历年球体高考试题汇总球
高考球类型及例题
高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ). A .有且只有一个 B .一个或无穷多个 C .无数个 D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B说明:解此易选出错误判断A .其原因是忽视球心的位置.类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45ο圈上,它们的球面距离为R 3π,A 点在东经30ο上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45ο圈的中心为1O , 由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅==ο, 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30ο上,故B 的位置在东经120ο,北纬45ο或者西经60ο,北纬45ο.B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例 1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O = 同理ππ40021=⋅A O ,∴)(201cm A O = 设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R , ∴222)9(720++=+x x ,解得15=x , ∴22222520=+=x R ,∴25=R ∴)(2500422cm R S ππ==球. ∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少?分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π.∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积. 分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等, ∴底面是菱形. ∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥. 过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=, 故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=. ∴高R SO =,体积33231R SO S V =⋅=底.说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R . 解:设过A 、B 、C 三点的球的截面半径为r , 球心到该圆面的距离为d , 则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心, 从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R .∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心. ∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB . ∴ααsin 22cos 2222l l l AB =-=. ∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==.在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l lV 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可.解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,图1图2233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ=[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R rππ外接球的体积内切球的体积.说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径. 分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r , ∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=,334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB .由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球.说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少?这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥, ∴964∶∶∶∶锥柱球=V V V .。
球 高考试题解析
球(p30)例11 [2013·陕西卷] 某几何体的三视图如图1-2所示,则其表.面积为________.图1-2分析: 由三视图得该几何体为半径为1的半个球,则表面积为半球面+底面圆,代入数据计算为S =12×4π×12+π×12=3π.答案:3π反思:由三视图求简单组合体的表面积,关键是还原几何体. (p31)例13 [2013·福建卷] 已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是__________.答案:12π 分析: 该多面体是一个球,中间内接一个棱长为2的正方体,设球的半径为R ,则2R =2 3 R =3,所以S 球=4πR 2=12π. (p31) 4.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π分析:设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=(R ﹣2)2+42,解出R=5,所以根据球的体积公式,该球的体积V===.故选A .答案:A(p31) 9 [2013·辽宁卷] 已知直三棱柱ABC -A1B1C1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA1=12.则球O 的半径为( )A.3172 B .210 C.132D .310分析: 由题意将直三棱柱ABC -A1B1C1还原为长方体ABDC -A1B1D1C1,则球的直径即为长方体ABDC -A1B1D1C1的体对角线AD1,所以球的直径AD1=AB2+AC2+AA21=32+42+122=13,则球的半径为132,故选C.答案:C(p31)12.有三个球,第一个球内切于正方体,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点.求这三个球的半径之比.解:设正方体的棱长为a ,球的半径分别为R 1,R 2,R 3.球内切于正方体时,球的直径和正方体的棱长相等,如图1所示,AB =2R 1=a ,所以R 1=a2;球与这个正方体的各条棱相切时,球的直径与正方体的面对角线长相等,如图2所示,CD =2R 2=2a ,所以R 2=2a 2; 当球过这个正方体的各个顶点时,也即正方体内接于球,此时正方体的八个顶点均在球面上,则正方体的体对角线长等于球的直径,如图3所示,EF =2R 3=3a ,所以R 3=3a 2. 故三个球的半径之比为1:2: 3. 答案:1:2:3(山东省潍坊市2013届高三第一次模拟考试理科数学)已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球为O 的表面积为_____.【答案】8π 圆柱的底面直径与母线长均为2,==,,所以球的表面积为248ππ⨯=.11.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.解析 因为(2R )2=12+22+32=14,所以S 球=4πR 2=14π. 答案 14π.1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱,圆锥,球体的组合体解析:由球的性质可知用平面截球所得的截面都是圆面. 答案:C3.(2011·辽宁高考文科·T10)已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为 (A )(B)(C)【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】选C ,设球心为O ,则BO AO ,是两个全等的等腰直角三角形斜边上的高,斜边,4=SO 故2==BO AO ,且有SC AO ⊥,SC BO ⊥. ∴)(31OC SO S V V V AOB AOB C AOB S ABC S +=+=∆---=3344243312=⨯⨯⨯. (2011·新课标全国高考理科·T15)已知矩形ABCD半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 __ .【思路点拨】画出图形,找出球心位置,然后数形结合求出棱锥O-ABCD 的体积.【精讲精析】如图所示,OO '垂直于矩形ABCD 所在的平面,垂足为O ',连接O 'B ,OB ,则在Rt ∆OOB '中,由OB =4, O B '=得OO '=2,116233O ABCD V S OO -'∴=⋅=⨯⨯=(2011·新课标全国高考文科·T16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________【思路点拨】画出图形,利用数形结合然后利用球及圆的性质求解 【精讲精析】13如图设球的半径为R ,圆锥的底面 圆半径为r ,则依题意得223416r R ππ=⨯,即cos 2r O CO R '=∠=130,2O CO OO R ''∴∠=︒∴=,11,22AO R R BO R R ''∴=-=+, 112.332RAO BO R '∴==' 1.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )AB.C .132D.C由球心作面ABC 的垂线,则垂足为BC 中点M 。
专题9:立体几何中球的相关问题高考真题
专题9:立体几何中球的相关问题高考真题一、单选题1.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A 【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论. 【详解】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.2.2020年全国统一高考数学试卷(文科)(新课标Ⅱ)已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A .3 B .32C .1D .32【答案】C 【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r =-.【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC 93213932a ∴=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r --=.故选:C. 【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 3.2018年全国卷Ⅲ理数高考试题设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为3D ABC -体积的最大值为 A .123B .183C .243D .543【答案】B 【详解】分析:作图,D 为MO 与球的交点,点M 为三角形ABC 的中心,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大,然后进行计算可得. 详解:如图所示,点M 为三角形ABC 的中心,E 为AC 中点, 当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===23934ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴==Rt OMB ∴中,有22OM 2OB BM -=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯=故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到2BM 233BE ==再由勾股定理得到OM ,进而得到结果,属于较难题型.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)如图,已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π 【答案】C【解析】如图所示,当点C 位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C .考点:外接球表面积和椎体的体积.5.2019年全国统一高考数学试卷(理科)(新课标Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .6π B .46πC .26πD 6π【答案】D 【分析】先证得PB ⊥平面PAC ,再求得2PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】 解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++=,即 364466,62338R V R =∴=π=⨯=ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形, 3CF ∴=又90CEF ∠=︒213,2CE x AE PA x ∴=-==AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=, 221221222x x x ∴+=∴==,2PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=6R ∴=,344666338V R ∴=π=π⨯=π,故选D . 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 6.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A .17πB .18πC .20πD .28π【答案】A 【解析】试题分析:由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A .【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.7.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2 AC AB==,结合勾股定理,底面半径221312r⎛⎫=-=⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.8.2016年全国普通高等学校招生统一考试文科数学(全国2卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A.12πB.323πC.8πD.4π【答案】A 【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以该球的表面积为24(3)12ππ⋅=,故选A. 【考点】 正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个: 外接球、内切球和与各条棱都相切的球,其半径分别为32a 、2a和22a .9.2016年全国普通高等学校招生统一考试文科数学(新课标3卷) 在封闭的直三棱柱内有一个体积为V 的球,若,,,,则该球体积V 的最大值是A .B .C .D .【答案】B 【解析】 试题分析:设的内切圆半径为,则,故球的最大半径为,故选B.考点:球及其性质.10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ) 已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A .36πB .64πC .144πD .256π【答案】C 【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.11.2010年普通高等学校招生全国统一考试(全国卷)新课标文科数学设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为 A .3πa 2 B .6πa 2C .12πa 2D .24πa 2【答案】B 【详解】方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,长方体的对角线的 6a ,6,所以球的表面积是22646a ππ⎫=⎪⎪⎝⎭,故选B二、填空题12.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______. 【答案】36π 【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r ,可得112932r r r ⨯⨯⨯⨯= ,解得r=3.球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.13.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.14.浙江省理科数学试卷(带解析)如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为 .试卷第11页,总11页【答案】【解析】 试题分析:由题意可知:截面是MNP ∆的外接圆,而MNP ∆是边长为22的等边三角形, 所以外接圆02222sin 603r ==6r =2266S r πππ==⨯=. 考点:1.平面截圆的性质;2.三角形外接圆半径的求法.。
有关球的高考题
有关球的高考题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.(2014·陕西高考理科·T5)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D.【解题指南】根据截面圆半径、球心距、球半径构成直角三角形,满足勾股定理,求出球的半径,代入球的体积公式求解.【解析】选D.由正四棱柱的各顶点均在同一个球面上,可设正四棱柱的上底所在截面圆的半径为R1,则+=1可得=;又侧棱长为,所以球心到截面圆的距离d=;由截面圆半径、球心距、球半径构成直角三角形,根据勾股定理得球半径R===1,代入球的体积公式得球的体积为.2.(2016·全国卷Ⅱ文科·T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()π C.8π D.4πA.12πB.323【解题指南】利用正方体的体对角线就是球的直径求解.【解析】选A.因为正方体的体积为8,所以正方体的棱长为2,其体对角线长为23,所以正3.(2015·新课标全国卷Ⅱ理科·T9)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解题指南】当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用V O-ABC=V C-AOB列出关于半径R的方程,求出球的半径,然后求出球的表面积.【解析】选C.如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O-ABC 的体积最大,设球O 的半径为R,此时V O-ABC =V C-AOB =×R 2×R=R 3=36,故R=6,则球O 的表面积为S=4πR 2=144π.4.(2016·全国卷Ⅲ·文科·T11)与(2016·全国卷3·理科·T10)相同在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC,AB=6,BC=8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3【解题指南】注意当球和直三棱柱的三个侧面内切时,球已不在直三棱柱内.【解析】选B.当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC,AB=6,BC=8,所以AC=10,底面的内切圆的半径即为此时球的半径r=68102+-=2,直径为4>侧棱.所以球的最大直径为3,半径为32,此时体积V=9π2. 3,所以球的表面积为4π·3)2=12π.5.(2010·辽宁高考文科·T11)已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC 2,则球O 的表面积等于( )(A )4π(B )3π (C)2π (D) π【命题立意】本题考查了空间两点间距离公式和球的表面积公式.【思路点拨】建立空间坐标系 设球心坐标 球的半径 球的表面积【规范解答】选A.SA ⊥平面ABC ,AB ,AC ⊂平面ABC ,SA AB ∴⊥,SA AC ⊥,故可以A 为原点,AC 所在的直线为y 轴,AS 所在的直线为z 轴建立如图所示的空间直角坐标系A-xyz ,则(0,0,0)A ,63(,,0)B ,(0,3,0)C ,(0,0,1)S ,设球心O 坐标为000(,,)x y z ,则点O 到各顶点S ,A ,B ,C 的距离相等,都等于球的半径R.22220002222000222200222200063()()(0)(0)(3)(0)(0)(0)(1)x y z R x y z R x y z R x y z R⎧++=⎪⎪-+-+-=⎪∴⎨⎪-+-+-=⎪⎪-+-+-=⎩, 解得2000310,,,122x y z R ====, ∴球的表面积为24414R πππ=⨯=.故选A.【方法技巧】1.选用球心到各顶点的距离都相等来确定球心,才能求出半径,2.也可用另外的方法找到球心,因为∠ABC 是直角,所以AC 是过A ,B ,C 三点的小圆的直径,所以球心在过AC 和平面ABC 垂直的平面上,可知球心在平面SAC 中,又因为球心到点S ,A ,C 的距离都相等,且△SAC 是直角三角形,所以球心就是斜边SC 的中点,球的半径为SC 的一半,3.另外,可将三棱锥S-ABC 补成一个长方体进行求解.6.(2010 ·海南宁夏高考·理科T10)设三棱柱的侧棱垂直于底面,所有棱的长为a ,顶点都在一个球面上,则该球的表面积为( )(A )2a π (B )273a π (C )2113a π (D )25a π【命题立意】本小题主要考查了几何体的外接球问题.【思路点拨】找出球与棱柱的相应关系,找出球的半径与三棱柱棱长之间的关系.【规范解答】选B.设球心为O ,设正三棱柱上底面为ABC ∆,中心为O ',因为三棱柱所有棱的长为a ,则可知OO ' 2a =,O A '=,又由球的相关性质可知,球的半径R ==,所以球的表面积为22743R a ππ=,故选B.7.(2011·辽宁高考文科·T10)已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为( )(A )3 (B)3 (C) 3 (D)3 【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】选C ,设球心为O ,则BO AO ,是两个全等的等腰直角三角形斜边上的高,斜边4,=SC 故2==BO AO ,且有SC AO ⊥,SC BO ⊥. ∴)(31OC SO S V V V AOB AOB C AOB S ABC S +=+=∆---=3344243312=⨯⨯⨯. 8.(2011·辽宁高考理科·T12)已知球的直径SC =4,B A ,是该球球面上的两点,AB =3,︒=∠=∠30B SC ASC ,则棱锥ABC S -的体积为( )(A )33 (B )32 (C )3 (D )1【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】选C.由题意可知SAC ∆和SBC ∆是两个全等的直角三角形,过直角顶点B A ,分别作斜边上的高线BH AH ,,由于︒=∠=∠30B SC ASC ,求得3==BH AH ,所以等边ABH ∆的面积为2ABH S ∆==,所求棱锥ABC S -的体积等于以ABH ∆为底的两个小三棱锥的体积的和,其高的和即为球的直径SC 的长,故⨯=-31ABC S V 43334=⨯.9.(2011·新课标全国高考理科·T15)已知矩形ABCD 的顶点都在半径为 4的球O 的球面上,且6,23AB BC ==则棱锥O ABCD -的体积为 __ .【思路点拨】画出图形,找出球心位置,然后数形结合求出棱锥O-ABCD 的 体积.【精讲精析】 如图所示,OO '垂直于矩形ABCD 所在的平面,垂足为O ',连接O 'B ,OB ,则在Rt ∆OO B '中,由OB =4, 3O B '=OO '=2,1162328 3.33O ABCD V S OO -'∴=⋅=⨯⨯= 【答案】310.(2011·新课标全国高考文科·T16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________ 【思路点拨】画出图形,利用数形结合,然后利用球及圆的性质求解.【精讲精析】如图设球的半径为R ,圆锥的底面 圆半径为r ,则依题意得223416r R ππ=⨯,即3cos r O CO R '=∠= 130,2O CO OO R ''∴∠=︒∴=,11,22AO R R BO R R ''∴=-=+, 112.332R AO BO R '∴==' 【答案】1311.(2012·新课标全国高考理科·T11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( )6A(B) 6(C)3(D)2【解题指南】思路一:取AB 的中点为D ,将棱锥分割为两部分,利用B CDS A CDS V V V --=+求体积;思路二:设点O 到面ABC 的距离为d,利用123ABC V S d ∆=⨯求体积;思路三:利用排除法求解.【解析】选A.方法一:SC 是球O 的直径,90CAS CBS ∴∠=∠=︒. 1BA BC AC ===,2SC =,AS BS ∴==AB 的中点为D ,显然AB CD ⊥,AB CS ⊥SD ,AB ∴⊥平面CDS.在CDS ∆中,2CD,2DS =,2SC =,利用余弦定理可得cos CDS ∠=故sin CDS ∠=12222CDS S ∆∴=⨯⨯=, 13B CDS A CDS CDS V V V S BD --∆∴=+=⨯⨯+1111333CDS CDS S AD S BA ∆∆⨯=⨯==.方法二:ABC ∆的外接圆的半径33r =,点O 到平面ABC 的距离2263d R r =-=, SC 为球O 的直径⇒点S 到平面ABC 的距离为2623d =, 此棱锥的体积为113262233436ABC V S d ∆=⨯=⨯⨯=. 方法三:13236ABC V S R ∆<⨯=,排除,,B C D . 12. (2013·新课标Ⅰ高考理科·T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A.33500cm πB. 33866cm πC. 331372cm πD. 332048cm π 【解题指南】结合截面图形,构造直角三角形,利用勾股定理列出关于球半径的方程,求出球半径,再利用334R V π=求出球的体积.【解析】选A. 设球的半径为R,由勾股定理可知, 2224)2(+-=R R ,解得5=R ,所以球的体积332445005()333V R cm πππ==⨯= 13.(2012·新课标全国高考文科·T8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )(A )6π (B )43π (C )46π (D )63π【解题指南】利用球心到截面的距离、截面圆的半径、球的半径之间满足勾股定理求得球的半径,然后利用公式求得球的体积.【解析】选B.设球O 的半径为R ,则R ==343V R π==球.14.(2012·辽宁高考文科·T16)已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为.若则△OAB 的面积为______________.【解题指南】注意到已知条件中的垂直关系,将点P,A,B,C,D 看作长方体的顶点来考虑.【解析】由题意,PA ⊥平面ABCD ,则点P,A,B,C,D,可以视为球O 的内接长方体的顶点,球O 位于该长方体的对角线的交点处,那么△OAB 的面积为长方体对角面的四分之一.126=26=34AB PA PB OABD ==∴=∴∆⨯,面积的126=4AB PA PB OABD ==∴=∴∆⨯,面积.【答案】15. (2013·辽宁高考文科·T10)与(2013·辽宁高考理科·T10)相同已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12,AB AC AB AC AA ==⊥=,则球O 的半径为( )13....2A B C D【解题指南】对于某些简单组合体的相接问题,通过作出截面,使得有关的元素间的数量关系相对集中在某个平面图形中。
高考球类型及例题
高考球类型及例题 Prepared on 22 November 2020高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B 说明:解此易选出错误判断A .其原因是忽视球心的位置. 类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O =同理ππ40021=⋅A O ,∴)(201cm A O =设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R ,∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3 分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB .∴ααsin 22cos 2222l l l AB =-=.∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r ,∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132******** 得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ; R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .。
高考中的球体问题
高考中的球体问题例1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r ,又球心到截面的距离为R d21=,∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S . 说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例2.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M-补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算. 例3.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系. 解:设球的半径为r ,正方体的棱长为a ,它们的体积均为V ,则由ππ43,3433V r V r ==,343πV r =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球. 32322322166)(66V V V a S ====正方体. ∴<2164π <324V π32216V ,即正方体球S S <.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图作轴截面,设球未取出时水面高h PC =,球取出后,水面高x PH =∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为PC AC V ⋅⋅=231π圆锥3233)3(31r r r ππ=⋅=,球取出后水面下降到EF ,水体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水.又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=.例5.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比. 分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离. 设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCDA +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R rππ外接球的体积内切球的体积.说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r41=(h 为正四面体的高),且外接球的半径r R 3=. 例6.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.解:四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h . 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 例7.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和; 分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.图23)(3=+++∴R r R r , 233133-=+=+∴r R . 练习:1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是 ( ) A .16π B .20π C .24πD .32π 答案:C解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径R 所以球的表面积是S =4πR 2=24π.2四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π 答案:A以四面体的棱长为正方体的面对角线构造正方体,则正方体内接于球,正方体棱长为1,则体对角线长等于球的直径,即2R 所以S 球=4πR 2=3π.3.在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.解:将半球补成整个的球(见题中的图),同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的体对角线便是它的外接球的直径.设原正方体棱长为a ,球的半径为R ,则根据长方体的对角线性质,得(2R )2=a 2+a 2+(2a )2,即4R 2=6a 2.所以R a .从而V 半球=2π3R 3=32π3⎫⎪⎪⎝⎭3, V 正方体=a 3.因此V 半球∶V 正方体3∶a 3π∶2.4.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π 答案:A解析:以PA ,PB ,PC 为棱作长方体,则该长方体的外接球就是三棱锥P -ABC 的外接球,所以球的半径R ,所以球的表面积是S =4πR 2=16π.5.过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB的长度.解:由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面B C D 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 6.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( B ) A .433 B .33 C . 43 D .1237. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA === ,120BAC ∠=︒,则此球的表面积等于 。
关于球的历年高考真题与球有关的高考试题.精品资料
《立体几何》之《球》的分类复习立体几何章节在传统的高考中分值占22分左右,以两小一大的形式出现较多。
与球相关的问 题也时有考题出现,现针对近年高考考题形式总结如下,供复习参考之用:考试核心:性质的应用22212r R OO d -==,构造直角三角形建立三者之间的关系。
类型一:有公共底边的等腰三角形,借助余弦定理求球心角。
(两题互换条件形成不同的题)1.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23π,则1AO B ∠= . (2009年理科)2.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若1AO B ∠=2π,则A,B 两点间的球面距离为 (2009年文科) 类型二:球内接多面体,利用圆内接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径r Cc 2sin =,从而解决问题。
3.15. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
(2009年理科) 析:欲求球的表面积,归根结底求球半径R ,与R 相关的是重要性质222d r R +=。
∵AA 1=2, ∴121121====AA OO OO d 。
现将问题转化到⊙O 2的半径之上。
因为△ABC 是⊙O 2的内接三角形,又知AB=AC=2,∠BAC=120°,三角形可解。
由余弦定理有32444cos 222=++=∠⋅⋅-+=BAC AC AB AC AB BC , 由正弦定理有2sin 22sin =∠=⇒=∠BAC BC r r BAC BC ∴.514222=+=+=d r R ∴ππ2042==R S 。
4.14.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 8 .(2009年理科)5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 C (2011年理科)A .33B .32C .3D .16.(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 表面积等于 A (2010年文科) (A )4π (B )3π (C )2π (D )π类型三:通过线线角、线面角、面面角之间的平面的转化,构造勾股定理处理问题。
专题9:立体几何中球的相关问题高考真题(原卷版)
专题9:立体几何中球的相关问题高考真题(原卷版)一、单选题1.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π2.2020年全国统一高考数学试卷(文科)(新课标Ⅱ)已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A .3B .32C .1D .3 3.2018年全国卷Ⅲ理数高考试题设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123 B .183 C .243 D .5434.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)如图,已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π5.2019年全国统一高考数学试卷(理科)(新课标Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .6π B .46π C .26π D 6π6.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A .17πB .18πC .20πD .28π7.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4 8.2016年全国普通高等学校招生统一考试文科数学(全国2卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A .12πB .323πC .8πD .4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以该球的表面积为24(3)12ππ⋅=,故选A.【考点】 正方体的性质,球的表面积【名师点睛】与棱长为a 的正方体相关的球有三个: 外接球、内切球和与各条棱都相切的球,其半径分别为3a 、2a 和22a .9.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)在封闭的直三棱柱内有一个体积为V 的球,若,,, ,则该球体积V 的最大值是A .B .C .D . 10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ) 已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π11.2010年普通高等学校招生全国统一考试(全国卷)新课标文科数学设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为 A .3πa 2B .6πa 2C .12πa 2D .24πa 2二、填空题12.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.13.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2,则12V V 的值是_____14.浙江省理科数学试卷(带解析)如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为 .。
有关球的高考题
当点C 位于垂直于面 AOB 的直径端点时,三棱锥O-ABC 的体积 最大,利用V O -ABC =V C -AOB 列出关于半径 R 的方程,求出球的半径,然后求出球的表 面积.1.(2014 •陕西高考理科・T5)已知底面边长为 1,侧棱长为仁的正四棱柱的各顶点均在同一个球面上,则该球的体积为 ()rh. ■*!A.— 【解题指南】 根据截面圆半径、球心距、球半径构成直角三角形 定理,求出球的半径,代入球的体积公式求解. 【解析】 选D.由正四棱柱的各顶点均在同一个球面上,可设正四棱柱的上底 B.4n C.2 n D 罟,满足勾股 所在截面圆的半径为 R,则申;=1可得4;又侧棱长为W 2,所以球心到截面圆的距离 d 二早;由截面圆半径、球心距、球半径构成直角三角形,根据勾股 定理得球半径 R J R ;+川=4 + *=1,代入球的体积公式得球的体积为 \ \ - 4n 2.(2016全国卷n 文科 T4)体积为8的正方体的顶点都在同一球面上 ,则该球的表面积为 32 A.12 n B. — n C.8 n D.4 n 【解题指南】利用正方体的体对角线就是球的直径求解 【解析】选A.因为正方体的体积为 8,所以正方体的棱长为 2,其体对角线长为 2 73 ,所以 3.(2015 •新课标全国卷n 理科• T9)已知A,B 是球O 的球面上两点,/ AOB=90 ,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为 36,则球0 的表面积为 A.36 n B.64 n C.144 n D.256 n【解题指南】【解析】选C.如图所示,当点C 位于垂直于面 AOB 的直径端点时,三棱锥0- ABC 的体积最大,设球O 的半径为R,此时V o-ABC =V C-AOB = X 2R 2X R=R 3=36,故R=6, 则球0的表面积为 S=4n R 2=144 n .4.(2016 全国卷m 文科T 11)与(2016 全国卷3理科T 10)相同在封闭的直三棱柱ABC-A IB IC I 内有一个体积为 V 的球.若AB 丄BC,AB=6,BC=8,AA I =3,则V 的最大值是 ()A.4 nB. —C.6 nD. 32n23【解题指南】 注意当球和直三棱柱的三个侧面内切时,球已不在直三棱柱内【解析】选B.当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时 因为AB 丄BC , AB=6 , BC=8 ,所以AC=10 ,底面的内切圆的半径即为此时球的半径68 10 3r= —^=2 ,直径为4>侧棱.所以球的最大直径为3,半径为2,此时体积V = T.方体的外接球的半径为 梟,所以球的表面积为 4 n (73)2=125. (2010 •辽宁高考文科-T 11 )已知S , A , B , C 是球O 表面上的点,SA 丄平面ABCAB 丄BC SA=AB=1 , BC=运,则球0的表面积等于( )(D)【命题立意】 本题考查了空间两点间距离公式和球的表面积公式 【思路点拨】【规范解答】选A. Q SA 平面ABC, AB , AC 平面ABC ,SA ABSA AC冗.(A ) 4(B ) 3(C)2建立空间坐标系 设球心坐标 球的半径 球的表面积故可以A 为原点,AC 所在的直线为y 轴,AS 所在的直线为z 轴建立如图所示 的空间直 角坐标系 A-Xyz ,则 A (o,o,o ), B C-^36^^|3,o ), C (o ,J 3,o ), S (o,o,1),设球心 O 坐标为(X 0,y 0,z o ),则点0到各顶点S , A , B , C 的距离相等,都等于球的半 径R.【方法技巧】1.选用球心到各顶点的距离都相等来确定球心,才能求出半 径,2.也可用另外的方法找到球心,因为/ABC 是直角,所以 AC 是ABC 垂直的平面上,可知球心在平面SAC 中,又因为球心到S, A , C 的距离都相等,且△ SAC 是直角三角形,所以球心 就是斜边SC 的中点,球的半径为 SC 的一半, 3.另外,可将三棱锥 S-ABC 补成一个长方体进行求解-海南宁夏高考•理科 T10)设三棱柱的侧棱垂直于底面,所有棱【命题立意】本小题主要考查了几何体的外接球问题2 Xo(X 0(X o (X oy o 2 z o 2 R 2f )2 (y o f )2 (z o o )2 R 2 3 3 0)2 (y o 73)2 (z o 0) 0)2 (y o 0)2 (Z o 1)22R 2 R 2解得x 0o,y o f,z o ^R 22 2球的表面积为4 R 2414.故选A.过A , B , C 三点的小圆的直径,所以球心在过 AC 和平面6. (2010 的长为a , 顶点都在一个球面上,则该球的表面积为( (A ) a 2(B ) 3 a2 (C ) 11 a 23(D ) 5 a 2球的直径SC 的长,故V s ABC3竽4』3.【思路点拨】 找出球与棱柱的相应关系,找出球的半径与三棱柱棱长之间的 关系. 【规范解答】 选B .设球心为0,设正三棱柱上底面为ABC ,中心为0,因为三棱柱所有棱的长为 a ,则可知00 a , 0A ^a ,又由球的相关性质 23可知,球的半径 R J OO 2 0A 2 迈a ,所以球的表面积为 4 R 2 7 a 2,故637.( 2011 •辽宁高考文科-T 10)已知球的直径 SC=4, A , B 是该球球面上11 J 3V SA 0B V CA 0B -S A 0B (S 0 0C )=3丁两点,AB =73, ASC BSC 30,则棱锥 S ABC 的体积为( )【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】 选C.由题意可知 SAC 和SBC 是两个全等的直角三角形,过直 角顶点A,B 分别作斜边上的高线 AH,BH ,由于 ASC BSC 30 ,求得AH BH J 3,所以等边 ABH 的面积为S ABH — (V 3)2 ^^3,所求棱锥4 4S ABC 的体积等于以 ABH 为底的两个小三棱锥的体积的和,其高的和即为的两点,AB=2,Z ASC=/ BSC=45,则棱锥 S-ABC 的体积为()迹 (C ) 也 (D ) 丈 333找到直径SC 的垂截面是解决本题的关键.(A )逅3【思路点拨】(B)(C)(D)【精讲精析】选C ,设球心为0,则AO,BO 是两个全等的等腰直角三角形斜 边上的高, 斜边 SC 4,故A0 B0 2,且有 A0SC , B0 SC .…V S ABC8. (2011 -辽宁高考理科•[12)已知球的直径 SC =4, A, B 是该球球面上的(A ) 3(3(B ) 243 (C )73 (D ) 1个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面 面积的-,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为16【思路点拨】 画出图形,利用数形结合,然后利用球及圆的性质求解锥S-ABC 的所有顶点都在球 O 的球面上,△ ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为(9. (2011 •新课标全国高考理科•[ 15 )已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且 AB 6,BC 2® 则棱锥O ABCD 的体积为【思路点拨】 画出图形,找出球心位置,然后数形结合求出棱锥 O-ABCD 的体积.【精讲精析】 如图所示,OO 垂直于矩形ABCD 所在的平面, 垂足为O ,连接O B ,OB ,则在Rt OOB 中,由 OB= 4, OB 2^3,可1 1得OO二2,v 。
高中数学-2006-2020高考数学-球专题-90道-学生版
试卷第 3 页,总 17 页
弦 AB 、 CD 的长度分别等于 2 7 、 4 3 , M 、 N 分别为 AB 、 CD 的中点,每条弦的
两端都在球面上运动,有下列四个命题:
①弦 AB 、 CD 可能相交于点 M ②弦 AB 、 CD 可能相交于点 N ③ MN 的最大值为 5 ④ MN 的最小值为 1
外接圆,若⊙ O1 的面积为 4π , A=B B=C A=C OO1 ,则球 O 的表面积为( )
A. 64π
B. 48π
C. 36π
D. 32π
5.(2019·全国高考真题(理))已知三棱锥 P-ABC 的四个顶点在球 O 的球面上,PA=PB=PC,
△ABC 是边长为 2 的正三角形,E,F 分别是 PA,AB 的中点,∠CEF=90°,则球 O 的体积
高中数学-2006-2020 高考数学-球专题-90 道-学生版
一、单选题 1.(2012·全国高考真题(文))平面 α 截球 O 的球面所得圆的半径为 1,球心 O 到平面 α
的距离为 2 ,则此球的体积为
A. 6 π
B. 4 3 π
C.4 6 π
D. 6 3 π
2.(2006·安徽高考真题(理))表面积为 2 3 的正八面体的各个顶点都在同一个球面上,
试卷第 4 页,总 17 页
A.
B.
C.1
D.
23.(2011·湖南高考真题(理))设图一是某几何体的三视图,则该几何体的体积为( )
A. 9 π +12 2
C. 9π + 42
B. 9 π +18 2
D. 36π +18
部分的体积,则下列关系中正确的是
A.V1
有关球的高考题
有关球的高考题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.(2014·陕西高考理科·T5)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.ππ D.【解题指南】根据截面圆半径、球心距、球半径构成直角三角形,满足勾股定理,求出球的半径,代入球的体积公式求解.【解析】选D.由正四棱柱的各顶点均在同一个球面上,可设正四棱柱的上底所在截面圆的半径为R1,则+=1可得=;又侧棱长为,所以球心到截面圆的距离d=;由截面圆半径、球心距、球半径构成直角三角形,根据勾股定理得球半径R===1,代入球的体积公式得球的体积为.2.(2016·全国卷Ⅱ文科·T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )π B.323πππ【解题指南】利用正方体的体对角线就是球的直径求解.【解析】选A.因为正方体的体积为8,所以正方体的棱长为2,其体对角线长为23,所以正3.(2015·新课标全国卷Ⅱ理科·T9)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )ππππ【解题指南】当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用VO-ABC =VC-AOB列出关于半径R的方程,求出球的半径,然后求出球的表面积.【解析】选C.如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O-ABC 的体积最大,设球O 的半径为R,此时V O-ABC =V C-AOB =×R 2×R=R 3=36,故R=6,则球O的表面积为S=4πR 2=144π.4.(2016·全国卷Ⅲ·文科·T11)与(2016·全国卷3·理科·T10)相同在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC,AB=6,BC=8,AA 1=3,则V 的最大值是( )π B.9π2 π D.32π3【解题指南】注意当球和直三棱柱的三个侧面内切时,球已不在直三棱柱内.【解析】选B.当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC,AB=6,BC=8,所以AC=10,底面的内切圆的半径即为此时球的半径r=68102+-=2,直径为4>侧棱.所以球的最大直径为3,半径为32,此时体积V=9π2. 3,所以球的表面积为4π·3)2=12π.5.(2010·辽宁高考文科·T11)已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC 2则球O 的表面积等于( )(A )4π(B )3π (C)2π (D) π【命题立意】本题考查了空间两点间距离公式和球的表面积公式.【思路点拨】【规范解答】选A.SA ⊥平面ABC ,AB ,AC ⊂平面ABC ,SA AB ∴⊥,SA AC ⊥,故可以A 为原点,AC 所在的直线为y 轴,AS 所在的直线为z 轴建立如图所示的空间直角坐标系A-xyz ,则(0,0,0)A ,63(,0)33B ,3,0)C ,(0,0,1)S ,设球心O 建立空间坐标系 设球心坐标 球的半径 球的表面积坐标为000(,,)x y z ,则点O 到各顶点S ,A ,B ,C 的距离相等,都等于球的半径R.22220002222000222200222200063()()(0)(0)(3)(0)(0)(0)(1)x y z R x y z R x y z R x y z R⎧++=⎪⎪-+-+-=⎪∴⎨⎪-+-+-=⎪⎪-+-+-=⎩, 解得2000310,,,12x y z R ====, ∴球的表面积为24414R πππ=⨯=.故选A.【方法技巧】1.选用球心到各顶点的距离都相等来确定球心,才能求出半径,2.也可用另外的方法找到球心,因为∠ABC 是直角,所以AC 是过A ,B ,C 三点的小圆的直径,所以球心在过AC 和平面ABC 垂直的平面上,可知球心在平面SAC 中,又因为球心到点S ,A ,C 的距离都相等,且△SAC 是直角三角形,所以球心就是斜边SC 的中点,球的半径为SC 的一半,3.另外,可将三棱锥S-ABC 补成一个长方体进行求解.6.(2010 ·海南宁夏高考·理科T10)设三棱柱的侧棱垂直于底面,所有棱的长为a ,顶点都在一个球面上,则该球的表面积为( )(A )2a π (B )273a π (C )2113a π (D )25a π 【命题立意】本小题主要考查了几何体的外接球问题.【思路点拨】找出球与棱柱的相应关系,找出球的半径与三棱柱棱长之间的关系.【规范解答】选B.设球心为O ,设正三棱柱上底面为ABC ∆,中心为O ',因为三棱柱所有棱的长为a ,则可知OO ' 2a =,33O A a '=,又由球的相关性质可知,球的半径6R a =,所以球的表面积为22743R a ππ=,故选B. 7.(2011·辽宁高考文科·T10)已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为( )(A 【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】选C ,设球心为O ,则BO AO ,是两个全等的等腰直角三角形斜边上的高,斜边4,=SC 故2==BO AO ,且有SC AO ⊥,SC BO ⊥. ∴)(31OC SO S V V V AOB AOB C AOB S ABC S +=+=∆---=3344243312=⨯⨯⨯. 8.(2011·辽宁高考理科·T12)已知球的直径SC =4,B A ,是该球球面上的两点,AB =3,︒=∠=∠30BSC ASC ,则棱锥ABC S -的体积为( )(A )33 (B )32 (C )3 (D )1【思路点拨】找到直径SC 的垂截面是解决本题的关键.【精讲精析】选C.由题意可知SAC ∆和SBC ∆是两个全等的直角三角形,过直角顶点B A ,分别作斜边上的高线BH AH ,,由于︒=∠=∠30BSC ASC ,求得3==BH AH ,所以等边ABH ∆的面积为2ABH S 44∆==,所求棱锥ABC S -的体积等于以ABH ∆为底的两个小三棱锥的体积的和,其高的和即为球的直径SC 的长,故⨯=-31ABC S V 43334=⨯. 9.(2011·新课标全国高考理科·T15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为__ .【思路点拨】画出图形,找出球心位置,然后数形结合求出棱锥O-ABCD 的 体积.【精讲精析】 如图所示,OO '垂直于矩形ABCD 所在的平面,垂足为O ',连接O 'B ,OB ,则在Rt ∆OO B '中,由OB =4, 23O B '=OO '=2,1162328 3.33O ABCD V S OO -'∴=⋅=⨯⨯= 【答案】8310.(2011·新课标全国高考文科·T16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________ 【思路点拨】画出图形,利用数形结合,然后利用球及圆的性质求解.【精讲精析】如图设球的半径为R ,圆锥的底面 圆半径为r ,则依题意得223416r R ππ=⨯,即3cos 2r O CO R '=∠= 130,2O CO OO R ''∴∠=︒∴=,11,22AO R R BO R R ''∴=-=+, 112.332R AO BO R '∴==' 【答案】1311.(2012·新课标全国高考理科·T11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( )2A (B) 3 (C)2 (D)2【解题指南】思路一:取AB 的中点为D ,将棱锥分割为两部分,利用B CDS A CDS V V V --=+求体积;思路二:设点O 到面ABC 的距离为d,利用123ABC V S d ∆=⨯求体积;思路三:利用排除法求解.【解析】选A.方法一:SC 是球O 的直径,90CAS CBS ∴∠=∠=︒.1BA BC AC ===,2SC =,AS BS ∴=AB 的中点为D ,显然AB CD ⊥,AB CS ⊥SD ,AB ∴⊥平面CDS.在CDS ∆中,CD ,DS =,2SC =,利用余弦定理可得cosCDS ∠=故sin CDS ∠=12222CDS S ∆∴=⨯=,13B CDS A CDS CDS V V V S BD --∆∴=+=⨯⨯+111133326CDS CDS S AD S BA ∆∆⨯=⨯=⨯=.方法二:ABC ∆的外接圆的半径r =,点O 到平面ABC 的距离d ==,SC 为球O 的直径⇒点S 到平面ABC 的距离为2d =,此棱锥的体积为11233ABC V S d ∆=⨯==.方法三:1323ABC V S R ∆<⨯=,排除,,B C D . 12. (2013·新课标Ⅰ高考理科·T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A.33500cm πB. 33866cm πC. 331372cm πD.332048cm π 【解题指南】结合截面图形,构造直角三角形,利用勾股定理列出关于球半径的方程,求出球半径,再利用334R V π=求出球的体积.【解析】选A. 设球的半径为R,由勾股定理可知, 2224)2(+-=R R ,解得5=R ,所以球的体积332445005()333V R cm πππ==⨯= 13.(2012·新课标全国高考文科·T8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )(A )6π (B )43π (C )46π (D )63π【解题指南】利用球心到截面的距离、截面圆的半径、球的半径之间满足勾股定理求得球的半径,然后利用公式求得球的体积.【解析】选B.设球O 的半径为R ,则R ==343V R π==球.14.(2012·辽宁高考文科·T16)已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为.若,则△OAB 的面积为______________.【解题指南】注意到已知条件中的垂直关系,将点P,A,B,C,D 看作长方体的顶点来考虑.【解析】由题意,PA ⊥平面ABCD ,则点P,A,B,C,D,可以视为球O 的内接长方体的顶点,球O 位于该长方体的对角线的交点处,那么△OAB 的面积为长方体对角面的四分之一.126=26=34AB PA PB OABD ==∴=∴∆⨯,面积的126=4AB PA PB OABD ==∴=∴∆⨯,面积.【答案】15. (2013·辽宁高考文科·T10)与(2013·辽宁高考理科·T10)相同已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12,AB AC AB AC AA ==⊥=,则球O 的半径为( )13....22A B C D【解题指南】对于某些简单组合体的相接问题,通过作出截面,使得有关的元素间的数量关系相对集中在某个平面图形中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球体练习
1平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为
( )
(A )6π (B )43π (C )46π (D )63π
2.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6
则该球的表面积为
A .16π
B .24π
C .π
D .48π
3.已知H 是求O 的直径AB 上一点,AH:HB=1:2,AB ⊥平面a ,H 为垂足,a 截球o 所得截面的面积为π,则求o 的表面积为_______.
4.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316
,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.
5.如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥
1A DED -的体积为_____.
6. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为
A.62
B. 63
C. 32
D. 2
2 7.已知正四棱锥O-ABCD 的体积为错误!未找到引用源。
,底面边长为错误!未找到引用源。
,则以O 为球心,OA 为半径的球的表面积为________.
8.已知三棱柱111
6.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为
A B . C .132 D .
9.正四棱锥S ABCD -S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.
10.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是
(A )16π (B )20π (C )24π (D )32π
11.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积
的比为
(A )163 (B )169 (C )83 (D )32
9
12.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π
,则球心
O 到平面ABC 的距离为
(A )13 (B )3 (C )23 (D )313.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为 ( )
A .1
B .2
C .3
D .2
14.已知在半径为2的球面上有A 、B 、C 、D 四点,若2AB CD ==,则四面体ABCD 的
体积的最大值为
(A)3 (B)3 (C) (D)315.一个正四棱柱的各个顶点在一个直径为2cm 的球面上,如果正四棱柱的底面边长为1cm ,
那么该棱柱的表面积为 cm 2.
16.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )
A .1
B .2
C .3
D .2
17(2013年高考辽宁卷)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为
( )
A .2
B .
C .13
2 D .
18.(2013年高考课标Ⅱ卷(文理))已知正四棱锥O-ABCD 的体积为错误!未找到引用源。
,底面边长为错误!未找到引用源。
,则以O 为球心,OA 为半径的球的表面积为________.
19.(2013年高考课标Ⅰ卷(文理))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.
20.(2013年高考天津卷(文理))已知一个正方体的所有顶点在一个球面上. 若球的体积为
92π
, 则正方体的棱长为 ______.。