过控课设3:双闭环比值控制系统

合集下载

三级液位仿真系统双闭环比值控制系统实验报告

三级液位仿真系统双闭环比值控制系统实验报告

三级液位仿真系统双闭环比值控制系统实验报告实验目的:研究三级液位仿真系统的双闭环比值控制系统的控制性能。

实验原理:三级液位仿真系统由三个互相连接的水罐组成,每个水罐包含一个水泵和一个液位传感器。

具体地说,第一个水罐是输入罐,第二个水罐是中间罐,第三个水罐是输出罐。

输入罐和中间罐之间通过一个水泵连接,中间罐和输出罐之间通过另一个水泵连接。

每个水罐的液位传感器用于测量液位。

控制目标是使输出罐的液位与输入罐的液位的比值保持特定的设定值。

为了实现这个目标,可以采用双闭环控制策略。

外环控制器根据输出罐的液位误差来调整中间罐的液位设定值,内环控制器根据中间罐的液位误差来调整输出罐的液位设定值。

这样,中间罐的液位将根据外环控制器的输出、输出罐的液位将根据内环控制器的输出来调节。

实验步骤:1. 搭建三级液位仿真系统并连接控制器。

2. 设定输入罐的液位设定值,进行稳定步变响应实验,记录输出罐的液位波动情况。

3. 分析实验结果,评估控制性能。

4. 重复步骤2和步骤3,分别设定不同的输入罐的液位设定值,比较不同设定值下的控制性能。

实验结果:根据实验步骤进行实验后,记录并分析实验结果,得出如下结论:1. 在稳定步变响应实验中,输出罐的液位波动较小,表明双闭环比值控制系统具有较好的控制性能。

2. 随着输入罐的液位设定值的增加,输出罐的液位波动增加,说明双闭环比值控制系统对于高液位设定值下的控制性能稍有不足。

实验结论:通过这个实验,我们得出了三级液位仿真系统双闭环比值控制系统的控制性能。

实验结果表明,双闭环比值控制系统能够实现较好的液位控制性能,但在高液位设定值下稍有不足。

这个实验为进一步研究和改进液位控制系统提供了参考依据。

过控课程设计(涡轮流量计双闭环流量比值控制系统设计)

过控课程设计(涡轮流量计双闭环流量比值控制系统设计)

二○一○~二○一一学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:学号:姓名:指导教师:陈琳二○一○年十一月一、设计题目涡轮流量计双闭环流量比值控制系统设计二、设计任务该设计可在A3000-FS 实验台上完成。

图1中1#管流量Q1为主变量,2#管流量Q2为从变量,可设计串级调节器控制FV101满足系统要求。

表1 连接端配置 测量或控制量 测量或控制量标号1#涡轮流量计 FT101 2#涡轮流量计 FT102 电动调节阀FV101 ……以上连接图和仪表仅为本控制系统中的设计提供思路,并不完整,其它部分还需根据自己的设计思路添加。

三、功能要求1) 有组态界面,可观察控制效果,用户操作方便。

2) 可手动输入数据,比如主动量设置、流量比值设置等。

3) 工艺参数在线曲线,可观察控制系统的运行效果。

4) 可在线修改工艺参数。

5)对扰动有较好的抑制能力。

四、控制原理FT 1022#调节阀FV101FT 101比值器调节器Q 2Q 11#图1 比值控制原理示意图单回路控制系统解决了工艺生产过程自动化中大量的参数定值问题。

但是,随着现代工业生产的迅速发展,工艺操作条件的要求更加严格,对安全运行和经济性及对控制质量的要求也更高。

但回路控制系统往往不能满足生产工艺的要求,在这样的情况下,双闭环串级控制系统就应运而生。

双闭串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。

双闭环串级控制系统,就其主回路来看是一个定值控制系统,而副回路则是一个随动系统,主调节器的输出能按照负荷和操作条件的变化而变化,从而不断改变副调节器的给定值,使副回路调节器的给定值适应负荷并随操作条件而变化,即具有一定的自适应能力。

正确合理地设计一个串级控制系统是要其能充分发挥如上所述系统的各种特点。

过控简答题总结

过控简答题总结

1、什么是过程控制系统?典型过程控制系统由哪几部分组成?过程控制系统:一般指工业生产过程中自动控制系统的变量是温度、压力、流量、液位、成分等这样一些变量的系统。

组成:过程控制系统=检测和控制仪表+被控过程2、过程控制的主要任务是什么?过程控制有哪些特点?任务:对生产过程中的重要参数(温度、压力、流量、物位、成分、湿度等)进行控制,使其保持恒定或按一定规律变化。

特点:1.控制对象复杂、控制要求多样2.控制方案丰富3.控制对象大多属于慢过程4.大多数工艺要求定值控制5.大多使用标准化的检测、控制仪表及装置。

3、过程控制系统的分类?按设定值的形式分类:1)定值控制系统——设定值恒定不变。

2)随动控制系统——设定值随时可能变化。

3)程序控制系统——设定值按预定的时间程序变化。

按系统的结构特点分类:1)反馈控制系统(闭环控制系统)2)前馈控制系统(开环控制系统)3)复合控制系统4、什么是被控对象的静态特性?什么是被控对象的动态特性?二者之间有什么关系?稳态—把被控变量不随时间变化的平衡状态称为系统的稳态(静态)。

静态特性—静态时系统各环节的输入输出关系。

动态—把被控变量随时间变化的不平衡状态称为系统的动态。

动态特性—在动态过程中系统各环节的输入输出变化关系。

静态特性和动态特性都是反映被控参数与控制变量之间的关系,不同点是一个处于静态一个处于动态过程,而这两种过程又是控制系统正常运行中的两种不同状态,只有综合两种性能指标才能反映出一个系统的特性与品质。

5、为什么常选用阶跃信号进行系统分析?阶跃信号的输入突然,对被控变量的影响也最大。

如果一个控制系统能够有效地克服这种干扰,那么对其它比较缓和的干扰也能很好地克服。

阶跃信号的形式简单,容易实现,便于分析、实验和计算。

故更多使用阶跃信号。

6、什么是控制器的控制规律?控制器有哪些基本控制规律?控制规律是指控制器的输出信号与输入偏差信号之间的关系。

基本控制规律有:位式控制、P调节、PI调节、PD调节、PID调节。

三级液位仿真系统双闭环比值控制系统实验报告

三级液位仿真系统双闭环比值控制系统实验报告

三级液位仿真系统双闭环比值控制系统实验报告实验报告:三级液位仿真系统双闭环比值控制系统一、引言液位控制是工业自动化中的重要应用之一、液位控制系统的目标是使液位保持在设定值附近,并且在输入条件发生变化时能够快速恢复到稳定状态。

本实验针对三级液位仿真系统,设计了双闭环比值控制系统,旨在通过控制液位流量比值来实现液位的稳定控制。

二、实验原理在三级液位仿真系统中,通过给定流量值控制输入泵的流量,控制出口泵的速度以满足液位控制要求。

传感器采集液位信号并反馈给控制系统,经过控制计算得到输出调节量,控制输入泵和出口泵的流量值。

双闭环比值控制系统将比例控制器、积分控制器和比例-积分二次控制器结合起来,通过对输入泵和出口泵的流量进行控制,实现液位的稳定控制。

其中,比例控制器通过控制出口泵的速度来调节液位;积分控制器通过控制输入泵的流量来增加系统的稳定性。

比例-积分二次控制器结合了比例控制器和积分控制器的优点,既能快速响应输出,又能保持系统的稳态。

三、实验步骤1.连接实验系统:将液位传感器和流量传感器分别连接到控制系统进行信号采集。

2.设置参数:根据实际系统,设置合适的参数,包括液位传感器和流量传感器的量程、比例控制器和积分控制器的参数等。

3.运行系统:启动实验系统,并设置液位的设定值。

4.控制开关:根据实验要求,打开或关闭比例控制器、积分控制器和比例-积分二次控制器。

5.实验记录:记录实验系统的响应速度、稳态误差和稳定性等参数,并与理论预期进行对比分析。

四、实验结果通过实验控制系统成功实现了液位稳定控制。

实验结果表明,比例-积分二次控制器的控制效果最好,能够快速响应输出,且稳定性较好。

比例控制器的控制效果次之,响应速度较快,但稳定性较差。

积分控制器的控制效果最差,响应速度相对较慢。

五、实验总结本实验通过三级液位仿真系统的双闭环比值控制系统,成功实现了液位的稳定控制。

实验结果表明,比例-积分二次控制器是一种有效的控制方法,能够在保证系统响应速度的同时保持稳态。

运动控制课程设计三闭环控制系统详解

运动控制课程设计三闭环控制系统详解

《控制系统设计》课程设计报告书题目:带电流变化率内环的三环直流调速系统设计与实践学院:信息工程学院专业:自动化学生姓名:陈臻誉学生学号: 2012550413组员姓名:张凯林完成时间: 2015年7月指导教师:李辉成绩评定:目录一、选题背景 (3)二、题目要求 (3)2.1设计目的 (4)2.2 设计内容 (4)2.3设计要求 (5)2.4电机拖动控制系统设计与仿真 (5)三、方案论证 (5)四、过程论述 (6)4.1电流调节器设计 (6)4.1.1确定时间常数 (6)4.1.2选择电流调节器结构 (7)4.1.3计算调节器电阻和电容 (8)4.2速度调节器设计 (8)4.2.1计算转速调节器参数 (8)4.2.2计算调节器电阻和电容 (9)4.2.3校核转速超调量 (9)五、结果分析 (10)5.1利用MATLAB 仿真软件系统建模及仿真实验及实验结果 (10)双闭环仿真实验 (10)5.1.2双闭环调速系统调节参数 (11)5.1.3双闭环系统仿真模型 (13)5.1.4仿真波形分析 (14)5.2三闭环仿真实验 (16)波形结果 (18)六、课程设计总结 (19)七、参考文献 (20)带电流变化率内环的三环直流调速系统设计与实践一、选题背景本课题为了实现转速和电流两种负反馈分别起作用,在V-M调速系统中设计两个调节器,分别引入转速负反馈和电流负反馈。

二者之间实行嵌套联接。

把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环,形成转速、电流双闭环调速系统。

采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。

为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值I的恒流过程。

按照反馈控制规律,采用某个物理量的负反馈就可dm以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。

双闭环机器人运动控制系统(课程设计)

双闭环机器人运动控制系统(课程设计)

双闭环机器人运动控制系统(课程设计)1. 引言本文档旨在设计一个双闭环机器人运动控制系统。

该系统基于双闭环反馈控制理论,在实现机器人精确控制的同时,提高系统的稳定性和鲁棒性。

2. 系统结构该双闭环机器人运动控制系统由三个主要部分组成:传感器子系统、控制器子系统和执行器子系统。

2.1 传感器子系统传感器子系统负责感知机器人当前的位置和速度。

常用的传感器包括编码器、陀螺仪和加速度计。

编码器用于测量关节位置,陀螺仪用于测量机器人的倾斜角度,加速度计用于测量机器人的线加速度。

2.2 控制器子系统控制器子系统根据传感器子系统的反馈信号,计算控制信号并发送给执行器子系统。

控制器常用的算法包括PID控制器和模型预测控制器。

PID控制器根据当前误差、误差积分和误差变化率计算控制信号,模型预测控制器基于机器人的动力学模型进行优化控制。

2.3 执行器子系统执行器子系统根据控制器子系统发送的控制信号,驱动机器人的运动。

常用的执行器包括电机和液压缸。

电机通过控制电流或电压实现位置和速度的控制,液压缸通过调节液压流量控制位置和速度。

3. 系统工作流程该双闭环机器人运动控制系统的工作流程如下:1. 传感器子系统感知机器人的位置和速度,将反馈信号发送给控制器子系统。

2. 控制器子系统根据传感器子系统的反馈信号计算控制信号,将控制信号发送给执行器子系统。

3. 执行器子系统根据控制器子系统的控制信号驱动机器人的运动。

4. 重复步骤1-3,实现机器人的精确控制。

4. 总结双闭环机器人运动控制系统是一种基于双闭环反馈控制理论的控制系统,可实现机器人的精确控制。

该系统由传感器子系统、控制器子系统和执行器子系统组成,通过传感器子系统感知机器人的位置和速度,控制器子系统计算控制信号并发送给执行器子系统,执行器子系统驱动机器人的运动。

通过该系统的设计和实现,可以提高机器人系统的稳定性和鲁棒性。

参考文献[1] 张三, 李四. (2010). 机器人运动控制理论与应用. 机械工业出版社.[2] 王五, 赵六. (2015). 机器人控制系统设计与应用. 电子工业出版社.。

双闭环比值控制系统

双闭环比值控制系统

项目五 比值控制系统
5.1 概述
工业生产过程中,经常需要两种或两种以上的物 料按一定比例混合或进行反应。一旦比例失调,就会 影响生产的正常进行,影响产品质量,浪费原料,消 耗动力,造成环境污染,甚至造成生产事故。最常见 的是燃烧过程,燃料与空气要保持一定的比例关系, 才能满足生产和环保的要求;造纸过程中,浓纸浆与 水要以一定的比例混合,才能制造出合格的纸浆;许 多化学反应的多个进料要保持一定的比例。因此,凡 是用来实现两种或两种以上的物料量自动地保持一定 比例关系以达到某种控制目的的控制系统,称为比值 控制系统。
项目五 比值控制系统
1.采用信号范围为4~20 mA DC的DDZ-Ⅲ型仪表
当流量从0变至最大值Fmax时,变送器对应的输出为4~20 mA DC,则流量的任一中间值F所对应的输出电流为
I= F 16+4
Fmax

F=

I

16
4

Fmax
由式(5-3)可得工艺要求的流量比值为
K= F2 F1
= I2 I1

4 4
F2 max F1max
由此可折算成仪表的比值系数K ',为
(5-2) (5-3) (5-4)
K ' I 2 4 K F1max
I1 4
F2 m ax
(5-5)
项目五 比值控制系统
式中,F1max——主动量变送器的量程上限; F2max——副流量变送器的量程上限; I1——主流量的测量信号值; I2——副流量的测量信号值。 2.信号范围为0~10 mA DC的DDZ-Ⅱ型仪表
项目五 比值控制系统
比值控制系统
内容提要 生产过程中经常要求两种或两种以上的物料 以一定的比例混合以后参加化学反应,以保证反 应安全、充分并节约能量,由此提出了比值控制。 本章将重点讲述比值控制系统的常见结构类型、 比值系数的计算、比值控制系统方案的实施、实 施中的有关问题及比值控制系统的投运与整定的 步骤。

双闭环比值控制系统介绍

双闭环比值控制系统介绍
副流量Q2与主流量Q1的比值关系为
K Q2 Q1
双闭环比值控制系统框图工艺流程: 主ຫໍສະໝຸດ 数:原料油流量; 从参数:
催化剂流量;
PID控制器调试步骤:
1. 要求先整定主流量回路(原料油流量回路)的调节 器参数,待主回路系统稳定后,再整定从回路(催 化剂流量回路)中的调节器参数 ;
2. 对于主、从回路参数的整定实行先比例、后积分, 再微分的整定步骤;
实验内容:
1. 调节两个PID控制器参数,得到下主、从参数的衰 减比为4:1,并记录下调试过程中的参数和截图, 填写指导书中的表格;
2. 改变物料比例系数,观察流量比值的变化,并截图;
3. 加入扰动(包括主、从回路扰动),观察其克服干 扰过程,并截图;
4. 对截图曲线进行分析与说明;
5. 回答指导书中本实验后面的问题。
衰减比是衰减程度的指标,它是前后相邻两个峰值的比。习惯 表示为 n:1,一般 n 取为4~10之间为宜。
一、双闭环比值控制系统概况
实现两个或两个以上参数符合一定比例关系的控制 系统,称为比值控制系统。通常为流量比值控制系统。
几个概念 主物料、主动量(Q1 、主流量)
从物料、从动量(Q2 、副流量)
要求先整定主流量回路原料油流量回路的调节器参数待主回路系统稳定后再整定从回路催化剂流量回路中的调节器参数对于主从回路参数的整定实行先比例后积分再微分的整定步骤
双闭环比值控制系统 介绍
杨春曦
1.最大偏差或超调量 指在过渡过程中,被控变量偏离给定值的最大数值。在衰减
振荡过程中,最大偏差就是第一个波的峰值。 2. 衰减比

双闭环比值控制系统仿真

双闭环比值控制系统仿真

学号:01课程设计报告题双闭环比值系统仿真目学计算机科学与信息工程学院院专自动化业班2013级自动化3级学生刘博姓名指导教师吴诗贤2016年11月26日摘要 (3)一、课程设计任务 (5) (5)(1) ....................................................................PID控制原理及PID参数整定概述.. (5)(2) ....................................................................基于稳定边界法的PID控制器参数整定算法. (7)(3) ....................................................................利用Simulink建立仿真模型. (9)(4) ····································································参数整定过程 (14)(5) ....................................................................调试分析过程及仿真结果描述 (20)三、总结 (20)参考文献21双闭环比值控制系统仿真摘要:双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。

双闭环流量比值控制比值的课程设计任务书

双闭环流量比值控制比值的课程设计任务书

一、设计题目双闭环流量比值控制二、主要内容熟悉THJ-2型高级过程控制系统实验装置,获取电动阀支路的流量和变频器-磁力泵支路的流量曲线,利用实验建模法求出它们的数学模型。

根据串级控制,选择合适的调节器控制规律,并在Matlab上进行仿真。

最终在过程控制系统实验装置平台上完成实际系统的调试,并说明两种方法的所得结果的差别。

三、具体要求1.从组成、工作原理上对工业型传感器、执行机构有一深刻的了解和认识。

2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。

3.根据其数学模型,选择被控规律和整定调节器参数。

4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。

5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。

6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。

四、进度安排第一周分组;查找资料;对象模型的获取,Matlab仿真第二周系统调试,撰写课程设计报告,答辩五、完成后应上交的材料课程设计报告。

六、总评成绩指导教师签名日期年月日系主任审核日期年月日目录一、被控对象以及仪器仪表的描述二、控制方案选择及其论述,控制系统方框图及其说明三、对象的特性曲线测试,对象的数学模型四、matlab仿真五、控制系统连线示意图及说明,并且记录最佳控制结果的调节器参数以及结果曲线六、心得体会一、被控对象以及仪器仪表的描述1.1系统简介“THJ-2型高级过程控制系统实验装置”是基于工业过程的物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。

该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈—反馈控制,比值控制,解耦控制等多种控制形式。

1.2被控对象由不锈钢储水箱、上、中、下三个串接有机玻璃圆筒形水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套构成)、冷热水交换盘管和敷塑不锈钢管道组成。

双闭环系统课程设计

双闭环系统课程设计

1双闭环系统的设计1.1设计内容第一,双闭环直流电动机控制系统设计。

分析系统工作原理,进行系统总体设计。

分析设计出控制系统框图,控制系统动态结构图,控制系统稳态结构图,双闭环直流电动机控制系统原理图设计。

根据系统框图和任务分解结果,进行典型环节和模块电路的设计。

设计转速电流环电路,触发电路驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可),控制主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等),检测及给定电路。

第二,控制系统各单元参数测试和计算。

测出各环节的放大倍数及时间常数,在确定调速范围D= 10时比较开环、单环和双环时的动态响应。

第三,PID控制算法的确定。

以仿真结果或实验结果为根本依据,结合理论,确定合理的PID控制策略和控制参数。

第五,MATLAB仿真验证。

利用MATLAB下的SIMULINK软件进行系统仿真,同时将结果在示波器上显示出来,以验证设计的正确性。

第六,设计要求:为某生产机械设计一个调速范围宽、起制动性能好(可选做)的直流双闭环系统。

已知系统中直流电动机主要数据如下:(1)一台直流电机,直流电机额定数据:PN=60KW,UN=220V,IN=308A,nN=1OOOr/min,电枢回路总电阻R=0.18 3电磁时间常数Tl = 0.012s,机电时间常数Tm= 0.12s,电动机系数Ce= 0.196V- min/r。

(2)主要技术指标:调速范围0~1000r/min,电流过载倍数入=11.,系统静特性良好,无静差。

(3)动态性能指标:空载起动到额定转速超调量S贰10%,电流超调量5%,动态速降△ n W 10%调速系统的过渡过程时间(调节时间)ts W1s1.2系统主电路设计直流调速系统常用的直流电源有三种:旋转变流机组;静止式可控整流器;直流斩波器或脉宽调制变换器。

机组供电的直流调速系统在20世纪60年代以前曾广泛地使用着,但该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机还要仪态励磁发电机,因此设备多,体积大,费用高,效率低。

双闭环比值控制

双闭环比值控制

过程控制工程课程设计报告设计题目:双闭环比值控制目录一.双闭环比值控制系统简介 (3)二.双闭环比值控制系统仿真综合实例 (4)三.双闭环比值控制系统实例步骤及仿真图 (5)四.参考历史文献 (12)五.心得体会 (15)一.双闭环比值控制系统双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。

从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。

主、从控制回路均选择PI 控制方式。

二.双闭环比值控制系统系统仿真综合实例双闭环比值控制系统的工艺图及控制框图如下图所示。

假设主动控制量控制系统的数学模型和从动控制量控制系统的数学模型为t e s s G 5.1153)(-+=和s e s s s G 5.)120)(110(3)(-++=。

三.双闭环比值控制系统实例及仿真图(1)分析主动量控制系统和从动量控制系统稳定性。

执行该系统的Bode 图得,系统开环稳定,幅值稳定裕量7.05dB ,对应增益为2.25。

(2)选择控制系统结构和调节器形式。

控制系统框图如图下图1所示。

其中k 代表比值,在此设定为4.)(1s GC 和)(2s GC 分别为主动量控制环和从动控制环的控制器,按前述分析取PI 形式。

图1控制系统框图(3)整定主动量回路控制器参数。

仍采用稳定边界法整定系统参数。

设定停止时间为60.0,Relative tolerance设定为1e-5。

仿真图如下图2。

图2主动量回路控制器参数整定仿真图控制Kp不断减小为8.2时,得到等幅振荡图如下图3,放大图为图4,估计出临界振荡周期Tk为4。

Ki=Kp*T/Ti。

图3图4由稳定边界法临界振荡计算公式得Kp=2.2*8.2/10=1.804;Ki=8.2*(4/1.2)/1000=0.333。

双闭环比值控制系统

双闭环比值控制系统

项目五 比值控制系统
5.1 概述
工业生产过程中,经常需要两种或两种以上的物 料按一定比例混合或进行反应。一旦比例失调,就会 影响生产的正常进行,影响产品质量,浪费原料,消 耗动力,造成环境污染,甚至造成生产事故。最常见 的是燃烧过程,燃料与空气要保持一定的比例关系, 才能满足生产和环保的要求;造纸过程中,浓纸浆与 水要以一定的比例混合,才能制造出合格的纸浆;许 多化学反应的多个进料要保持一定的比例。因此,凡 是用来实现两种或两种以上的物料量自动地保持一定 比例关系以达到某种控制目的的控制系统,称为比值 控制系统。
5.2.1 单闭环比值控制系统
单闭环比值控制系统是为了克服开环比值控制方案的不足, 在开环比值控制系统的基础上,增加一个从动量的闭环控制系统, 如图5.2所示。
图5.2 单闭环比值控制系统
与串级控制系统的区别?
项目五 比值控制系统
在稳定状态下,主、副流量满足工艺要求的比 值,F2/F1=K。当主流量变化时,其主流量信号F1 经变送器送到比值计算装置(通常为乘法器或比值 器),比值计算装置则按预先设置好的比值使输出 成比例地变化,也就是成比例地改变副流量控制器 的设定值,此时副流量闭环系统为一个随动控制系 统,从而使F2跟随F1变化,使得在新的工况下,流 量比值K保持不变。当主流量没有变化而副流量由 于自身扰动发生变化时,副流量闭环系统相当于一 个定值控制系统,通过自行控制克服扰动,使工艺 要求的流量比值仍保持不变。
图5.3 丁烯洗涤塔进料与 洗涤水之比值控制
项目五 比值控制系统
单闭环比值控制系统中,虽然两物料比值一 定,但由于主动量是不受控制的,所以总物料量 (即生产负荷)是不固定的,这对于负荷变化幅度 大—物料又直接去化学反应器的场合是不适合的。 因负荷的波动有可能造成反应不完全,或反应放出 的热量不能及时被带走等,从而给反应带来一定的 影响,甚至造成事故。此外,这种方案对于严格要 求动态比值的场合也是不适应的。因为这种方案的 主动量是不定值的,当主动量出现大幅度波动时, 从动量相对于控制器的设定值会出现较大的偏差, 也就是说,在这段时间里,主、从动量的比值会较 大地偏离工艺要求的流量比,即不能保证动态比值。

课程设计 双闭环流量比值控制系统

课程设计 双闭环流量比值控制系统

一.设计任务分析1.1设计任务的描述在了解、熟悉和掌握双闭环流量比值控制系统的工艺流程和生产过程的静态和动态特性的基础之上,根据生产过程对控制系统所提出的安全性、经济性和稳定性要求,应用控制理论对控制系统进行分析和综合,最后采用计算机控制技术予以实现。

1.2设计的目的通过对一个完整的生产过程控制系统的课程设计,使我们进一步加深对《过程控制系统》课程中所学内容的理解和掌握,提高我们将《过程检测与控制仪表》、《自动控制原理》、《微机控制技术》和《过程工程基础》等课程中所学到知识综合应用的能力。

锻炼学生的综合知识应用能力,让学生了解一般工程系统的设计方法、步骤,系统的集成和投运。

从而培养学生分析问题和解决问题的能力。

1.3设计的要求1.从组成、工作原理上对工业型流量传感器、执行机构有一深刻的了解和认识。

2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。

3.根据其数学模型,选择被控规律和整定调节器参数。

4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。

5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。

6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。

1.4本次设计的具体要求1.控制电磁阀的开度实现流量的单闭环的PI调节。

2.通过变频器控制电磁阀运行实现流量的单闭环的PI调节3.用比例控制系统使副回路的流量跟踪主回路的流量,满足一定的工艺生产要求二.总体设计方案2.1方案论证根据实际生产情况,比值控制系统可以选择不同的控制方案,比值控制系统的控制方案主要有开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统几种。

方案一:单闭环控制系统原理设计的系统框图如图2.1所示。

图2.1 单闭环流量比值控制系统原理图单闭环流量比值控制系统与串级控制系统相似,但功能不同。

可见,系统中没有主对象和主调节器,这是单闭环比值控制系统在结构上与串级控制不同的地方,串级控制中的副变量是调节变量到被控变量之间总对象的一个中间变量,而在比值控制中,副流量不会影响主流量,这是两者本质上的区别。

双闭环流量比值控制系统设计

双闭环流量比值控制系统设计

目录摘要 (1)双闭环流量比值控制系统设计 (2)1、双闭环比值控制系统的原理与结构组成 (2)2、课程设计使用的设备 (3)3、比值系数的计算 (4)4、设备投运步骤以及实验曲线结果 (5)5、总结 (16)6、参考文献 (17)摘要在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。

一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。

这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。

因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。

需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。

由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。

在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。

当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。

双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。

当然与之成比例的从物料Q2变化也将比较平稳。

根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。

微型计算机控制技术课程设计 双闭环直流电动机数字调速系统设计

微型计算机控制技术课程设计   双闭环直流电动机数字调速系统设计

双闭环直流电动机数字调速系统设计摘要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。

文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。

此外,本文中还采用了芯片IR2112S作为直流电机正转调速功率放大电路的驱动模块来完成了在主电路中对直流电机的控制。

另外,本系统中使用了光电编码器对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。

在软件方面,文章中详细介绍了PI运算程序,单片机产生PWM波形的程序,初始化程序等的编写思路和具体的程序实现,M法数字测速及动态LED显示程序设计,A/D转换程序及动态扫描LED显示程序和故障检测程序及流程图。

关键词: PWM信号直流调速双闭环 PI调节前言本文主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

PWM控制技术就是以该结论为理论基础,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。

到目前为止,已经出现了多种PWM控制技术。

PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《过程控制》
课程设计报告
题目:双闭环比值控制系统的分析与设计姓名:
学号:
专业:
年级:
指导教师:
目录
1 任务书-------------------------------------------------------- 1 1.1设计题目 --------------------------------------------------- 1 1.2设计任务 --------------------------------------------------- 1 1.3原始数据 --------------------------------------------------- 2
1.4设计内容 --------------------------------------------------- 2
2 研究背景 ------------------------------------------------------- 3
3 研究意义 ------------------------------------------------------- 4
4 研究内容 ------------------------------------------------------- 4
5 论文组织 -------------------------------------------------------- 5 5.1衰减曲线法整定主动量回路控制器参数 -------------------------- 5 5.2反应曲线法整定从动量回路控制器参数 -------------------------- 8 5.3双闭环比值控制系统仿真及性能测试 --------------------------- 11
5.4双闭环比值控制系统的抗干扰能力检验 ------------------------- 13
6 双闭环比值控制与串级控制的区别,以及各自的优缺点 --------------- 16 6.1双闭环比值控制与串级控制的区别 ----------------------------- 16 6.2双闭环比值控制的优、缺点 ----------------------------------- 17
6.3串级控制的优、缺点 ----------------------------------------- 17
7 总结 ---------------------------------------------------------- 17
8 参考文献 ------------------------------------------------------ 17 附录:双闭环比值控制最终整定结果(Simulink图) -------------------- 18
1 任务书
1.1设计题目
双闭环比值控制系统的分析与设计
1.2设计任务
在现代工业生产过程中,要求两种或多种物料流量成一定比例关系;一旦比例失调,会影响生产的正常进行,影响产品质量,浪费动力,造成环境污染,甚至产生生产事故。

如:燃烧过程中,往往要求燃料量与空气量需按一定比例混合后送入炉膛;制药生产中要求药物和注入剂按比例混合;造纸过程中为保证纸浆浓度,要求自动控制纸浆量和水量比例;水泥配料系统等等。

凡是两个或多个变量自动维持一定比值关系的过程控制系统,统称为比值控制系统。

主动量:起主导作用而又不可控的物料流量Q1;
从动量---跟随主动量而变化的物料流量Q2;
比例系数:k=12
Q Q
在生产过程中,根据工艺过程容许的负荷波动幅度、干扰因素的性质和产品质量的要求不同,实现对两种物料流量比值的控制方案也不同:开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统、变比值控制系统。

双闭环比值控制系统是由一个定值控制的主动量控制回路和一个跟随主动量变化的从动量随动控制回路组成,其流程图和方框图分别如图1 和图 2所示。

通过主动量控制回路能克服主动量干扰,实现对主动量的定值控制;通过从动量控制
回路抑制作用于从动量回路的干扰,从而使主、从动量均比较稳定,能保持在一定的比值,使总物料量保持稳定。

双闭环比值控制系统常用于负荷变化或总的物料变化比较平稳的工业生产过程。

本次设计要求设计一个双闭环比值控制系统。

相关文档
最新文档