(完整)高中数学知识点:线性回归方程,推荐文档

合集下载

高三数学回归方程知识点

高三数学回归方程知识点

高三数学回归方程知识点回归方程是高三数学中的一个重要概念,它在数据分析和预测中起到了至关重要的作用。

了解回归方程的知识点对于高考数学复习和应用都非常重要。

本文将为你介绍高三数学回归方程的知识点,帮助你更好地掌握这一概念。

一、回归方程的定义回归方程是用于描述两个或更多个变量之间关系的数学模型。

它可以通过已知数据点的坐标来找到最佳拟合曲线或直线,进而进行预测和分析。

二、一元线性回归方程1. 简介一元线性回归方程是最简单的回归方程形式,它描述了两个变量之间的线性关系。

方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。

2. 最小二乘法求解一元线性回归方程的常用方法是最小二乘法。

最小二乘法通过最小化实际观测值与回归方程预测值之间的误差平方和,来确定最佳拟合直线的斜率和截距。

三、多元线性回归方程1. 简介多元线性回归方程是一种描述多个自变量与因变量之间线性关系的模型。

方程的一般形式为:y = a1x1 + a2x2 + ... + anx + b,其中y是因变量,x1、x2、...、xn是自变量,a1、a2、...、an和b是常数。

2. 多元线性回归方程的求解多元线性回归方程的求解可以使用矩阵运算的方法,通过求解正规方程组来得到最佳拟合曲面或超平面的系数。

四、非线性回归方程1. 简介非线性回归方程是描述自变量和因变量之间非线性关系的模型。

在实际问题中,很多现象和数据并不符合线性关系,因此非线性回归方程具有广泛的应用。

2. 非线性回归方程的求解求解非线性回归方程的方法有很多种,常用的包括最小二乘法、曲线拟合法和参数估计法等。

具体选择哪种方法取决于具体问题和数据的特点。

五、回归方程的应用回归方程在实际问题中有广泛的应用。

它可以用于数据分析、预测和模型建立等方面,帮助我们了解变量之间的关系并进行科学的决策和预测。

六、总结回归方程是高三数学中的一个重要概念,掌握回归方程的知识点对于数学复习和问题解决至关重要。

高三回归方程知识点汇总

高三回归方程知识点汇总

高三回归方程知识点汇总回归方程是数学中重要的数学模型,用于描述变量之间的关系和进行预测。

在高三阶段,学生需要掌握回归分析的基本知识和技巧。

本文将对高三数学中回归方程的知识点进行全面汇总,并提供一些实例和应用场景供参考。

一、线性回归方程1.1 线性关系与线性回归方程线性关系指的是两个变量之间存在直线关系,可用一条直线来近似表示。

线性回归方程是线性关系的数学表达式,常用形式为 y = kx + b,其中 k 表示直线的斜率,b 表示直线在 y 轴上的截距。

1.2 最小二乘法最小二乘法是确定线性回归方程中斜率 k 和截距 b 的常用方法。

它通过最小化观测值与回归直线的拟合误差平方和,找到最佳的拟合直线。

1.3 直线拟合与误差分析直线拟合是利用线性回归方程将观测数据点拟合到一条直线上。

误差分析可以评估回归方程的拟合优度,常用指标有决定系数R²、平均绝对误差 MAE 等。

二、非线性回归方程2.1 非线性关系与非线性回归方程非线性关系指的是两个变量之间的关系不能用一条直线来近似表示,而是需要使用曲线或其他非线性形式进行描述。

非线性回归方程可以是多项式方程、指数方程、对数方程等形式。

2.2 最小二乘法拟合非线性回归方程与线性回归相似,最小二乘法也可以用于拟合非线性回归方程。

但由于非线性方程的复杂性,通常需要借助计算工具进行求解,例如利用数学软件进行非线性拟合。

2.3 模型选择和拟合优度检验在选择非线性回归模型时,需要综合考虑模型的拟合优度和实际应用的需求。

常见的方法包括比较不同模型的决定系数 R²、检验残差分布等。

三、应用实例3.1 人口增长模型以某地区的人口数据为例,通过拟合合适的回归方程,可以预测未来的人口增长趋势,为城市规划和社会发展提供决策依据。

3.2 经济增长模型回归方程可以用于分析经济数据,例如拟合国民生产总值与时间的关系,预测未来的经济增长态势,为政府制定经济政策提供参考。

3.3 科学实验数据分析在科学研究中,常常需要利用回归方程对实验数据进行拟合和分析。

高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解
线性回归方程是一种用于拟合一组数据的最常见的数学模型,它可以用来预测一个因变量(例如销售额)和一个或多个自变量(例如广告费用)之间的关系。

下面是线性回归方程的公式详解:
假设有n个数据点,每个数据点包含一个因变量y和k个自变量x1,x2,...,xk。

线性回归方程可以表示为:
y = β0 + β1*x1 + β2*x2 + ... + βk*xk + ε
其中,β0, β1, β2, ..., βk是模型的系数,ε是误差项,用来表示实际数据和模型预测之间的差异。

系数β0表示当所有自变量均为0时的截距,而β1, β2, ..., βk 则表示每个自变量对因变量的影响。

当系数为正时,自变量增加时因变量也会增加;而当系数为负时,自变量增加时因变量会减少。

通常,我们使用最小二乘法来估计模型的系数。

最小二乘法就是通过最小化所有数据点与模型预测之间的距离来找到最优的系数。

具体来说,我们可以使用以下公式来计算系数:
β = (X'X)-1 X'y
其中,X是一个n×(k+1)的矩阵,第一列全为1,其余的列为自变量x1,x2,...,xk。

y是一个n×1的向量,每一行对应一个因
变量。

X'表示X的转置,-1表示X的逆矩阵,而β则是一个(k+1)×1的向量,包含所有系数。

当拟合出线性回归方程后,我们可以使用它来预测新的数据点的因变量。

具体来说,我们可以将自变量代入方程中,计算出相应的因变量值。

如果模型的系数是可靠的,我们可以相信这些预测结果是比较准确的。

线性回归方程-高中数学知识点讲解

线性回归方程-高中数学知识点讲解

线性回归方程
1.线性回归方程
【概念】
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.
【实例解析】
例:对于线性回归方程푦=1.5푥+45,푥1∈{1,7,5,13,19},则푦=
解:푥=1+7+5+13+19
5
=
9,因为回归直线必过样本中心(푥,푦),
所以푦=1.5×9+45=13.5+45=58.5.
故答案为:58.5.
方法就是根据线性回归直线必过样本中心(푥,푦),求出푥,代入即可求푦.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.
【考点点评】
这类题记住公式就可以了,也是高考中一个比较重要的点.
1/ 1。

高一数学必修线性回归分析知识点

高一数学必修线性回归分析知识点

⾼⼀数学必修线性回归分析知识点 分析按照⾃变量和因变量之间的关系类型,可分为线性回归分析和⾮线性回归分析。

下⾯是店铺给⼤家带来的⾼⼀数学必修线性回归分析知识点,希望对你有帮助。

⾼⼀数学线性回归分析知识点总结(⼀) 重点难点讲解: 1.回归分析: 就是对具有相关关系的两个变量之间的关系形式进⾏测定,确定⼀个相关的数学表达式,以便进⾏估计预测的统计分析⽅法。

根据回归分析⽅法得出的数学表达式称为回归⽅程,它可能是直线,也可能是曲线。

2.线性回归⽅程 设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi, yi)(i=1,......,n)⼤致分布在⼀条直线的附近,则回归直线的⽅程为。

其中 。

3.线性相关性检验 线性相关性检验是⼀种假设检验,它给出了⼀个具体检验y与x之间线性相关与否的办法。

①在课本附表3中查出与显著性⽔平0.05与⾃由度n-2(n为观测值组数)相应的相关系数临界值r0.05。

②由公式,计算r的值。

③检验所得结果 如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。

如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成⽴的,即y与x之间具有线性相关关系。

典型例题讲解: 例1.从某班50名学⽣中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建⽴该10名学⽣的物理成绩对数学成绩的线性回归模型。

解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为, 计算,代⼊公式得 ∴所求线性回归模型为=0.74x+22.28。

说明:将⾃变量x的值分别代⼊上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。

⼤家可以在⽼师的帮助下对⾃⼰班的数学、化学成绩进⾏分析。

(完整word版)线性回归方程的求法(需要给每个人发)

(完整word版)线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用ˆ+a ˆ=bx ˆ的求法:第一公式:线性回归方程为y(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(x 1+x 2+x 3+⋅⋅⋅+x n )n 1(y 1+y 2+y 3+⋅⋅⋅+y n )n ˆ,有两个方法(3)求变量x 的系数bˆ=法1b∑(x -x )(y -y )iii =1n∑(x -x )ii =1n(题目给出不用记忆)2(x1-x )(y 1-y )+(x 2-x )(y 2-y )+...+(x n-x )(y n-y )][(需理解并会代入数据)=222⎡⎤(x -x )+(x -x )+...+(x -x )2n ⎣1⎦nˆ=法2b∑(x -x )(y -y )iii =1∑(x -x )ii =1n(题目给出不用记忆)2=[x 1y1+x 2y 2+...x ny n]-nx ⋅y,(这个公式需要自己记忆,稍微简单些)2222⎡⎣x 1+x 2+...+x n ⎤⎦-nx ˆˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ-a ˆ=bx ˆ。

可以改写为:y =bx ˆ(y ˆ与y 不做区分)最后写出写出回归方程y例.已知x ,y 之间的一组数据:x0123y1357求y 与x 的回归方程:解:(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(0+1+2+3)=1.541(1+3+5+7)=44ˆ,有两个方法(3)求变量x 的系数b2222⎡⎤(x -x )+(x -x )+(x -x )+(x -x )1234⎣⎦ˆ法1b=(0-1.5)(1-4)+(1-1.5)(3-4)+(2-1.5)(5-4)+(3-1.5)(7-4)5==22227⎡⎣(0-1.5)+(1-1.5)+(2-1.5)+(3-1.5)⎤⎦(x1-x )(y 1-y )+(x 2-x )(y 2-y )+(x 3-x )(y 3-y )+(x 4-x )(y 4-y )][=ˆ=法2b[x 1y1+x 2y 2+...x ny n]-nx ⋅y=[0⨯1+1⨯3+2⨯5+3⨯7]-4⨯1.5⨯4=52222⎡⎤x +x +...+x -nx 12n ⎣⎦2222⎡⎤0+1+2+3⎣⎦7ˆ=4-ˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ=bx ˆ=最后写出写出回归方程y第二公式:独立性检验两个分类变量的独立性检验:525⨯1.5=77525x +77y1a ca +cy2b d总计x 1a +b c +d a +b +c +d注意:数据a 具有两个属性x 1,y 1。

高考文科线性回归知识点

高考文科线性回归知识点

高考文科线性回归知识点高考文科数学考试中,线性回归是一个重要的知识点。

线性回归是一种统计分析方法,通过建立一个数学模型来描述两个变量之间的关系。

在文科领域,线性回归常常被用来分析人文社科问题,预测社会现象的趋势和发展。

一、线性回归的基本概念线性回归是通过一条直线来描述两个变量之间的关系。

其中,自变量是独立变量,也叫做解释变量;因变量是被解释变量,也叫做预测变量。

线性回归的模型可以表示为:Y = α + βX + ε,其中Y是因变量,X是自变量,α是截距,β是斜率,ε是误差项。

线性回归的目标是找到最佳的α和β,使得模型的预测误差最小。

二、线性回归的假设条件线性回归有几个基本的假设条件。

首先,自变量和因变量之间的关系是线性的;其次,误差项是独立同分布的,即没有自相关性;最后,误差项的方差是常数。

三、线性回归的参数估计线性回归需要通过样本数据来估计模型的参数。

通常采用最小二乘法来估计α和β。

最小二乘法的基本原理是使得观测值与模型的预测值的平方差最小。

通过求导可以得到最小二乘估计的解析解。

四、线性回归的评估指标在线性回归中,评估模型的好坏是十分重要的。

常用的评估指标包括拟合优度R²、均方根误差RMSE、平均绝对误差MAE等。

拟合优度R²表示模型解释变量的变异程度,取值范围为0到1,越接近1表示模型的拟合程度越好。

均方根误差RMSE和平均绝对误差MAE表示模型的预测误差大小,一般来说,误差越小表示模型的预测能力越好。

五、线性回归的应用领域线性回归是一种广泛应用于社科领域的统计方法。

以经济学为例,线性回归可以用来分析不同变量之间的关系,比如GDP与人均收入、失业率与通货膨胀等。

通过线性回归分析,可以为经济政策的制定提供科学依据。

此外,线性回归还可以应用于社会学、心理学、教育学等领域,帮助研究人员发现变量之间的关系。

六、线性回归的局限性线性回归虽然在很多领域有广泛应用,但也有一定的局限性。

高中数学2.4线性回归方程

高中数学2.4线性回归方程

4
xi2=86,
x
=3+4+4 5+6=4.5,
i=1
y
=2.5+3+4 4+4.5=3.5,已知
4
xiyi=66.5.
i=1
第十六页
(6 分)
所以由最小平方法确定的线性回归方程的系数为
4
xiyi-4 x y
i=1
b=
4
=66.58-6-4×4×4.45.×52 3.5=0.7,
xi2-4 x 2
i=1
i=1
∴b=1129.03--55××442×5=1.23, a=5-1.23×4=0.08. ∴所求线性回归方程为y^=1.23x+0.08.
第十页
规律方法 求线性回归方程的一般步骤: (1)画散点图,看两个变量是不是存在线性相关关系.
n
n
(2)列表计算 x , y ,xi2,xiyi.(建议用列表方法计算)
①正方体的棱长和体积;②角的弧度数和它的正弦值;③ 单产为常数时,土地面积和总产量;④日照时间与水稻的亩产 量.
解析 正方体的棱长x和体积V存在着函数关系V=x3;角的 弧度数α和它的正弦值y存在着函数关系y=sin α;单产为常数a公 斤/亩土地面积x(亩)和总产量y(公斤)之间也存在着函数关系y= ax.日照时间长,则水稻的亩产量高,这只是相关关系,应选④.
第十四页
审题指导 本题考查线性回归方程的求解及利用回归直线对
n
xiyi-n x ·y
i=1
总体进行估计.利用公式:b=
,a= y -b x 来求出
n
xi2-n x 2
i=1
系数.
【解题流程】
第十五页
[规范解答] (1)由题设所给数据,可得散点图,如右图所示. (3 分)

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

高三线性回归方程知识点

高三线性回归方程知识点

高三线性回归方程知识点线性回归是数学中的一种方法,用于建立一个自变量与因变量之间的关系。

在高三数学中,线性回归方程是一个重要的知识点。

本文将介绍高三线性回归方程的基本概念、推导过程以及应用范围。

一、基本概念1. 线性回归方程线性回归方程,也叫作线性回归模型,表示自变量x和因变量y之间的关系。

它可以用如下的一般形式表示:y = β0 + β1x + ε其中,y表示因变量,x表示自变量,β0和β1表示模型中的参数,ε表示误差项。

2. 参数估计线性回归方程中的参数β0和β1需要通过观测数据进行估计。

常用的方法是最小二乘法,即通过最小化实际观测值和预测值之间的差异,来得到最优的参数估计值。

二、推导过程1. 求解参数通过最小二乘法,可以得到线性回归方程中的参数估计值。

具体推导过程包括以下几个步骤:(1)确定目标函数:将观测值和预测值之间的差异平方和作为目标函数。

(2)对目标函数求偏导:对目标函数分别对β0和β1求偏导,并令偏导数为0。

(3)计算参数估计值:根据求得的偏导数为0的方程组,解出β0和β1的值。

2. 模型拟合度评估在得到参数估计值之后,需要评估线性回归模型的拟合度。

常用的指标包括相关系数R和残差平方和SSE等。

相关系数R可以表示自变量和因变量之间的线性相关程度,取值范围在-1到1之间,越接近1表示拟合度越好。

三、应用范围线性回归方程在实际问题中有广泛的应用,例如经济学、统计学、社会科学等领域。

它可以用来分析自变量和因变量之间的关系,并预测未来的结果。

1. 经济学应用在线性回归模型中,可以将自变量设置为经济指标,例如GDP、通货膨胀率等,将因变量设置为某一经济现象的数值。

通过构建线性回归方程,可以分析不同经济指标对经济现象的影响,为经济决策提供参考依据。

2. 统计学应用线性回归方程是统计学中的一项重要工具。

通过对观测数据的拟合,可以得到参数估计值,并进一步分析自变量和因变量之间的关系。

统计学家可以利用线性回归分析建立统计模型,为实验数据的解释提供更为准确的结论。

高中数学:线性回归方程

高中数学:线性回归方程

高中数学:线性回归方程一、推导2个样本点的线性回归方程例1、设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。

解:由最小二乘法,设,则样本点到该直线的“距离之和”为从而可知:当时,b有最小值。

将代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:此时直线方程为:设AB中点为M,则上述线性回归方程为可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。

这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。

上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。

实际上,由线性回归系数计算公式:可得到线性回归方程为设AB中点为M,则上述线性回归方程为。

二、求回归直线方程例2、在硝酸钠的溶解试验中,测得在不同温度下,溶解于100份水中的硝酸钠份数的数据如下0 4 10 15 21 29 36 51 6866.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1描出散点图并求其回归直线方程.解:建立坐标系,绘出散点图如下:由散点图可以看出:两组数据呈线性相关性。

设回归直线方程为:由回归系数计算公式:可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。

三、综合应用例3、假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下统计资料:(1)求回归直线方程;(2)估计使用10年时,维修费用约是多少?解:(1)设回归直线方程为:(2)将x = 10代入回归直线方程可得y = 12.38,即使用10年时的维修费用大约是12.38万元。

根据线性回归知识点归纳总结(精华版)

根据线性回归知识点归纳总结(精华版)

根据线性回归知识点归纳总结(精华版)
线性回归是一种常用的统计分析方法,用于建立变量之间线性关系的模型。

以下是线性回归的核心知识点总结:
1. 线性回归模型:线性回归模型的一般形式是y = mx + c,其中y是因变量,x是自变量,m是斜率,c是截距。

通过最小二乘法估计斜率和截距的值,从而建立回归模型。

2. 假设:线性回归建立在一些假设基础上,包括线性关系、独立性、常态分布、同方差性等。

在进行线性回归分析时,需要检验这些假设是否成立。

3. 多元线性回归:当自变量不止一个时,可以使用多元线性回归建立模型。

多元线性回归考虑了多个自变量对因变量的影响,可以更全面地解释变量之间的关系。

4. 模型评估:评估线性回归模型的好坏可以通过R方值、调整R方值、残差分析等方法进行。

R方值越接近1,表示模型拟合效果越好。

5. 变量选择:在建立线性回归模型时,需要考虑哪些自变量对
因变量的影响最大。

常用的变量选择方法包括逐步回归、前向选择、后向选择等。

6. 处理离群值:线性回归模型对离群值敏感,离群值的存在会
影响模型的拟合效果。

可以通过剔除离群值、转换变量等方法来处
理离群值。

7. 模型应用:线性回归模型广泛应用于实际问题中,如经济学、金融学、社会学等领域。

通过线性回归分析,可以预测和解释变量
之间的关系,为决策提供依据。

以上是根据线性回归知识点的归纳总结,希望对您的学习和应
用有所帮助。

高考回归分析知识点

高考回归分析知识点

高考回归分析知识点回归分析是统计学中一种重要的分析方法,用于研究变量之间的关系和预测。

在高考数学中,回归分析也是一个重要的知识点。

本文将介绍高考中常见的回归分析知识点,并结合具体例子进行解析。

一、简单线性回归1. 定义:简单线性回归是指在研究两个变量之间关系时,其中一个变量为自变量,另一个变量为因变量,且二者之间存在线性关系的情况。

2. 公式:简单线性回归模型的数学表示为:Y = α + βX + ε,其中Y为因变量,X为自变量,α和β为常数,ε为误差项。

3. 参数估计:通过最小二乘法可以估计出回归系数α和β的值,从而建立回归方程。

示例:假设我们想研究学生的学习时间与考试分数之间的关系。

我们收集了一组数据,学习时间(自变量X)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]考试分数(分数):[60, 70, 75, 80, 85, 90]通过简单线性回归分析,我们可以建立回归方程为:Y = 55 + 0.75X,说明学习时间对考试分数有正向影响。

二、多元线性回归1. 定义:多元线性回归是指在研究多个自变量与一个因变量之间关系时的回归分析方法。

它可以用来探究多个因素对因变量的影响程度,并进行预测和解释。

2. 公式:多元线性回归模型的数学表示为:Y = α + β₁X₁ + β₂X₂+ ... + βₚXₚ + ε,其中Y为因变量,X₁、X₂、...、Xₚ为自变量,α和β₁、β₂、...、βₚ为常数,ε为误差项。

3. 参数估计:同样通过最小二乘法可以估计出回归系数α和β₁、β₂、...、βₚ的值,从而建立回归方程。

示例:我们想研究学生的考试分数与学习时间、家庭收入、家庭教育水平等因素之间的关系。

我们收集了一组数据,学习时间(自变量X₁)、家庭收入(自变量X₂)、家庭教育水平(自变量X₃)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]家庭收入(万元):[8, 10, 12, 15, 18, 20]家庭教育水平(年):[10, 12, 14, 16, 18, 20]考试分数(分数):[60, 70, 75, 80, 85, 90]通过多元线性回归分析,我们可以建立回归方程为:Y = 50 +0.7X₁ + 1.2X₂ + 1.5X₃,说明学习时间、家庭收入和家庭教育水平都对考试分数有正向影响。

高中数学知识点:线性回归方程

高中数学知识点:线性回归方程

高中数学知识点:线性回归方程
线性回归方程是高中数学中的一个重要知识点。

其中,回归直线是指通过散点图中心的一条直线,表示两个变量之间的线性相关关系。

回归直线方程可以通过最小二乘法求得。

具体地,可以设与n个观测点(xi,yi)最接近的直线方程为
y=bx+a,其中a、b是待定系数。

然后,通过计算n个偏差的平方和来求出使Q为最小值时的a、b的值。

最终得到的直线方程即为回归直线方程。

需要注意的是,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义。

因此,在进行线性回归分析时,应先看其散点图是否成线性。

另外,求回归直线方程时,需要仔细谨慎地进行计算,避免因计算产生失误。

回归直线方程在现实生活与生产中有广泛的应用。

这种方程可以将非确定性问题转化为确定性问题,从而使“无序”变得“有序”,并对情况进行估测和补充。

因此,研究回归直线方程后,学生应更加重视其在解决相关实际问题中的应用。

注:原文已经没有格式错误和明显有问题的段落。

线性回归方程的知识要点

线性回归方程的知识要点

线性回归方程的知识要点1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为: 121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中表示数据x i (i=1,2,…,n )的均值,表示数据y i (i=1,2,…,n )的均值,表示数据x i y i (i=1,2,…,n )的均值.、的意义是:以为基数,x 每增加一个单位,y 相应地平均变化个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。

②12111()n i n i x x x x x n n===+++∑;12111()n i n i y y y y y n n===+++∑。

③(,)x y 称为样本中心点,回归直线ˆˆˆya bx =+必经过样本中心点(,)x y 。

④回归直线方程ˆˆˆya bx =+中的表示x 增加1个单位时的变化量,而表示不随x 的变化而变化的量。

3.求回归直线方程的一般步骤: ①作出散点图由样本点是否呈条状分布来判断两个量是否具有线性相关关系,若存在线性相关关系,进行第二步。

②求回归系数、 计算121()n x x x x n=+++,121()n y y y y n=+++,11221ni in n i x yx y x y x y ==++∑,2222121ni n i x x x x ==+++∑,利用公式1221ˆni ii nii x y nx ybxnx==-=-∑∑求出,再由ˆˆay bx =-求出的值; ③写出回归直线方程;④利用回归直线方程ˆˆˆya bx =+预报在x 取某一个值时y 的估计值。

高考线性回归知识点

高考线性回归知识点

高考线性回归知识点线性回归是高考数学中的一个重要知识点,它是一种统计学上常用的方法,用于分析两个变量之间的线性关系。

在高考中,线性回归经常被应用于解决实际问题和预测未知数据。

本文将介绍线性回归的基本概念、公式以及应用示例,帮助大家更好地理解和应用这一知识点。

一、线性回归的基本概念线性回归是建立一个自变量X和一个因变量Y之间的线性关系模型,通过最小化实际观测值与模型预测值之间的误差,来拟合和预测因变量Y的值。

线性回归的模型可以表示为:Y = β0 + β1*X + ε其中,Y是因变量,X是自变量,β0是截距,β1是斜率,ε是误差项,代表模型无法准确拟合数据的部分。

二、线性回归的公式1. 简单线性回归如果模型中只有一个自变量X,称为简单线性回归。

简单线性回归的公式为:Y = α + βX + ε其中,α表示截距,β表示斜率,ε为误差项。

我们利用给定的数据集,通过最小二乘法来估计α和β的值,从而得到一条最佳拟合直线。

2. 多元线性回归如果模型中有多个自变量X1、X2、X3...,称为多元线性回归。

多元线性回归的公式为:Y = α + β1*X1 + β2*X2 + β3*X3 + ... + ε同样,我们利用最小二乘法来估计α和每个β的值,从而得到一个最佳拟合的平面或超平面。

三、线性回归的应用示例线性回归在实际问题中有广泛的应用。

下面通过一个简单的例子来说明线性回归的具体应用过程。

例:某城市的房价与面积的关系假设我们要研究某个城市的房价与房屋面积之间的关系。

我们收集了一些房屋的信息,包括房屋的面积和对应的价格。

我们可以使用线性回归来建立一个房价和面积之间的模型,从而预测未知房屋的价格。

1. 数据收集首先,我们收集了一些房屋的面积和价格数据,得到一个数据集。

2. 模型建立根据数据集,我们可以建立一个线性回归模型:价格= α + β*面积+ ε通过最小二乘法,估计出α和β的值。

3. 模型评估为了评估模型的好坏,我们需要计算误差项ε。

高一数学(必修3):第四章线性回归方程Word版含解析

高一数学(必修3):第四章线性回归方程Word版含解析

重点列表:重点详解:1.变量间的相关关系常见的两变量之间的关系有两类:一类是确定性的函数关系,另一类是________;与函数关系不同,相关关系是一种________关系,带有随机性. 2.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有____________,这条直线叫________.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为________;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为________.※ (3)相关系数r =∑∑∑===----nj jn i ini iiy yx x y y x x 12121)()())((,当r >0时,表示两个变量正相关;当r <0时,表示两个变量负相关.r 的绝对值越接近________,表示两个变量的线性相关性越强;r 的绝对值越接近________,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,认为两个变量具有很强的线性相关关系. 3.回归直线方程 (1)通过求Q =∑=--ni i ix y12)(βα的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做____________.该式取最小值时的α,β的值即分别为,.(2)两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为a x b yˆˆˆ+=,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.ˆˆ,)())((ˆ1221121x b y axn xy x n yx x x y y x x b ni ini ii n i i ni i i【答案】1.相关关系 非确定性2.(1)线性相关关系 回归直线 (2)正相关 负相关 (3)1 0 3.最小二乘法重点1:相关关系的判断 【要点解读】在研究两个变量之间是否存在某种关系时,必须从散点图入手.对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.(2)如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系. (3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系. 【考向1】确定性关系与随机关系【例题】下列变量之间的关系不是..相关关系的是( ) A .已知二次函数y =ax 2+bx +c ,其中a ,c 是已知常数,取b 为自变量,因变量是这个函数的判别式Δ=b 2-4ac B .光照时间和果树亩产量 C .降雪量和交通事故发生率 D .每亩施用肥料量和粮食亩产量解:由函数关系和相关关系的定义可知,A 中Δ=b 2-4ac ,因为a ,c 是已知常数,b 为自变量,所以给定一个b 的值,就有唯一确定的Δ与之对应,所以Δ与b 之间是一种确定的关系,是函数关系.B ,C ,D 中两个变量之间的关系都是相关关系.故选A .【评析】要注意函数关系与相关关系的区别:函数关系是确定性关系,而相关关系是随机的、不确定的.重点2:线性回归方程有关概念 【要点解读】样本中心点一定在回归直线上 【考向1】样本中心点【例题】为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1,l 2,已知两人得到的试验数据中,变量x 的平均值都等于s ,变量y 的平均值都等于t ,那么下列说法正确的是( ) A .直线l 1和l 2一定有公共点(s ,t ) B .直线l 1和l 2相交,但交点不一定是(s ,t ) C .必有直线l 1∥l 2 D .直线l 1和l 2必定重合【评析】回归方程一定通过样本点的中心(,y );中心相同的样本点的回归方程不一定相同.【考向2】线性回归直线的理解【例题】由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程a x b yˆˆˆ+=,那么下面说法错误..的是( ) A .直线a x b yˆˆˆ+=必经过点(,y ) B .直线a x b yˆˆˆ+=至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点 C .直线a x b yˆˆˆ+=的斜率=∑∑==--ni ini ii xn xy x n yx 1221D .直线a x b y ˆˆˆ+=和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑=+-ni ii a x b y 12)]ˆˆ([是该坐标平面上所有直线与这些点的偏差中最小的重点3:散点图 【要点解读】根据散点图可以直观判断正负相关以及数据所对应的函数模型 【考向1】正相关与负相关【例题】(1)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )图1图2A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解:由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,故选C.【评析】点分布在从左下角到右上角的区域时,两个变量的相关关系为正相关;点分布在从左上角到右下角的区域时,两个变量的相关关系为负相关.(2)下面是一块田的水稻产量与施化肥量的一组观测数据(单位:kg): 施化肥量15 20 25 30 35 40 45 水稻产量 320 330 360 410 460 470 480 (Ⅰ)将上述数据制成散点图;(Ⅱ)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗? 解:(Ⅰ)散点图如下:(Ⅱ)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大.图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长,不会一直随化肥施用量的增加而增长.【评析】任何一组数据(二元数据)都可以作出散点图,散点图可以直观地观察两个变量间的关系.【考向2】散点图的画法及相关关系识别【例题】(1)从左至右,观察下列三个散点图,变量x与y的关系依次为________(正相关记作①;负相关记作②;不相关记作③).(2)科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计:(Ⅰ)试画出散点图;(Ⅱ)判断两个变量是否具有线性相关关系.解:(Ⅰ)作出散点图如图所示.(Ⅱ)由散点图可知,各点并不在一条直线附近,所以两个变量不具有线性相关关系.难点列表:求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数b ^:公式有两种形式,b ^=∑ni =1(x i -x -)(y i -y -)∑n i =1(x i -x -)2=∑n i =1x i y i -nx - y-∑ni =1x 2i -nx-2,根据题目具体情况灵活选用;(3)求a ^:a ^=y --b ^x -; (4)写出回归直线方程.说明:当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果可确定选用公式的哪种形式求b ^.难点1:求回归方程及用回归方程进行估计 【要点解读】(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则无意义.(2)根据回归方程进行的估计仅是一个预测值,而不是真实发生的值.(3)用最小二乘法求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细小心,分层进行(最好列出表格),避免因计算而产生错误. 【考向1】求线性回归方程【例题】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考值3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)散点图如下:(2)由系数公式可知,=4.5,y =3.5, =66.5-4×4.5×3.586-4×4.52=0.7, =3.5-0.7×4.5=0.35,所以线性回归方程为yˆ=0.7x +0.35. (3)x =100时,yˆ=0.7x +0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.【评析】牢记求线性回归方程的步骤:(1)列表;(2)计算,y ,∑=ni i i y x 1,∑=ni i x 12;(3)代入公式求,再利用x b y aˆˆ-=求,(4)写出回归方程. 【考向2】利用线性回归方程进行预测【例题】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑=101i ix=80,∑=101i iy=20,∑=101i ii y x =184,∑=1012i ix=720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y =bx +a 中,b =∑∑==--ni ini ii xn xy x n yx 1221,x b y a -=,其中,y 为样本平均值,线性回归方程也可写为y ^=b ^x +a ^.解:(1)由题意知n =10,=1n ∑=ni ix 1=8010=8, y =1n ∑=ni i y 1=2010=2,又∑=ni ix12- n 2 =720 -10×82=80,∑=ni ii y x 1-n y x =184-10×8×2=24,由此得b =2480=0.3,a =y -b =2-0.3×8=-0.4,故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 难点2:非线性相关转化为线性相关 【要点解读】通过观察散点图,分析其函数模型,然后转化成线性相关 【考向1】非线性相关转化为线性相关【例题】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+β u 的斜率和截距的最小二乘估计分别为β^=解题指导] 切入点:回归分析中对散点图的理解,回归方程的求法和应用;关键点:通过换元把非线性回归方程转化为线性回归方程求解.解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.c ^=y -d^ w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.【趁热打铁】1.两个变量成负相关关系时,散点图的特征是( ) A .点分布在从左下角到右上角的区域B .散点图在某方形区域内C .散点图在某圆形区域内D .点分布在从左上角到右下角的区域2.对于给定的两个变量的统计数据,下列说法正确的是( ) A .都可以分析出两个变量的关系B .都可以用一条直线通过近似表示两者关系来估计总体的均值C .都可以作出散点图D .都可以用确定的表达式表示两者的关系 3.下列命题:①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线把非确定性问题转化为确定性问题进行研究. 其中正确的命题为( )A .①③④B .②④⑤C .③④⑤D .②③⑤4.对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 35.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.A .67B .68C .69D .706.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 17.某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,得到售价x (元)和销售量y (件)之间的一组数据如下表:yˆ=-3.2x +a ,则a =______.8.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.9.假设关于某种设备的使用年限x (年)与所支出的维修费用y (万元)有如下统计资料:已知∑=512i ix=90,∑=51i ii y x =112.3.(1)求,y ;(2)如果x 与y 具有线性相关关系,求出线性回归方程; (3)估计使用年限为10年时,维修费用约是多少?10.某班主任为了对本班学生的月考成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(1)如果按性别比例分层抽样,应选男女生各多少人; (2)随机抽取8位同学的数学、物理分数对应如表:性相关性,求出线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.第四章1解:正确的只有D 选项.故选D.2解:任两个变量均可作出散点图,从散点图上看有相关关系的才具有分析的价值,无相关关系的则作不出什么结论.故选C.4解:由相关系数定义及散点图所表达含义可知r 2<r 4<0<r 3<r 1,故选A.5解:=15×(10+20+30+40+50)=30,由于y ^=0.67x +54.9必过点(,y ),∴y =0.67×30+54.9=75,因此图表中的模糊数据为75×5-(62+75+81+89)=68.故选B. 6解:对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,故r 2<0<r 1.故选C.7解:价格的平均数=9+9.5+10+10.5+115=10,销售量的平均数y =11+10+8+6+55=8,由yˆ=-3.2x +a 知b =-3.2,所以a =y -b =8+3.2×10=40.故填40. 8解:根据题中所提供的信息,可知父亲与儿子的身高的对应数据可列表如下:=173,y =176,∴=∑∑==---3121)())((i ii i ix xy y x x=3×6(-3)2+32=1,=y -=176-173=3. ∴回归直线方程为yˆ=x +3,从而可预测他孙子的身高为182+3=185(cm).故填185.10解:(1)按性别比例分层抽样,应选男生15×840=3(人),选女生25×840=5(人).(2)以数学成绩x 为横坐标,物理成绩y 为纵坐标作散点图如图所示.从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩线性正相关.设y 与x 的线性回归方程是yˆ=bx +a ,根据所给的数据,可以计算出≈0.65,≈34.5, 所以y 与x 的回归方程是yˆ=0.65x +34.5.。

线性回归方程(课件)高二数学(苏教版2019选择性必修第二册)

线性回归方程(课件)高二数学(苏教版2019选择性必修第二册)
可以发现样本点分布在某一条指数函数曲线y=c 1 ec 2 x的周围,其中c 1 ,c 2 为待定的参数.
探究新知
(2)对两边取对数把指数关系变为线性关系,令 z=ln y,则有变换后
的样本点应分布在直线 z=bx+a(a=ln c1,b=c2)的周围,这样就可以利
用线性回归模型来建立 y 与 x 之间的非线性回归方程了,数据可以转化
෠ 0+,估计值并不是精确值,允许有误差存在.
估计值=
ො x

探究新知
四、残差分析
对于响应变量Y,通过观测得到的数据称为观测值,通过经验回
归方程得到的称为预测值,观测值减去预测值称为残差.残差是

随机误差的估计结果,通过对残差的分析可
以判断模型刻画数据的效果,以及判断原始数据中是否存在
可疑数据等,这方面工作称为残差分析.
(1)在一元线性回归模型中,R2=r2,因此0≤R2 ≤1,且在一元
线性模型中,R2和r都能刻画用线性回归模型拟合数据的效果,|r|
越大,即R2越大,用线性回归模型拟合数据的效果就越好,即相
关程度越强.
(2)当两个变量x,y非线性相关时,用拟合系数R2判断拟合效
果,R2越大,拟合效果越好.
(3)R2可以作为衡量任何模型拟合效果的一个指标,它越大,
56.770
128.381
290.325
^
ei
0.557
-0.101
1.875
-8.950
9.23
-13.381
34.675
(3)当 x=40 时,y=e0.272
×40-3.849
≈1 131.
探究新知

非线性回归问题的处理方法

高中数学知识点:线性回归方程

高中数学知识点:线性回归方程

高中数学知识点:线性回归方程1.回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。

如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。

求出的回归直线方程简称回归方程。

2.回归直线方程的求法设与n 个观测点(,i ix y )()1,2,,i n =⋅⋅⋅最接近的直线方程为,y bx a =+,其中a 、b 是待定系数.则,(1,2,,)i i y bx a i n =+= .于是得到各个偏差(),(1,2,,)i i i i y y y bx a i n -=-+=. 显见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和.表示n 个点与相应直线在整体上的接近程度.记21()n i i i Q y bx a ==--∑.上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。

要点诠释:1.对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点:线性回归方程
1.回归直线方程
(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。

如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。

求出的回归直线方程简称回归方程。

2.回归直线方程的求法
设与n 个观测点(,i i x y )()1,2,,i n =⋅⋅⋅最接近的直线方程为$
,y bx a =+,其中a 、b 是待定系数.
则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差
µ(),(1,2,,)i i i i y y y bx a i n -=-+=L .
显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵
消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和.
2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ
表示n 个点与相应直线在整体上的接近程度.
记21()n
i i i Q y bx a ==--∑.
上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即
1122211()()()n n i i i i i i n n i i
i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11
相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析
上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。

要点诠释:
1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.
2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.
3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.
4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.。

相关文档
最新文档