⎫≤≤+∈⎨⎬⎩⎭. 【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.22.已知函数()cos()(0)2f x x A πωϕωω=+>,>0,0<<的部分图象,如图所示.(1)求函数解析式; (2)若方程()f x m =在13,612ππ⎡⎤-⎢⎥⎣⎦有两个不同的实根,求m 的取值范围. 【答案】(1) ()cos(2)3f x x π=+ (2) 1m =,或者(1,0)m ∈-【解析】 【分析】(1)由图象可得周期,进而得ω,由五点作图的知识可得ϕ; (2)作出函数()cos(2)3f x x π=+在13,612ππ⎡⎤-⎢⎥⎣⎦上的图象,以及直线y m = 可得结论. 【详解】解答(1)由题中的图象知,5263T ππ=-,即T π=, 所以22Tπω==,根据五点作图法, 令23πϕπ⨯+=,得到3πϕ=,所以()cos(2)3f x x π=+;(2)由()cos(2)3f x x π=+在13,612ππ⎡⎤-⎢⎥⎣⎦上的图象知,当1m =,或者(1,0)m ∈-上有两个不同的实根.【点睛】本题是由三角函数图象和函数方程的结合,主要训练学生运用五点作图法来找出五角函数,利用函数方程的观点进行分析和解决求根问题.。

相关文档
最新文档