一次函数解析式求法及答案详解

合集下载

(完整版)一次函数解析式的求法及面积求法讲义

(完整版)一次函数解析式的求法及面积求法讲义

一次函数解析式的求法及面积求法讲义一、【知识点拨】(一)、用待定系数法求一次函数解析式设y=kx+b 中的k ,b ,最终求得他们的值,叫做待定系数;用此方法求一次函数的解析式叫用待定系数法求一次函数的解析式。

(二)、一次函数图像与坐标轴围成的三角形的面积:直线y=kx+b 与x 轴交点为(-b k,0),与y 轴交点为(0,b ),且这两个交点与坐标原点构成的三角形面积为k b S 22=二、【典型例题剖析】例1如图,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:求这个函数的解析式 .yx -164B MAO例2已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.例3.已知,直线y=2x+3与直线y=-2x-1.(1) 求两直线交点C 的坐标;(2) 求△ABC 的面积.教师寄语:成功并不是很复杂,热爱你所做的事,相信你的天分,每天你都应振奋精神,抛开过去,勇往直前,虽然人生并不总是公平的,但却总是可以掌控的,关键在于态度和信心,遇到任何困难就应立刻想到:"这个三【分类型精讲】(一)解析式的求法:1.定义型已知函数是一次函数,求其解析式。

(注意:利用定义求一次函数解析式时,要保证。

如本例中应保证)2. 点斜型已知一次函数的图像过点(2,-1),求这个函数的解析式。

3. 两点型一次函数经过A(2,4)、B(0,2)两点,与x轴相交于C点。

求这个一次函数的解析式;4. 图像型. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

5. 斜截型 已知直线与直线平行,且在y 轴上的截距为2,则直线的解析式为___________。

(知识解读:①与已知直线平行的直线斜率相同,即如果已知直线y=kx+b,则平行直线为y=kx+c;②与已知直线垂直的直线斜率成负倒数,即如果已知直线y=kx+b,则垂直直线为y=-k1x+c.) 6. 平移型把直线向下平移2个单位得到的图像解析式为___________。

求函数解析式问题—7种求法

求函数解析式问题—7种求法

求函数解析式问题—7种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法.例1设是一次函数,且,求.解:设,则,..例2已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)= a+b(x+1)= ax2+(2a+b)x+a+b ②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法.但要注意所求函数的定义域不是原复合函数的定义域,而是的值域.例3已知,求的解析式.解:,,.例4已知f(+1)= x+2,求f(x)的解析式.解:f(+1)= +2+1-1=-1,∴ f(+1)= -1 (+1≥1),将+1视为自变量x,则有f(x)= x2-1 (x≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式.与配凑法一样,要注意所换元的定义域的变化.例5已知,求.解:令,则,.,,.例6已知f()= ,求f(x)的解析式.解:设= t ,则x= (t≠1),∴f(t)= = 1++(t-1)= t2-t+1故f(x)=x2-x+1 (x≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例7已知:函数的图象关于点对称,求的解析式.解:设为上任一点,且为关于点的对称点.则,解得:,点在上,.把代入得:.整理得,.例8 已知是定义在R上的奇函数,当x≥0时,f(x)=2x-x2,求f(x)函数解析式.解:∵y=f(x)是定义在R上的奇函数,∴y=f(x)的图象关于原点对称.当x≥0时,f(x)=2x-x2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=-1= x2 +2x.故f(x)=评注: 即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式.例9设求.分析:欲求f(x),必须消去已知中的f(),若用去代替已知中x,便可得到另一个方程,联立方程组求解即可.解①显然将换成,得:②解①②联立的方程组,得:.六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式.例10已知:,对于任意实数x、y,等式恒成立,求.解对于任意实数x、y,等式恒成立,不妨令,则有.再令得函数解析式为:.七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式.例11设是定义在上的函数,满足,对任意的自然数都有,求.解,不妨令,得:,又①令①式中的x=1,2,…,n-1得:将上述各式相加得:,,.。

19.2.2.3 确定一次函数的解析式

19.2.2.3 确定一次函数的解析式
必做题:《教材》 P99 习题19.2 第6、7题 选做题:《课件》课后提升
【课后作业】完成《学法大视野》 【预习】课本P93—P95《一次函数与方程、不等式》
已知一次函数的图象过点(0,2),且与两坐标轴围成 的三角形的面积为2,求此一次函数的解析式.
学有驰,习有张 书山有路勤独秀 学漠无垠恒至洲
x O2
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
y
y
(2)当x=30时,y=__-1_8___; l 4
3
(3)当y=30时,x=__-_4_2__.
2
1
x
O 12345 x
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 求直线l的解析式.
能力提升
已知一次函数y=kx+b(k≠0)的自变量的取值范围是
- 3≤x≤ 6,相应函数值的范围是- 5≤y≤ - 2 ,求
这个函数的解析式.
分析:(1)当- 3≤x≤ 6时,- 5≤y≤ - 2,实质是给出
了两组自变量及对应的函数值;
(2)由于不知道函数的增减性,此题需分两种情况讨论.
答案:y = 1 x - 4或y = - 1 x - 3
∴b=2
∵一次函数的图象与x轴的交点是( 2 ,0),
k
则 1 2 2 2, 解得k=1或-1.
2
k
故此一次函数的解析式为y=x+2或y=-x+2.
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论 正确的是 ( D )
A.k=2
B.k=3
y

高考求函数解析式方法及例题

高考求函数解析式方法及例题

函数专题之解析式问题求函数解析式的方法把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式。

求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方f(x)的解析式。

,∴f(x)=2x+7待定系数法()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。

x y ()f x 例题:解法一、1222x x a∆-==2248b ac a ∴-=21()212f x x x ∴=++1c =又1,2,12a b c ===解得2()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40a b -=得解法二、(0)1f =41a k ∴+=1222x x-=222k a-∴=1,12a k ∴==-221()(2)121212f x x x x ∴=+-=++()y f x =2x =-得的对称轴为(2)(2)f x f x -=--由∴2()(2)f x a x k=++设二 【换元法】(注意新元的取值范围)已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。

三【配凑法(整体代换法)】若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。

换元法()f x 211(1)(1)1f x x+=-2211(2)()f x x x x+=+例题:根据条件,分别求出函数的解析式22()(1)12f t t t t∴=--=-11tx+=(1)解:令11t x=-1t ≠则且2()2f x x x=-(1)x ≠即换元法2()2f x x ∴=-(2)x ≥凑配法x1x x+用替代式中的12x x+≥又考虑到211()()2f x x x x+=+-(2)解:【例题】已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键 解1:f(x-1)==2)1(-x -2(x-1)-3,∴f(x)=2x -2x-3 f(x+1)=2)1(+x -2(x+1)-3=2x -4,∴2x -4=0,x=±2解2:f(x-1)=2x -4x ,∴f(x+1)=f[(x+2)-1]=2)2(+x -4(x+2)=2x -4,∴2x -4=0,x=±2 解3:令x-1=t+1,则x=t+2,∴f(t+1)=2)2(+t -4(t+2)=2t -4 ∴f(x+1)=2x -4,∴2x -4=0,∴x=±2评注:只要抓住关键,采用不同方法都可以达到目的。

一次函数[含参考答案解析]

一次函数[含参考答案解析]

一次函数专题【基础知识回顾】一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y 叫x 的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(-bk ,0)的一条 ,正比例函数y= kx 的同象是经过点 和 的一条直线。

【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k≠0),当k >0时,其同象过 、 象限,此时时y 随x的增大而 ;当k<0时,其同象过 、 象限,时y 随x 的增大而 。

3、 一次函数y= kx+b ,图象及函数性质①、k >0 b >0过 象限 ②、k >0 b<0过 象限③、k<0 b >0过 象限 ④、k<0 b >0过 象限4、若直线l1:y= k1x+ b1与l1:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b 中解一元一次方程可求求直线与坐标轴的交点坐标。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决y 随x 的增大而 y 随x 的增大而2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量 2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限例2 写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).例3已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).考点三:一次函数解析式的确定例4 一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是__________.考点四:一次函数与方程(组)、不等式(组)的关系例5 函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()例6 已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.考点六:一次函数的应用例7 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= 米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【聚焦中考】1.直线y=-x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2.若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<33.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-24.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为()5. 如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.【备考真题过关】一、选择题1.一次函数y=2x+4的图象与y轴交点的坐标是()2.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③5.一次函数y=kx-k(k<0)的图象大致是()A.B. C. D.6.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B. C.D.7.正比例函数y=x的大致图象是()A.B.C.D.8.正比例函数y=2x的大致图象是()A.B.C.D.9.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第一、二、四象限10.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限11.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()A. B.C. D.12.当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限 B.第一、四象限 C.第二、三象限 D.第二、四象限二、填空题13.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__________.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.16.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.一次函数【重点考点例析】例1 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.例2 解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x(答案不唯一).故答案为:y=2x(答案不唯一).例3 解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.例4 解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.例5 解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.例6 解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.例7 解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.【聚焦山东中考】1. B.2. C.3. B.4.B.5.解:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.【备考真题过关】一、选择题1.B.2.A.3.B.4. A.5.A.6.B.7. C.8. B.9. B.10. C.11. C.12. A.二、填空题13.y=3x+2.14.(1,4),(3,1).15. 2200.16. 4.WORD 格式整理专业知识分享解:(1)把P (2,n )代入y=2x 得n=3, 所以P 点坐标为(2,3),把P (2,3)代入y=-x+m 得-2+m=3,解得m=5, 即m 和n 的值分别为5,3;(2)把x=0代入y=-x+5得y=5,所以B 点坐标为(0,5),所以△POB 的面积=12×5×2=5.。

求一次函数的解析式的技巧

求一次函数的解析式的技巧

求一次函数的解析式的技巧一次函数的解析式求法,如下:正确解析式应是一个开口向上的三角形,而不是开口向下的梯形。

在计算时要先写出与x轴正方向相交的坐标轴,再分别以x轴为底边作一个梯形,则梯形两腰长的平方就是所求的一次函数的解析式。

注意:梯形的高不能作为解析式,否则一次函数就成了一元二次函数。

然后在找开口向下的平行四边形。

可见,其中平行四边形底的长度等于高,也就是与y轴正方向相交的坐标轴的底边的长度等于开口向下的平行四边形的腰长的平方,同理可知,它的腰长平方=与x轴正方向相交的坐标轴底边的长度的平方。

而它的底边长就是与y轴正方向相交的坐标轴的高度。

最后根据我们对二者平方和的性质,由开口向上的三角形的面积公式求出三角形面积,即得到该函数的解析式。

在求这个式子中: y=ax。

( 1)y=ax,一般把a叫做常数。

因此,一次函数图象经过点a(0, 0)时,即可以画出其一次函数图像与y轴的交点的坐标: y=ax,从图像看到,横坐标轴指向右上方,纵坐标轴指向右下方,并且横坐标轴上的刻度始终指向左上方。

注意:当横坐标轴上的刻度处在y轴下方时,纵坐标轴也会出现y轴下方的刻度,这种情况只是纵坐标轴比横坐标轴更靠近y轴罢了,并没有什么特殊意义,只是增加了一个题目。

( 2) y=bx。

在求解一次函数的解析式时,还需要记住的一点是:一次函数的解析式通常可以写成一个“ y=ax”的形式,但有时候,尤其是我们遇到当y=bx, ax表示常数的时候,这个公式也能写出来,但是这时我们一定要想一想,当x=0, 0≤x≤1,这时候能不能表示成“ y=ax”的形式呢?也就是说当一次函数的解析式中含有一个变量是x=0,那么x是否就等于0呢?这时我们必须弄清楚x的取值范围。

例如:在y=bx中,当x=0时,一次函数图象的解析式是y=ax,此时如果把y =ax 写成“ y=ax”的形式,由于一次函数图像的解析式与其图象相似,即图像的形状大致是y=ax,但事实上,在x=0时,一次函数的图像已经不再是y=ax,而是y=ax,也就是说, y=ax不再是y=ax。

求一次函数解析式的专项练习(含答案)

求一次函数解析式的专项练习(含答案)

一次函数的解析式的专项练习一次函数的解析式的求法是初中函数的基础。

一. 一般型例1. 已知函数y m x m =-+-()3328是一次函数,求其解析式。

解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。

如本例中应保证m -≠30二. 已知一点例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。

解: 一次函数y kx =-3的图像过点(2,-1)∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。

三. 已知两点已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24四. 已知图象例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

y2O 1解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k b b ∴=-=⎧⎨⎩k b 22 故这个一次函数的解析式为y x =-+22五. 与座标轴相交例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。

解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。

当k k 12=,b b 12≠时,l l 12//直线y kx b =+与直线y x =-2平行,∴=-k 2。

求一次函数解析式的常用方法精选全文

求一次函数解析式的常用方法精选全文

可编辑修改精选全文完整版求一次函数解析式的常用方法一次函数是初中数学的重要内容之一,要学好它,首先会求它的解析式。

本文举例介绍求一次函数解析式的几种常用方法,供同学们学习时参考。

一、 定义法一次函数y=kx+b (k≠0)的x 的指数等于1,系数k≠0,据此求一次函数的解析式。

例1 求一次函数y=(p+1)x p2-3p-3+2p 的解析式解:由一次函数的定义可知p 2-3p-3=1∴p=4或p=-1又p+1≠0p=4所以所求解析式为y=5x+8点评:用定义法求一次函数解析式关键是抓住“一次”即未知数的指数等于1且它的系数不等于0。

二、 两点坐标法一次函数y=kx+b (k≠0)中,有两个字母需k 、b 要求,而将一次函数y=kx+b (k≠0)图象上的两点坐标代入y=kx+b (k≠0),得关于k 、b 的二元一次方程组解之可得k 、b1、已知两点坐标例2 已知一次函数的图像经过两点(-2,10),(4,-8),求该一次函数的解析式。

解:设所求一次函数解析式为y=kx+b (k≠0)将(-2,10),(4,-8)代入得⎩⎨⎧-=+=+-84102b k b k 解之得⎩⎨⎧-==34k b 所以所求一次函数的解析式为y=-3x+4点评:已知一次函数经过两点,把这两点坐标代入y=kx+b 解出k 、b 即可。

2、已知表格例3 某商店出售一种瓜子,其售价y (元)与瓜子质量x (kg )之间的关系如下表:由上表得y 与x 之间的关系式是 。

解:设所求关系式为y=kx+b将(2,)、(2,)代入得:⎩⎨⎧=+=+4.728.3b k b k 解得:⎩⎨⎧==6.32.0k b ∴y=+ 将(3,11),(4,)代入也适合故y 与x 之间的关系式是y=+点评:一次函数的关系由表格给出时,从表格中选出两组较简数字代入y=kx+b 解出k 、b 即可。

3、已知图像例4如下图是某出租车单程收费y (元)与行程x (km )之间的函数关系图像,求出收费y (元)与行程x (km )(x≥3)之间的函数关系,并求行驶10km 需收费多少元解:设y 与x 的关系是y=kx+b 将(3,5),(8,11)代入得⎩⎨⎧+=+=bk b k 81135 解得⎩⎨⎧==5756b k∴y=65x+75(x≥3) 当x=10时,y=65×10+ 75=12+ 75=1325故行驶10km 需收费13元4角。

一次函数解析式23招经典解法

一次函数解析式23招经典解法

一次函数表达式的方法解法(23招)求一次函数的表达式基本解法1、待定系数法(1)图象过原点:函数为正比例函数,可设表达式为y=kx ,再找图象上除原点外的一个点的坐标代入表达式,即可求出k.(2)图象不过原点:函数为一般的一次函数,可设表达式为y=kx+b ,再找图象上的两个点的坐标代入表达式,即可求出k ,b 。

例:已知一次函数y=kx+b (k ,b 为常数且0≠k )的图象经过点A (0,-2)和点B (1,0),则k=______,b=______.答案:k=2,b=-2例:已知正比例函数)0(≠=k kx y 的图象经过点(1,-2),则这个正比例函数的表达式为______.答案:y=-2x常见解法:1、定义式例:已知函数3)3(82+-=-mx m y 是一次函数,求其解析式。

解析:该函数是一次函数, ∴182=-m解得m=±3,又m≠3∴m=-3故解析式为y=-6x+32、点斜式要点:如何求k ?(1)公式:1212x x y y k --=,(2)图象(比值):|k |=BCAB (两直角边的比) (3)增量:V (速度)、P (电功率)(4)平移变换:k 值相等(5)垂直变换:121-=k k(6)对称变换:|k|、|b|不变(7)相似比:(略)(8)正切值:tanα(斜率)(9)旋转变换:(略)例:已知一次函数y=kx-3的图象过点(2,-1),求这个函数解析式。

解析:方法一:(代入法)将点(2,-1)代入y=kx-3得,-1=2k-3,解得k=1.故解析式为y=x-3方法二:(一点式)解析:一次函数y=kx-3的图象过点(2,-1),∴可令y=k(x-2)-1=kx-2k-1,∴-2k-1=-3,解得k=1,∴这个函数解析式为y=x-3.3、两点式例:一次函数经过(-2,0)、(0,4),求此函数的解析式。

解析:方法一:(构建方程组)令解析式为y=kx+b,过(-2,0)、(0,4),则⎩⎨⎧=+-=b b k 420 解得k=2,b=4 故解析式为y=2x+4. 方法二:由点斜式,得)2(0041212---=--=x x y y k =2 再一点式,得y=2(x+2)+0=2x+4方法三:由斜截式,得y=2x+4方法四:由数形结合,得y=2x+4(k=直角边的比)方法五:(纯一点式)y=k(x+2)=k(x+0)+4⇒k=24、一点式:例:过(2,5)的一次函数解析式为_____。

函数解析式的求法

函数解析式的求法

函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。

其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。

2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。

常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。

例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。

(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。

3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。

4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。

用消元法消去f(1/x),即得f(x)的解析式。

一次函数解析式快速求法(一秒出答案)

一次函数解析式快速求法(一秒出答案)

一次函数解析式快速求法(一秒出答案)
直线斜率:k=tanα
首先需要向大家解释清楚的是这个α指的是直线与X轴正方向的夹角,如下图
这里会存在一个问题,就是同学们初中学的叫“锐角三角函数”,所以对于图2这样的钝角三角函数,大部分同学应该还不太会,那么这个问题我们可以简化一下,具体操作如下:
对于图1,同学们很容易可以看出tanα=1,所以这一类比较简单,直接得出k= 1
对于图2,先求出α的邻补角,即那个与X轴的负方向的夹角的正切值为1/2,
然后因为直线是往下走的,所以K为负值,因此只需要将刚才那个正切值前面加上“-”号就可以了,即K=tanα=-1/2。

它在求一次函数的解析式的时候能减少计算量,节省考试时间。

举例说明:已知直线过A(-1,5), B(1,-1)两点,求直线的解析式。

常规方法是将这两点代入y=kx+b,然后解
二元一次方程组,那么同学们可以这样操作:
首先可以简单画个草图,然后像我这样构造一个直角三角形,tan∠ABC=3,又因为直线往下走,所以k=-3,于是直线解析式为y=-3x+b,再将(1,-1)代入,可口算出b=2,所以直线解析式为y=-3x+2。

肯定有同学认为这样做学校老师不会给分的,那么我教大家一个可以拿分的办法:
考试的时候试卷上这样写:“将A,B两点坐标代入y=kx+b,解得k=-3,b=2。


所有老师都希望学生通过解二元一次方程组来求这个直线解析式,但事实上我们可以偷偷使用我教的这个方法,但是卷面上可以假装解了一个二元一次方程组,老师不会看具体计算过程,因此这样写老师是会给分的。

友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

一次函数解析式的求法(数形结合)

一次函数解析式的求法(数形结合)

专题0507:一次函数解析式的求法(数形结合)1.已知正比例函数和一次函数的图象如图所示,他们的交点为A(-3,4),且,求这个一次函数的解析式。

2.已知某一次函数的图象交正比例函数的图象于点M,交x轴于点N(-6,0),又知点M的坐标为(-4,m).若△MON的面积为15,求这个一次函数的解析式。

3..已知:如图,在平面直角坐标系xOy中,一次函数y=-4x+8的图象分别与x轴、y轴交于点A,B,点P在x轴的负半轴上,△ABP的面积为12.求这个一次函数的解析式。

4.已知直线y=-x+2与y轴和x轴分别交于A,B两点,另一条直线经过点A,且把△AOB分成两部分,若直线y=kx+b恰好把△AOB分成面积相等的两部分,求这个一次函数的解析式。

CB A O yx yx O CB A5.如图,已知直线y=x+3与x 轴、y 轴交于A ,B 两点,直线经过点A ,把△AOB 的面积分为2:1的两部分,求这个一次函数的解析式。

6.已知,直线,若直线向上平移个单位后得到直线,且直线与一次函数的图象交于点A (1,a ),求这个一次函数的解析式。

7已知:如果两直线互相垂直,那么他们的k 值的乘积等于-1.问题:若一次函数y=kx+b 的图象过点(-3,-2),且其图象与直线y=-3x 垂直,求这个一次函数的解析式。

8.如图,在平面直角坐标系中,点A(0,-1),B(3,0),直线BC 交坐标轴于B,C,且∠C BA=45º.求直线BC 的解析式。

9.如图,在平面直角坐标系中,点A(4,-2),B(0,4),直线BC 交坐标轴于B,C,且∠C BA=45º.求直线BC的解析式。

一次函数各类题型详解加练习

一次函数各类题型详解加练习
∴A的坐标为(0,2),B的坐标为(0,-3)
令 +2=-2 -3,解得 =
(提示:求两个函数之间的交点,令两个解析式相等即可得到交点横坐标)
将 = 带入y₁= +2
得:y₁= +2=
∴点C的坐标为( , )
(2)AB=2-(-3)=5(提示:AB与y轴重合,上y减下y求长度。)
(分析:以AB为底,点C到AB的距离为高,就可以求出△ABC的面积。)
求线段AB、CD的长度。
解:∵AB∥x轴
∴AB=6-(-3)= 9
(右x减左x,即可求得长度)
同理∵CD∥x轴
∴CD=5-2=3
③既不平行于x轴,也不平行于y轴:如:点A(x₁,y₁),点B(x₂,y₂),则使用求线段的通用公式AB=
例:点A的坐标为(3,3),点B的坐标为(-3,-5),
求线段AB的长度。
S△COP=
OC·OP= ×8×(2t-8)=8t-32(t≥4)
(上一问中刚求出)
-8t+32=2×16(0≤t<4)
S△COP=2S△AOB,即或解,得:t=0或者t=8
8t-32=2×16(t≥4)
(4)思路:在△COP和△AOB中:∠COP=∠AOB=90°,OC =OA=8
还差一组条件就能证明两三角形全等了,因为整个题目并未有角度的信息,
解:AB中点的坐标为:( , )整理,得( ,3)
∵直线AB的k₁=2,且k₁·k₂=-1
∴垂直于AB的直线的k₂=
设垂直平分线解析式为:y= +b,将( ,3)代入解析式,
可得AB中垂线的解析式为y= +
把y=0代入解析式可得
点P的坐标为:( ,0)
综上:符合要求的点P共有4个:

人教版八年级下册数学第19章 一次函数 一次函数的解析式的求法

人教版八年级下册数学第19章 一次函数 一次函数的解析式的求法

(2)请在图上画出直线 l′(不要求列表计算),并求直线 l′被直线 l 和 y 轴所截线段的长;
解:直线 l′的解析式为 y=x+3,画出图象如图所示. 解方程组yy==x3+x+3,1 得xy==41., ∴两直线的交点坐标为(1,4). ∵直线 l′:y=x+3 与 y 轴的交点坐标为(0,3), ∴直线 l′被直线 l 和 y 轴所截线段的长为 12+(4-3)2= 2.
【答案】C
6.直线的位置变换包含平移(平行)、对称、旋转等;平移(平行) 时,直线 y=kx+b 的___k___不变;对称、旋转变换时,要注 意特殊点的坐标变化.
7.若一次函数 y=kx+b(k≠0)的图象与直线 y=-x+1 平行,且 过点(8,2),则此一次函数的解析式为( D ) A.y=-x-2 B.y=-x-6 C.y=-x-1 D.y=-x+10
*8.(2020·邵阳)已知正比例函数 y=kx(k≠0)的图象过点(2,3),把 正比例函数 y=kx(k≠0)的图象平移,使它过点(1,-1),则平 移后的函数图象大致是( )
【点拨】把点(2,3)的坐标代入 y=kx(k≠0)得 2k=3,
解得 k=32,∴正比例函数解析式为 y=32x.
(1)求△AOB 的面积.
解:设直线 AB 的解析式为 y=kx+b,把点 A(-2,2),B(1,8) 的坐标分别代入得-k+2kb+=b8=,2, 解得kb==26,,所以直线 AB 的解析式为 y=2x+6. 所以直线 AB 与 y 轴的交点 D 的坐标为(0,6). 所以 S△AOB=S△AOD+S△BOD=12×6×2+12×6×1=9.
令 y=0,得 x=-32,即 F-32,0. 将 y=0 代入 y=2x-4,得 x=2,即 G(2,0). ∴CD 在平移过程中与 x 轴交点的横坐标的取值范围是-32 ≤x≤2.

求一次函数解析式常见题型解析

求一次函数解析式常见题型解析

求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。

第一种情况:直接或间接已知函数是一次函数,采用待定系数法。

(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。

例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。

解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。

如本例中应保证30m -≠。

例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。

二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。

当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。

例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。

解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。

函数解析式的8种求法

函数解析式的8种求法

函 数 解 析 式 的 八 种 求 法一.待定系数法:(已知函数类型如:一次、二次函数、反比例函数等)若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。

【例1】已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x -1)=2x +17,求f(x )的解析式。

分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f(x+1)=?,f(x-1)=?解:设f(x)=ax+b(a≠0),由条件得:3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17,∴f(x)=2x+7 【例2】求一个一次函数f(x),使得f{f[f(x)]}=8x+7分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解:设f(x)=ax+b (a≠0),依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7,∴f(x)=2x+1例 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设bax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 例、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

分析:二次函数的解析式有三种形式: ① 一般式:)0()(2≠++=a c bx ax x f② 顶点式:()为函数的顶点点其中k h a kh x a x f ,,0)()(2≠++=③ 双根式:的两根是方程与其中0)(,0))(()(2121=≠--=x f x x a x x x x a x f解法1:设)0()(2≠++=a cbx ax x f ,则由y 轴上的截距为1知:1)0(=f ,即c=1 ① ∴ 1)(2++=bx ax x f由)2()2(--=-x f x f 知:1)2()2(1)2()2(22+--+--=+-+-x b x a x b x a 整理得:0)4(=-x b a , 即: 04=-b a ②由被x 轴截得的线段长为22知,22||21=-x x , 即84)()(21221221=-+=-x x x x x x . 得:814)(2=--aab .整理得: 2284a a b =- ③ 由②③得: 2,21==b a , ∴ 1221)(2++=x x x f .解法2:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ,所以设)0()2()(2≠++=a kx a x f ;以下从略。

[中考数学]求一次函数解析式常见题型解析

[中考数学]求一次函数解析式常见题型解析

求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。

第一种情况:直接或间接已知函数是一次函数,采用待定系数法。

(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。

例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。

解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。

如本例中应保证30m -≠。

例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。

二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。

当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。

例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。

解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。

一次函数解析式求法

一次函数解析式求法

数学教学案例——一次函数解析式的求法大木初中张礼军在上八年级上《一次函数》这章内容时,常常要求一次函数解析式,根据不同的题型,结合本人的教学经验,现将一次函数解析式的求法归纳如下:一. 定义型(根据定义列方程或不等式组)例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。

如本例中应保证二. 一点型(只含一个待定系数)例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。

解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。

三. 两点型(含有两个待定系数)已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型(数型结合思想的运用)例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五. 平行型(两直线平行,k的值相等,b的值不等)例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线:;:。

当,时,直线与直线平行,。

又直线在y轴上的截距为2,故直线的解析式为六. 平移型(平移得到的直线与原直线平行,但b的值发生变化)例6. 把直线向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行直线在y轴上的截距为,故图像解析式为七. 实际应用型(一定要考虑自变量范围)例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数解析式求法
1.已知52)2(m m x m y 是正比例函数,若A(a,10)在此直线上,求a 的值.
2.已知直线经过原点及另一点A(-2,4),求此直线解析式。

3.已知y 与2x-1成正比例,当x=-1时,y=9,求y 与x 的函数关系式.
4.已知2y-1与3-4x 成正比例,当x=2时,y=-7,求y 与x 的函数关系式.
5.已知y=y1+y2,y1与x2成正比例,y2与x-3成正比例,当x=1时,y=-4;当x=-3时,y=
6.求y与x的函数关系式.
6.如图,已知菱形ABCD在平面直角坐标系中,B(6,2),C(12,6).
(1)求D点坐标及菱形ABCD的面积;
(2)若直线y=kx始终与线段CD有交点,求k的取值范围.
7.已知直线与坐标轴交于A、B两点,A(-4,0),已知△OAB的面积为12,求直线AB的解析式.
8.已知直线AB,当-2≤x≤4时,函数值y的取值范围为-1≤x≤8,求直线AB的解析式.
9.如图,已知矩形OABC在坐标系中,A(10,0),C(0,6),E在AB上,连接CE,将△BCE沿CE折叠,使B点落在OA的F点处.
(1)求F点及E点坐标;
(2)求直线CE解析式.
10.已知直线经过点)23
21(,A 和点B(1,6).
(1)求直线AB 的解析式;
(2)求直线AB 与x 轴、y 轴的交点坐标C 和D,并求CD 的长;
(3)若点E 在y 轴上,当C 、D 、E 三点围成的三角形是等腰三角形,求满足条件的E 点坐标.
11.如图,直线y=kx+6与x 轴、y 轴分别交于点E,F.点E 的坐标为(-8,0),点A 的坐标为(-6,0).
(1)求k 的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点.当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当P 运动到什么位置时,△OPA 的面积为827
,并说明理由.。

相关文档
最新文档