2019届高考数学(理科)一轮复习讲义:函数的概念及其性质
2019版一轮复习理数通用版第二单元 函数的概念及其性质
第二单元函数的概念及其性质教材复习课“函数”相关基础知识一课过函数的基本概念1.函数与映射的概念函数映射两集合A,B 设A,B是非空的数集设A,B是非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素是:定义域、值域和对应关系.3.表示函数的常用方法列表法、图象法和解析法.4.分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这种函数称为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.1.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()答案:B2.下列函数中,与函数y=x相同的函数是()A.y=x2x B.y=(3x2)32C.y=lg 10x D.y=2log2x解析:选C A .y =x 2x =x (x ≠0)与y =x 的定义域不同,故不是相同的函数;B .y =(3x 2)32=|x |与y =x 的对应关系不相同,故不是相同的函数;C .y =lg 10x =x 与y =x 的定义域、值域与对应关系均相同,故是相同的函数;D .y =2log 2x 与y =x 的对应关系不相同,故不是相同的函数. 3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+16x ,x ≤1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=( ) A .-2 B .4 C .2D .-1解析:选A 因为函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+16x ,x ≤1,所以f ⎝⎛⎭⎫14=2+1614=4, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (4)=log 124=-2. 4.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.[清易错]1.解决函数有关问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.1.(2018·合肥八中模拟)已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)解析:选B 因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).2.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根; ②A =R ,B =R ,f :x →x 的倒数; ③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方. 其中是A 到B 的映射的是( ) A .①③ B .②④ C .③④D .②③解析:选C 由映射的概念知①中集合B 中有两个元素对应,②中集合A 中的0元素在集合B 中没有对应,③④是映射.故选C.函数定义域的求法 函数y =f (x )的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]2.函数y =lg(1-2x )+x +3的定义域为________.解析:由题意可知⎩⎪⎨⎪⎧1-2x >0,x +3≥0,求解可得-3≤x <0,所以函数y =lg(1-2x )+x +3的定义域为[-3,0). 答案:[-3,0)[清易错]1.求复合型函数的定义域时,易忽视其满足内层函数有意义的条件.2.求抽象函数的定义域时,易忽视同一个对应关系后的整体范围. 1.(2018·辽宁锦州模拟)已知函数f (x 2-3)=lgx 2x 2-4,则f (x )的定义域为________. 解析:设t =x 2-3(t ≥-3),则x 2=t +3,所以f (t )=lgt +3t +3-4=lg t +3t -1,由t +3t -1>0,得t >1或t <-3,因为t ≥-3,所以t >1,即f (x )=lg x +3x -1的定义域为(1,+∞).答案:(1,+∞)2.已知函数f(x)的定义域为[0,2],则函数g(x)=f(2x)+8-2x的定义域为________.解析:因为函数f(x)的定义域为[0,2],所以对于函数f(2x),0≤2x≤2,即0≤x≤1,又因为8-2x≥0,所以x≤3,所以函数g(x)=f(2x)+8-2x的定义域为[0,1].答案:[0,1]函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值A.y=2-x B.y=xC.y=log2x D.y=-1 x解析:选B由题知,只有y=2-x与y=x的定义域为R,且只有y=x在R上是增函数.2.函数f(x)=|x-2|x的单调减区间是()A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.作出函数f (x )的图象如图,则结合图象可知函数的单调减区间是[1,2].3.(2018·长春质量检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.已知定义在R 上的函数f (x )为增函数,当x 1+x 2=1时,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,则实数x 1的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1D .(1,+∞)解析:选D 若f (x 1)+f (0)>f (x 2)+f (1), 则f (x 1)-f (x 2)>f (1)-f (0). 又由x 1+x 2=1,则有f (x 1)-f (1-x 1)>f (1)-f (0). 又由函数f (x )为增函数,则不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立可以转化为⎩⎪⎨⎪⎧x 1>1,1-x 1<0,解得x 1>1.5.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:2[清易错]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.1.函数f(x)=x1-x在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数解析:选C函数f(x)的定义域为{x|x≠1}.f(x)=x1-x=11-x-1,根据函数y=-1x的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数.2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]函数的奇偶性1.定义及图象特征奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.1.下列函数中的偶函数是()A.y=2x-12x B.y=x sin xC.y=e x cos x D.y=x2+sin x解析:选B 因为f (-x )=(-x )si n (-x )=x sin x =f (x ),即函数f (x )是偶函数,故选B. 2.定义在R 上的奇函数f (x )满足f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=3x -1,则f (9)=( )A .-2B .2C .-23D.23解析:选D 因为f (x )是定义在R 上的奇函数,所以当x ∈[0,2]时,f (x )=-f (-x )=-3-x+1;设x -2=t ,则x =t +2,则f (x -2)=f (x +2)可化为f (t )=f (t +4),即函数f (x )是周期为4的周期函数,则f (9)=f (1)=23.3.(2018·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选A ∵f (x )是偶函数,∴f (x )=f (|x |),∴f (|2x -1|)<f ⎝⎛⎭⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23,故选A. 4.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则( ) A .函数f (x )-g (x )是奇函数 B .函数f (x )·g (x )是奇函数 C .函数f [g (x )]是奇函数 D .函数g [f (x )]是奇函数解析:选B 因为函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数, 所以f (-x )=-f (x ),g (-x )=g (x ),所以f (-x )·g (-x )=-f (x )·g (x ),故f (x )·g (x )是奇函数.[清易错]1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断分段函数奇偶性时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.1.已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则( )A .f (m )<f (1)B .f (m )>f (1)C .f (m )=f (1)D .f (m )与f (1)大小不能确定解析:选A 由题意可知-3-m +m 2-m =0, 所以m =3或m =-1, 又因为函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,所以2-m 是奇数,且2-m >0,所以m =-1,则f (x )=x 3,定义域为[-2,2]且在[-2,2]上是增函数, 所以f (m )<f (1).2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 2(-x ),x <0的奇偶性为________.解析:∵x ≠0,故f (x )的定义域关于原点对称. 当x >0时,-x <0, ∴f (-x )=log 2x =f (x ). 当x <0时,-x >0, f (-x )=log 2(-x )=f (x ). 故f (-x )=f (x ),∴f (x )为偶函数. 答案:偶函数函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.3.重要结论周期函数的定义式f (x +T )=f (x )对定义域内的x 是恒成立的,若f (x +a )=f (x +b ),则函数f (x )的周期为T =|a -b |.若在定义域内满足f (x +a )=-f (x ),f (x +a )=1f (x ),f (x +a )=-1f (x )(a >0).则f (x )为周期函数,且T =2a 为它的一个周期.4.对称性与周期的关系(1)若函数f (x )的图象关于直线x =a 和直线x =b 对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(2)若函数f (x )的图象关于点(a,0)和点(b,0)对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(3)若函数f (x )的图象关于点(a,0)和直线x =b 对称,则函数f (x )必为周期函数,4|a -b |是它的一个周期.1.已知函数f (x )=⎩⎪⎨⎪⎧sin x 4π,x >0,f (x +2),x ≤0,则f (-5)的值为( )A .0 B.22C .1D. 2解析:选B 由f (x )=⎩⎪⎨⎪⎧sin x 4π,x >0,f (x +2),x ≤0,可得f (-5)=f (1)=si n π4=22.2.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x +1)=f (1-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则f (31)=( )A .0B .1C .-1D .2解析:选C 由f (-x )=-f (x )可得函数f (x )是奇函数,所以f (x +1)=f (1-x )=-f (x -1).令x -1=t ,则x =t +1,所以f (t +2)=-f (t ), 则f (t +4)=-f (t +2)=f (t ), 即函数f (x )的最小正周期为4.又因为当x ∈[0,1]时,f (x )=log 2(x +1),所以f (31)=f (31-4×8)=-f (1)=-log 2(1+1)=-1.3.(2018·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 017)=________.解析:∵f (x )是R 上的奇函数,∴f (0)=0,又对任意x ∈R 都有f (x +6)=f (x )+f (3), ∴当x =-3时, 有f (3)=f (-3)+f (3)=0, ∴f (-3)=0,f (3)=0, ∴f (x +6)=f (x ),周期为6. 故f (2 017)=f (1)=2. 答案:2[清易错]在利用周期性定义求解问题时,易忽视定义式f (x +T )=f (x )(T ≠0)的使用而致误.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解析:由已知,可得f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).故函数f (x )的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3, ∴f (2.5)=2.5. ∴f (105.5)=2.5. 答案:2.5 一、选择题1.函数f (x )=lg(x -1)-4-x 的定义域为( ) A .(-∞,4] B .(1,2)∪(2,4] C .(1,4]D .(2,4]解析:选C 由题意可得⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4,所以函数f (x )的定义域为(1,4].2.(2017·唐山期末)已知f (x )=x +1x -1,f (a )=2,则f (-a )=( )A .-4B .-2C .-1D .-3解析:选A ∵f (a )=a +1a -1=2,∴a +1a =3.f (-a )=-a -1a-1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a 的值为( )A .-3B .±3C .-1D .±1解析:选D 当a ≥0时,f (a )=a ,由已知得a +1=2,得a =1;当a <0时,f (a )=-a ,由已知得-a +1=2,得a =-1,综上,a =±1.故选D.4.下列几个命题正确的个数是( )(1)若方程x 2+(a -3)x +a =0有一个正根,一个负根,则a <0;(2)函数y =x 2-1+1-x 2是偶函数,但不是奇函数; (3)函数f (x +1)的定义域是[-1,3],则f (x 2)的定义域是[0,2];(4)若曲线y =|3-x 2|和直线y =a (a ∈R )的公共点个数是m ,则m 的值不可能是1. A .1 B .2 C .3D .4解析:选B (1)由根与系数的关系可知,(1)正确;(2)函数y =x 2-1+1-x 2的定义域为{-1,1},值域为{0},显然该函数既是奇函数也是偶函数,(2)错误;(3)函数f (x +1)的定义域是[-1,3],所以0≤x +1≤4,则函数f (x )的定义域是[0,4],对于函数f (x 2)可得0≤x 2≤4,则-2≤x ≤2,即f (x 2)的定义域是[-2,2],(3)错误;(4)由二次函数的图象,易知曲线y =|3-x 2|和直线y =a (a ∈R )的公共点个数可能是0,2,3,4,(4)正确.故选B.5.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 函数f (x )的对称轴方程为x =-a -13, 由题意知-a -13≥1,即a ≤-2.6.(2018·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=l n (x +1)解析:选C 根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=l n (x +1)在(0,+∞)上单调递增,排除D.7.已知函数f (x )=log 13(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞) C.⎣⎡⎦⎤-12,2 D.⎝⎛⎦⎤-12,2解析:选D 令t =g (x )=x 2-ax +3a ,易知y =log 13t 在其定义域上单调递减,要使f (x )=log 13(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎪⎨⎪⎧ --a 2≤1,g (1)>0,所以⎩⎪⎨⎪⎧a ≤2,a >-12,即-12<a ≤2. 8.(2018·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )A.23 B .-23C.43D .-43解析:选C f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43,故选C.二、填空题9.f (x )=a si n x -b log 3(x 2+1-x )+1(a ,b ∈R ),若f (lg(log 310))=5,则f (lg(lg 3))=________.解析:令g (x )=a sin x -b log 3(x 2+1-x ), 因为g (-x )=-a sin x -b log 3(x 2+1+x ) =-a sin x -b log 31x 2+1-x=-a sin x +b log 3(x 2+1-x )=-g (x ),所以函数g (x )是奇函数,因为lg(log 310)+lg(lg 3)=lg1lg 3+lg(lg 3)=0,即lg(log 310)与lg(lg 3)互为相反数,f (lg(lg 3))=g (lg(lg 3))+1=-g (lg(log 310))+1=-[f (lg(log 310))-1]+1=-3.答案:-310.设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7,若f (x )≥a+1对一切x ≥0成立,则a 的取值范围为________.解析:因为y =f (x )是定义在R 上的奇函数,所以当x =0时,f (0)=0,则0≥a +1,所以a ≤-1,又设x >0,则-x <0,所以f (x )=-f (-x )=-⎣⎡⎦⎤9(-x )+a 2-x +7=9x +a 2x -7.由基本不等式得9x +a 2x -7≥29x ·a 2x -7=-6a -7,由f (x )≥a +1对一切x ≥0成立,只需-6a -7≥a +1,即a ≤-87,结合a ≤-1,所求a 的取值范围是⎝⎛⎦⎤-∞,-87. 答案:⎝⎛⎦⎤-∞,-87 11.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的________条件(填“充分不必要,必要不充分,充要,既不充分也不必要).解析:因为f (-x )=-x 3+log 2(-x +x 2+1)=-x 3+log 21x +x 2+1=-x 3-log 2(x +x 2+1)=-f (x ),所以函数f (x )是奇函数,易知函数f (x )在R 上是增函数, 因为a +b ≥0,所以a ≥-b ,所以f (a )≥f (-b )=-f (b ),即f (a )+f (b )≥0,反之亦成立, 因此,对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的充要条件. 答案:充要12.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0) =212-1+20-1 =2-1. 答案:2-1 三、解答题13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1, 所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图所示:14.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示. 设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S , 则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. 高考研究课(一)函数的定义域、解析式及分段函数 [全国卷5年命题分析]考点 考查频度 考查角度 函数的概念 5年1考 函数定义问题分段函数 5年3考分段函数求值及不等式恒成立问题函数的定义域问题[典例] (1)(2018·长沙模拟)函数y =lg (x +1)x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)(2)若函数f (x )=22+2-x ax a-1的定义域为R ,则a 的取值范围为________.[解析] (1)由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0,x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C.(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.[答案] (1)C (2)[-1,0] [方法技巧]函数定义域问题的3种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. [即时演练]1.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:选C 由题意得⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,解得2<x <3或3<x ≤4,所以函数的定义域为(2,3)∪(3,4].2.已知函数f (2-x )=4-x 2,则函数f (x )的定义域为( ) A .[0,+∞) B .[0,16] C .[0,4]D .[0,2]解析:选B 由4-x 2≥0可得-2≤x ≤2,令2-x =t ,则0≤t ≤4,函数f (2-x )=4-x 2可化为函数f (t )=4-(2-t )2,0≤t ≤4,所以函数f (x )满足0≤x ≤4,则0≤x ≤16,即函数f (x )的定义域为[0,16].函数解析式的求法函数的解析式是函数的基础知识,高考中重视对待定系数法、换元法、利用函数性质求解析式的考查.题目难度不大,以选择题、填空题的形式出现.知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2018·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)用“待定系数法”解题设所求函数解析式为f (x )=ax 3+bx 2+cx +d , 则f ′(x )=3ax 2+2bx +c ,由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)用“代入法”解题∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1)=-12x 2-12x .(3)用“函数方程法”解题令1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x , 得3f ⎝⎛⎭⎫1x +5f (x )=3x +1,∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18.[答案] (1)A (2)-12x 2-12x(3)f (x )=1516x -916x +18[方法技巧]求函数解析式的常见方法 待定系数法若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可换元法已知f (h (x ))=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可构造法已知f (h (x ))=g (x ),求f (x )的问题,往往把右边的g (x )整理构造成只含h (x )的式子,用x 将h (x )替换函数方程法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f (-x ),f ⎝⎛⎭⎫1x ,则可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x )1.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-xD.1x -1解析:选B 令1x =t ,得x =1t (t ≠1), ∴f (t )=1t1-1t=1t -1,∴f (x )=1x -1.2.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 答案:2x +7分段函数分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为低档题或中档题.常见的命题角度有: (1)分段函数求值问题;(2)求参数值或自变量的取值范围; (3)研究分段函数的性质.1.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,e x -1,x <1,则f [f (l n 2)]=________.解析:由题意知,f (l n 2)=e l n2-1=1,所以f [f (l n 2)]=log 22=1. 答案:1角度二:求参数或自变量的取值范围2.设函数f (x )=⎩⎪⎨⎪⎧ 21-x,x ≤1,log 22x ,x >1,则满足f (x )≤2的x 的取值范围是________. 解析:因为f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,log 22x ,x >1,所以f (x )≤2等价于⎩⎪⎨⎪⎧x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,log 22x≤2,即⎩⎪⎨⎪⎧x ≤1,1-x ≤1或⎩⎪⎨⎪⎧x >1,2x≤4,即0≤x ≤1或x >1,则满足f (x )≤2的x 的取值范围是[0,+∞).答案:[0,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧1-|x |,x ≤1,x 2-4x +3,x >1,若f (f (m ))≥0,则实数m 的取值范围是( )A .[-2,2]B .[-2,2]∪[4,+∞)C .[-2,2+2]D .[-2,2+2]∪[4,+∞)解析:选D 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1或n ≥3,即-1≤f (m )≤1或f (m )≥3.由1-|x |=-1得,x =2或x =-2.由x 2-4x +3=1得,x =2±2,由x 2-4x +3=3得,x =0或x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).角度三:研究分段函数的性质4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:选D 因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x ) 在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故选D.5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A 当x ≤0时,f (x )=2-x -1, 当0<x ≤1时,-1<x -1≤0, f (x )=f (x -1)=2-(x -1)-1.故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1). [方法技巧]分段函数问题的3种类型及求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.(3)研究分段函数的性质可根据分段函数逐段研究其性质,也可根据选项利用特殊值法作出判断. 1.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.3.(2015·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1. 由于2x >0,所以2a -1=-1无解; ②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:选D 当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=l n (x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,故选D.一、选择题1.(2018·广东模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:选A 令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,即f (x )=21+x,故选A.2.函数f (x )=1ln (2x +1)的定义域是( )A.⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,0∪(0,+∞) C.⎣⎡⎭⎫-12,+∞ D .[0,+∞)解析:选B 由题意,得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得-12<x <0或x >0.3.(2018·福建调研)设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 017D .2 018解析:选D 令x =y =0,则f (1)=f (0)f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .6.(2018·青岛模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A.⎩⎨⎧⎭⎬⎫14,4 B.{}1,4C.⎩⎨⎧⎭⎬⎫1,14D.⎩⎨⎧⎭⎬⎫1,14,4解析:选A 由题意可知,f (x )=2,即⎩⎪⎨⎪⎧ 2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4,故选A.7.(2018·莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎭⎫32,2 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫12,2解析:选B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0,2-x >0⇒⎩⎪⎨⎪⎧32≤x ≤3,2-x <1,2-x >0⇒32≤x <2.故选B. 8.(2018·武汉调研)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-22B .-22 C .1D .1或22解析:选A ∵f (1)=e 1-1=1且f (1)+f (a )=2, ∴f (a )=1,当-1<a <0时,f (a )=si n (πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1. 故a =-22或1. 二、填空题9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.已知函数y =lg(kx 2+4x +k +3)的定义域为R ,则实数k 的取值范围是________. 解析:∵函数y =lg(kx 2+4x +k +3)的定义域为R , ∴kx 2+4x +k +3>0对任意实数x 恒成立,若k =0,不等式化为4x +3>0,即x >-34,不合题意;若k ≠0,则⎩⎪⎨⎪⎧k >0,16-4k (k +3)<0,解得k >1.∴实数k 的取值范围是(1,+∞). 答案:(1,+∞)11.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号)解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x )≠-f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1.故f ⎝⎛⎭⎫1x =-f (x ),满足题意.答案:①③12.(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. 解析:当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象. ①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max ,所以a <-1.答案:①2 ②(-∞,-1) 三、解答题 13.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.14.水库的储水量随时间而变化,现用t 表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t 的近似函数关系式为:v (t )=⎩⎪⎨⎪⎧1240(-t 2+15t -51)e t +50,0<t ≤9,4(t -9)(3t -41)+50,9<t ≤12.(1)该水库的储水量小于50的时期称为枯水期,问:一年内哪几个月份是枯水期? (2)求一年内该水库的最大储水量. (取21的值为4.6计算,e 3的值为20计算) 解:(1)当0<t ≤9时,v (t )=1240(-t 2+15t -51)e t +50<50,即t 2-15t +51>0. 解得t >15+212或t <15-212,从而0<t <15-212≈5.2.当9<t ≤12时,v (t )=4(t -9)(3t -41)+50<50, 即(t -9)(3t -41)<0,解得9<t <413,所以9<t ≤12.综上,0<t <5.2或9<t ≤12,故枯水期分别为:1月,2月,3月,4月,5月,10月,11月,12月.(2)由(1)知,水库的最大蓄水量只能在6~9月份. v ′(t )=1240(-t 2+13t -36)e t =-1240e t (t -4)(t -9), 令v ′(t )=0,解得t =9或t =4(舍去), 又当t ∈(6,9)时,v ′(t )>0,v (t )单调递增; 当t ∈(9,10)时,v ′(t )<0,v (t )单调递减. 所以当t =9时,v (t )的最大值v (9)=1240×3×e 9+50=150(亿立方米), 故一年内该水库的最大蓄水量是150亿立方米.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且对于任意a≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( )A.n (n +1)2B .22n -1+2n -1C.(1+2n )22D .2n -1解析:选B 因为函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,所以m ≥1.又因为对于任意a ≥0,方程f (x )=a 有且只有一个实数解,且函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且图象连续,所以m =1. 如图所示,函数g (x )=f (x )-x 在区间[0,2n](n ∈N *)上的所有零点分别为0,1,2,3, (2), 所以所有的零点的和等于2n (1+2n )2=22n -1+2n -1.2.设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.5]=-2,[2.5]=2,若直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,则k 的取值范围为( )A.⎣⎡⎦⎤-12,-13 B.⎝⎛⎭⎫-12,-13 C.⎝⎛⎦⎤-1,-12 D.⎝⎛⎭⎫-1,-12 解析:选C 作出函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0的图象如图所示.因为直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,所以⎩⎪⎨⎪⎧k (0-1)<1,k (-1-1)≥1,解得-1<k ≤-12.高考研究课(二)函数的单调性、奇偶性及周期性 [全国卷5年命题分析]考点 考查频度 考查角度函数的单调性 5年4考 利用单调性解不等式、比较大小、求最值函数的奇偶性 5年5考 奇偶性的判断及应用求值函数的周期性 未考查函数的单调性高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.,常见的命题角度有:(1)确定函数的单调性; (2)求函数的值域或最值; (3)比较两个函数值; (4)解函数不等式;(5)利用单调性求参数的取值范围.1.(2018·昆明调研)下列函数中,在区间(0,+∞)内单调递减的是( ) A .y =1x -xB .y =x 2-xC .y =l n x -xD .y =e x -x解析:选A 对于选项A ,y =1x 在(0,+∞)内是减函数,y =x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;B 、C 选项中的函数在(0,+∞)内的单调性不确定;对于选项D ,y ′=e x -1>0在(0,+∞)内恒成立,故y =e x -x 在(0,+∞)上单调递增,故选A.2.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x 2B .y =(x -1)2C .y =2-x D .y =log 0.5x解析:选A y =x2在区间(0,+∞)上为增函数,A 项符合题意;y =(x -1)2在(0,1)上为减函数,y =2-x ,y =log 0.5x 在(0,+∞)上都是减函数,故B 、C 、D 选项都不符合题意.3.(2018·广东佛山联考)讨论函数f (x )=axx 2-1(a >0)在(-1,1)上的单调性.解:法一:(定义法) 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0, 故函数f (x )在(-1,1)上为减函数. 法二:(导数法)f ′(x )=(ax )′(x 2-1)-ax (x 2-1)′(x 2-1)2=a (x 2-1)-2ax 2(x 2-1)2=a (-x 2-1)(x 2-1)2=-a (x 2+1)(x 2-1)2.∵a >0,x ∈(-1,1), ∴f ′(x )<0.∴f (x )在(-1,1)上是减函数. [方法技巧]确定函数单调性的常用方法 定义法 先确定定义域,再根据取值、作差、变形、定号的顺序得结论 图象法若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降写出它的单调性 导数法先求导,再确定导数值的正负,由导数的正负得函数的单调性函数的单调性相同时,为增函数;单调性不同时为减函数.角度二:求函数的值域或最值 4.函数y =2x 2+2x 的值域为( ) A.⎣⎡⎭⎫12,+∞ B .[2,+∞) C.⎝⎛⎦⎤0,12 D .(0,2]解析:选A 因为x 2+2x ≥-1,且y =2t 是增函数, 所以y =2x 2+2x ≥12,因此函数y =2x 2+2x 的值域是⎣⎡⎭⎫12,+∞.5.(2016·北京高考)函数f (x )=xx -1(x ≥2)的最大值为________.解析:f ′(x )=(x -1)-x (x -1)2=-1(x -1)2, 当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.答案:2 [方法技巧]利用单调性求函数的最值的关键是准确判断其单调性,而判断方法常用定义法及导数法.角度三:比较两个函数值6.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.。
2019版高考数学一轮复习第二章函数第一节函
数a的取值范围是 ( D ) A.(0,e) C.(0,e] B.(e,+∞) D.[e,+∞)
答案 D 当x≤0时, f(x)=xex,则f '(x)=ex(x+1),
当x<-1时, f '(x)<0,当-1<x≤0时, f '(x)>0, ∵x=-1是函数f(x)的极小值点,也是最小值点,
A.y= C.y=log2x
2 x
B.y=x2 D.y=2x
2 x
答案 A A项,函数y= 的定义域与值域相同,B,C,D项中的函数定义 域与值域均不相同.故选A.
3.(2016北京临川学校期末)函数y= A.(-∞,2) B.(2,+∞)
1 的定义域是 ( log 2 ( x 2)
C )
∴f(x)min=- ,若函数f(x)的值域为 , ,
1 e
1 e
则当x>0时, f(x)min≥- . 当a=0时,显然不符合题意,
1 e
当a≠0时,要满足f(x)min≥- ,
a 0, 只需 4 1 解得a≥e,故选D. , e 4a
定义域 相同,且
全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法 表示函数的常用方法: 解析法 、 图象法 、 列表法 .
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 对应关系 ,这样的函数通常叫做分段函数.分段函数虽然由几部分 组成,但它表示的是.
1 2
7 4
C.
4 3
D.-
4 3
答案 B 令t= x-1,则x=2t+2, ∴f(t)=2(2t+2)-5=4t-1,
函数的概念与性质
函数的概念与性质函数是数学中一种重要的概念,它在各个领域都有着广泛的应用。
本文将介绍函数的基本概念和性质,以帮助读者更好地理解和应用函数。
一、函数的概念函数是一个自变量和因变量之间的对应关系。
它将一个变量的值映射到另一个变量的值,通常表示为f(x),其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式来表示。
函数的定义域是指自变量的所有可能取值的集合,值域是指函数对应的因变量的所有可能取值的集合。
一个函数可以在定义域内对每个自变量的取值,唯一地确定一个因变量的取值。
二、函数的性质1. 单调性:函数可以具有单调递增或单调递减的性质。
当自变量增大时,如果对应的因变量也增大,则函数为单调递增;当自变量增大时,如果对应的因变量减小,则函数为单调递减。
2. 奇偶性:函数可以具有奇函数或偶函数的性质。
当自变量取负值时,如果对应的因变量取相反数,则函数为奇函数;当自变量取负值时,如果对应的因变量不变,则函数为偶函数。
3. 零点:函数的零点是指使函数等于零的自变量的值。
如果函数的零点存在,可以用解方程的方法来求解。
4. 极值:函数的极值是指函数在其定义域上取得的最大值或最小值。
可以通过求导数或使用判别式的方法来确定函数的极值。
5. 逆函数:函数的逆函数是指满足条件f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。
逆函数可以将原函数的自变量与因变量互相转换。
6. 复合函数:复合函数是指函数嵌套在另一个函数中的情况。
例如f(g(x))表示将g(x)的结果作为自变量代入函数f中。
7. 函数图像:函数的图像是通过绘制自变量和因变量之间的对应关系得到的。
函数图像可以反映函数的性质和变化趋势。
8. 函数关系:函数的关系可以是线性的、二次的、指数的或对数的等。
不同的函数关系对应着不同的函数图像和性质。
总结:函数是数学中的重要概念,它描述了自变量和因变量之间的对应关系。
函数的概念和性质如零点、极值、逆函数等对于解题和理解数学问题都具有重要的意义。
函数的概念与基本性质
函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。
本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。
一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。
函数在定义域内的每个自变量都对应一个唯一的因变量。
二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。
定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。
在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。
2. 对应关系:函数的一个重要性质是具有确定的对应关系。
即在定义域内的每个自变量都对应唯一的因变量。
这种一一对应的关系使得函数具有明确的输入和输出。
3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。
如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。
反之,如果 f(x1) > f(x2),则称该函数是单调递减的。
4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。
如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。
而如果有 f(-x) = f(x),则称函数是偶函数。
5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。
如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。
三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。
在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。
在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。
2019版高考数学一轮复习第二章函数第一节函数及其表示课件理
|x| x
f(x)定义域内的值,则直线x=1与y=f(x)的图象没有交点,若x=1是y=f(x)定 义域内的值,由函数的定义可知,直线x=1与y=f(x)的图象只有一个交点, 即y=f(x)的图象与直线x=1最多有一个交点;对于③, f(x)与g(t)的定义
的元素y与之对
2.函数的有关概念
(1)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦ 定义 域 ;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函 数的⑧ 值域 . (2)函数的三要素:⑨ 定义域 、⑩ 值域 和 (3)相等函数:如果两个函数的 对应关系 . 对应关系 完
1 x 2 的值最大,为1,当x=1或-1时,y= 1 x 2 的值最小, D选项,当x=0时,y=
1 x 1
为0,所以值域为[0,1].故选D.
2 x 2 ,0 x 1, x 2, 则f(3)= 3 5.若函数f(x)= 2,1 3, x 2,
A.[0,+∞)
B.[1,+∞)
C.(-∞,0]
D.(-∞,1]
答案 A 由2x-1≥0得2x≥1,所以x≥0.
3.与函数y=x有相同图象的一个函数是 (D )
A.y= x
x2 C.y= x
a log x (a>0且a≠1) B.y=
a
D.y=logaax(a>0且a≠1)
答案 D 因为函数y=x的定义域是R,而函数y= x 中的x的取值范围是x
=x0中x不能取0;C中两函数的对应关系不同,故选D.
高考数学一轮复习第二章函数的概念及其基本性质2.3.1函数的奇偶性课件理
第3讲 函数的奇偶性与周期性
考点一 函数的奇偶性
撬点·基础点 重难点
奇偶性的定义及图象特点
奇函数
偶函数
如果对于函数 f(x)的定义域内的任意一个 x 定义 都有f(-x)=-f(x) ,那么 都有 f(-x)=f(x) ,那么函
函数 f(x)是奇函数
数 f(x)是偶函数
B.y=x3sinx
C.y=2cosx+1
D.y=x2+2x
解析 由函数奇偶性的定义知,B、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有 A 中的 函数为奇函数,故选 A.
撬法·命题法 解题法
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请 是定义在[a-1,2a]上的偶函数,那么 a+b 的值是( )
A.-13
1 B.3
1 C.2
D.-12
解析 由已知得 a-1+2a=0,得 a=13,又 f(x)为偶函数,f(-x)=f(x),∴b=0,所以 a+b=13.
3.下列函数为奇函数的是( )
A.y=2x-21x
图象 关于 原点 对称 特点
关于 y 轴对称
注意点 判断函数的奇偶性时需注意两点
(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.
(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.
1.思维辨析 (1)函数具备奇偶性的必要条件是函数的定义域在 x 轴上是关于坐标原点对称的.( √ ) (2)若函数 f(x)为奇函数,则一定有 f(0)=0.( × ) (3)若函数 y=f(x+a)是偶函数,则函数 y=f(x)关于直线 x=a 对称.( √ ) (4)若函数 y=f(x+b)是奇函数,则函数 y=f(x)关于点(b,0)中心对称.( √ ) (5)函数 f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.( × ) (6)若函数 f(x)=x-2xx+a为奇函数,则 a=2.( √ )
函数的概念和性质高考真题
函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。
2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。
3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。
4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。
2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。
函数f(x)是奇函数,且当x<0时,f(x)=-eax。
若f(ln2)=8,则a=ln(1/4)。
2.2(2019全国Ⅱ理14)已知。
2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。
2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。
2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。
2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。
2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。
2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。
【2019年高考一轮课程】理科数学 全国通用版函数的概念与表示-教案
一、自我诊断 知己知彼1. 已知下列式子:①y x =;②y x =;③222x y +=;④()() 1 1x x y x x ≥⎧⎪=⎨-≤⎪⎩; 其中可以表示为y 关于x 的函数的序号是 解答:①,根据函数定义:对任意D x ∈,都只有唯一的y 值与它对应.2. 函数y =的定义域是解答:⎩⎨⎧-≥≠⇒≠-+1011x x x ∴函数的定义域为[)()+∞-,00,1 .3. 若()()()()()1 01 0x x x f x x x x +≥⎧⎪=⎨-<⎪⎩,则()1f -= ;()()1f f -= 解答:()()()()211110,1=---=-∴∞-∈-f()[)()[]()()612221,021=+==-∴+∞∈=-f f f f .4. 函数12xy x-=+的值域是 解答:12322321-+=+--=+-=x x x x x y 又023≠+x()()+∞--∞-∈∴,11, y 二.温故知新 夯实基础1.函数的概念是指解答:在某个变化过程中有两个变量y x ,如果对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,那么y 就是x 的函数,记作()D x x f y ∈=,,其中x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做函数的定义域,和x 的相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 2.函数的三要素是 解答:定义域,对应法则,值域3.函数的图象特征是 解答:直线()R a a x ∈=与图象至多有一个交点.三、典例剖析 思维拓展考点一 判定两个函数表示同一个函数例题1. 下列各组函数()f x 与()g x 表示同一个函数的是( )()A ()2x f x x =,()g x x = ()B ()1f x x =-,()()()1 11 1x x g x x x -≥⎧⎪=⎨-<⎪⎩ ()C ()()2f x x =+,()1g x = ()D ()2fx =,()g x =分析:判断两个函数是否表示同一函数,根据函数定义,只有当两个函数的定义域、对应法则及值域都相同时,两函数才是同一函数.解答:()A ()C ()D 中两函数定义域不同,而()B 中定义域和对应法则都相同,选B . 评注:在函数三要素中,定义域和对应法则起决定作用,所以通常只需判断定义域和对应法则是否都相同即可.考点二 求函数的定义域例题2 求下列函数的定义域: (1)y =(2)()01x y x x-=+(3)y (4)x x y sin lg 162+-=分析:求函数的自然定义域,即使得函数解析式有意义的自变量取值范围.注意以下几点:分母不为零,偶次方根内式子非负,指数幂的指数为零时,底数不能为零,对数的底数大于零且不为1,真数大于零,正切函数的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭等等解答:(1)()()+∞-∞-∈⇒>--⇒≠--,21,020222 x x x x x(2)()()+∞∈⇒⎩⎨⎧>≠⇒⎩⎨⎧≠+≠-,11,001001 x x x x x x (3)[)+∞∈⇒≥⇒≥-,1010lg lg 01lg x x x(4)[)()πππππ,0,4,22440sin 0162 --∈⇒⎩⎨⎧∈+<<≤≤-⇒⎩⎨⎧>≥-x Z k k x k x x x评注:本题是求函数定义域是常见形式,需要牢固掌握.例题3 若函数()f x 的定义域是()0,1,求函数()1f x +的定义域分析:对于函数()x f 而言,对应法则f 的作用对象为x ,所以()1,0既是定义域,也是对应法则f 的作用对象的取值范围;而对于()1+x f ,对应法则f 的作用对象为1+x ,而定义域范围指的是自变量x 的范围,因此需要先求出1+x 的范围,再求x 的范围 解答: 函数()x f 的定义域是()0,1∴函数()1+x f 中,()1,01∈+x ()0,1-∈∴x 即函数()1+x f 的定义域是()0,1-评注:抽象函数求定义域的一般形式:若()x f 的定义域为D ,求()[]x g f 的定义域. 同一f 作用对象的取值范围相同,即()x f 的定义域为D f ⇒的作用对象x 的取值范围为D ⇒()[]x g f 中,f 的作用对象为()D x g ∈?∈⇒x (即为()[]x g f 的定义域)考点三 求函数解析式例题4 已知()2122f x x x +=-+,求()f x分析:本题的实质是已知复合函数解析式,求外层函数解析式.只需将内层函数看成一个整体,通过换元法即可求得. 解答:设1+=x t ,则1-=t x∴由()2122f x x x +=-+得()()()54212122+-=+---=t t t t t f∴()542+-=x x x f评注:本题也可直接将222+-x x 转化成f 的作用对象1+x 的形式,即()()()⇒+---=+-=+514122122x x x x x f ()542+-=x x x f考点四 求函数的值域例题5 求下列函数的值域: (1)[]2,1,23x y x x +=∈- (2)23y x x =++- (3)()2lg 92y x x =-- (4)22x xy -=+分析:求函数值域的常见方法为:图象法,利用函数单调性,利用复合函数,利用基本不等式等等,需要根据函数解析式的结构特征来确定相应的解法. 解答:(1)35135332-+=-+-=-+=x x x x x y , 函数在[]2,1上单调递减∴由1=x 时,23-=y ;2=x 时,4 -=y 得:⎥⎦⎤⎢⎣⎡--∈23,4y(2)()()()⎪⎩⎪⎨⎧-≤-<<--≥-=-++=2,2132,53,1232x x x x x x x y当3≥x 时,[)+∞∈,5y ; 当32<<-x 时,5=y ; 当2-≤x 时,[)+∞∈,5y ; 综上,[)+∞∈,5y .(3)设229x x t --=,则()101012≤++-=x t又 0>t ∴(]10,0∈t∴原函数的值域即函数(]10,0,lg ∈=t t y 的值域根据对数函数单调性,得(]1,∞-∈y . (4)R x ∈ 02>∴x∴2212221222=⋅≥+=+=-xx x x x x y (当且仅当x x212=即0=x 时等号成立)[)+∞∈∴,2y .评注:本题中第(1)题利用函数的单调性求解;第(2)题则先变形为分段函数,再分别求解,本小题也可通过作函数的图像求解,还可以看成数轴上x 到2-与3的距离之和求解;第(3)题则是先求出内层函数的值域,再求整个函数的值域;第(4)题则是利用基本不等式求解,如果出现等号无法成立的情况,则需要通过函数()0,0>>+=b a xbax y 的图象求解.四、举一反三 成果巩固考点一 判定两个函数表示同一个函数下列各组函数中,表示同一个函数的是( )A .1y x =-和211x y x -=+B .0y x =和1y =C .()2f x x =和()()21g x x =+D .()2f x x=和()2xg x=答案 D解析 A 中两个函数的定义域不同;B 中0y x =的x 不能取0;C 中两函数的对应关系不同.故选D.考点二 求函数的定义域1.函数()f x =( ) A .(]3,0- B .(]3,1-C .()(],33,0-∞-- D .()(],33,1-∞--2.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是________. 答案 (1)A (2) [)0,1解析 (1)由题意得12030x x ⎧-≥⎨+>⎩解得30x -<≤.所以函数()f x 的定义域为(]3,0-.(2)由022x ≤≤,得01x ≤≤, 又10x -≠,即1x ≠,所以01x ≤<,即g (x )的定义域为[)0,1.3. (1)若函数()f x =R ,则a 的取值范围为________.(2)若函数2123ax y ax ax +=++的定义域为R ,则实数a 的取值范围是________. 答案 (1) []1,0- (2) [)0,3解析 (1)因为函数()f x 的定义域为R , 所以22210x ax a≥+--对x R ∈恒成立,即22022x ax a ≥+-,恒成立,因此有()2240a a ∆=+≤,解得10a -≤≤ (2)因为函数2123ax y ax ax +=++的定义域为R , 所以223ax ax ++无实数解,即函数223y ax ax =++的图象与x 轴无交点. 当0a =时,函数3y =的图象与x 轴无交点; 当0a ≠时,则()22430a a ∆=+⋅<解得03a << 综上所述,a 的取值范围是[)0,3考点三 求函数解析式1.已知21lg f x x ⎛⎫+=⎪⎝⎭,则()f x =________. 2.已知()f x 是一次函数,且满足()()3121217f x f x x +--=+,则()f x =________.3.已知函数()f x 的定义域为()0,+∞,且()121f x f x ⎛⎫= ⎪⎝⎭,则()f x =________.答案 (1) 2lg1x - (2) 27x + (3)13解析 (1)(换元法)令21t x =+,则21x t =-, ∴()2lg1f t t =-,即()2lg 1f x x=-.(2)(待定系数法) 设()f x ax b =+,则()()3121f x f x +-- 333222ax a b ax a b =++-+- 5ax a b =++ 即5217ax a b x ++=+,不论x 为何值都成立, ∴2517a b a =⎧⎨+=⎩解得27a b =⎧⎨=⎩∴()27f x x =+ (3)(消去法) 在()121f x f x ⎛⎫=⎪⎝⎭中,用1x 代替x , 得()121f f x x ⎛⎫=⎪⎝⎭, 将()121f f x x ⎛⎫=⎪⎝⎭代入()121f x f x ⎛⎫= ⎪⎝⎭中, 可求得()13f x =考点四 求函数的值域1.已知函数()()223,1lg 1,1x x x f x x x ⎧+-≥⎪=⎨⎪+<⎩则()()3ff -=________,()f x 的最小值是________.答案 03解析 ∵()()23lg 31lg101f ⎡⎤-=-+==⎣⎦,∴()()()310ff f -==,当1x ≥时,()23fx x x=+-3≥,当且仅当x =时,取等号,此时()min 3f x =;当1x <时,()f x = ()2lg 1x + lg10≥=,当且仅当0x =时,取等号,此时()min 0f x =.∴()f x的最小值为3.五、分层训练 能力进阶【基础达标】1.函数y =的定义域是解答:10101=⇒⎩⎨⎧≥-≥-x x x ,∴所求定义域是{}1. 2.函数y =的定义域是解答:()()[]6,10160562-∈⇒≤+-⇒≥--x x x x x .3. 若函数()f x 的定义域是()2,1-,则函数()2log f x 的定义域是 解答:()⎪⎭⎫ ⎝⎛∈⇒-∈2,411,2log 2x x4. 若函数()231f x x -=-,则()f x = 解答:()()()53523132+=⇒+-=-=-x x f x x x f5. 若函数()()()()2 1 104 10x x f x f x x +≤⎧⎪=⎨->⎪⎩,则()2009f = 解答:()()()()()19192913200120052009=+⨯======f f f f f 6. 函数211x y x +=-的值域是 解答:()21321312112≠-+=-+-=-+=x x x x x y ∴()()+∞∞-∈,22, y 7. 函数2141y x x =+-的值域是解答:设()5521422-≥-+=-+=x x x t ,又0≠t∴求原函数值域即为求函数[)()+∞-∈=,00,5,1 t ty 的值域利用反比例函数图像得:()+∞⎥⎦⎤ ⎝⎛-∞-∈,051, y8. 函数y x =的值域是 解答:x y = 与1-=x y 都是在[)+∞,1上的增函数∴y x =[)+∞,1也是增函数又当1=x 时,y 取到最小值1[)+∞∈∴,1y 【能力提升】1.函数()xx x y -+=1的定义域是( )(A )()+∞,0 (B )()0,∞-(C )()()0,11,--∞- (D )()()()+∞--∞-,00,11,解答:()()0,11,01001--∞-∈⇒⎩⎨⎧<-≠⇒⎩⎨⎧≠-≠+ x x x x x x ∴选()C 2.函数()D x x f y ∈=,的图象与直线a x =交点的个数为( ) (A )至少1个(B )1个或2个 (C )至多1个 (D )至少2个解答:根据函数定义,当D a ∈时,直线a x =与函数图像有且只有一个交点,当D a ∉时,直线a x =与函数图像没有交点,因此选()C . 3.函数x x y -+=1的值域是( ) (A )⎪⎭⎫⎢⎣⎡+∞,45(B )⎥⎦⎤ ⎝⎛∞-45, (C )⎥⎦⎤ ⎝⎛-∞-45, (D )R解答:函数定义域为(]1,∞- ,设(]1,,1∞-∈-=x x t 0≥∴t ,21t x -=0,45211122≥+⎪⎭⎫⎝⎛--=+-=-+=∴t t t t x x y⎥⎦⎤ ⎝⎛∞-∈∴45,y ,因此选()B4.函数41++-=x x y 的值域是( )(A )[]5,1(B )[)+∞,0 (C )[)+∞,1 (D )[)+∞,5解答:()()()[)+∞∈⇒⎪⎩⎪⎨⎧-≤--<<-≥+=++-=,54 ,3214,51,3241y x x x x x x x y ∴选()D 5.当k 为何值时,函数3412++=kx kx y 的定义域是一切实数解答:由题意,得0342=++kx kx 无实数解∴当0=k 时,方程无实数解当0≠k 时,()⎪⎭⎫ ⎝⎛∈⇒<-=∆43,001242k k k综上,k 的取值范围是⎪⎭⎫⎢⎣⎡43,0.6.求函数xx x y -+-=442的定义域解答:[]2,22204042-∈⇒⎩⎨⎧∈≤≤-⇒⎪⎩⎪⎨⎧≠-+≥-x Rx x x x x 7.已知函数()x f 的定义域是⎥⎦⎤⎢⎣⎡-21,21,求函数()()1>⎪⎭⎫⎝⎛+=a a x f ax f y 的定义域解答: 函数()x f 的定义域是⎥⎦⎤⎢⎣⎡-21,21,1>a ∴()ax f 中,⎥⎦⎤⎢⎣⎡-∈⇒⎥⎦⎤⎢⎣⎡-∈a a x ax 21,2121,21⎪⎭⎫ ⎝⎛a x f 中,⎥⎦⎤⎢⎣⎡-∈⇒⎥⎦⎤⎢⎣⎡-∈2,221,21a a x a x1>a 2210212a a a a <<<-<-∴ ∴ ⎥⎦⎤⎢⎣⎡-a a 21,21⎥⎦⎤⎢⎣⎡-2,2a a =⎥⎦⎤⎢⎣⎡-a a 21,21 ∴函数()()1>⎪⎭⎫⎝⎛+=a a x f ax f y 的定义域为⎥⎦⎤⎢⎣⎡-a a 21,21.8.已知()()()()⎪⎪⎩⎪⎪⎨⎧>-<≤-=1 ,11 ,1 ,12x x x x x x f ,求()[]x f f解答:当1≤x 时,()[]()[]()[]()x x x f x f f x x f =--=-=⇒∈-=2221111,01; 当1-<x 时,()()()[]1,1=⇒+∞∈=x f f x x f ;当1>x 时,()()[]01112=-=⇒=x f f x f 综上所述,()[]()()()⎪⎩⎪⎨⎧-<≤>=1 ,11 ,1 ,0x x x x x f f。
函数的概念与基本性质
函数的概念与基本性质函数是数学中一个非常重要的概念,它在数学及其应用领域具有广泛的应用。
本文将介绍函数的概念以及其基本性质。
一、函数的概念函数是一种数学关系,它将一个集合的元素映射到另一个集合中的元素。
具体来说,设有两个集合A和B,如果对于集合A中的任意一个元素a,都存在集合B中的唯一一个元素b与之对应,那么我们就称这种关系为函数。
通常用符号f来表示函数,表示为f: A → B,其中A 称为定义域,B称为值域。
例如,设有集合A={1,2,3}和集合B={4,5,6},我们可以定义一个函数f,将A中的元素映射到B中的元素,即f(1)=4,f(2)=5,f(3)=6。
二、函数的基本性质1. 定义域和值域函数的定义域是指函数的输入值可以取的全部实数集合,也就是函数的自变量的取值范围。
而函数的值域则是函数的输出值可以取的全部实数集合,即函数的因变量的取值范围。
2. 单射、满射和双射若具有函数f: A → B,对于集合B中的任意一个元素b,存在集合A中的至多一个元素a与之对应,那么我们称函数f为单射。
若对于集合B中的任意一个元素b,都存在集合A中的至少一个元素a与之对应,那么我们称函数f为满射。
若函数f既是单射又是满射,即对于集合B中的任意一个元素b,存在且仅存在集合A中唯一一个元素a与之对应,那么我们称函数f为双射。
3. 奇偶性若函数f满足f(-x) = -f(x)对于定义域内的任意实数x成立,那么我们称函数f为奇函数。
若函数f满足f(-x) = f(x)对于定义域内的任意实数x成立,那么我们称函数f为偶函数。
4. 复合函数若有函数g: A → B和函数f: B → C,那么我们可以定义出一个新的函数h: A → C,称为复合函数。
复合函数h的定义为h(x) = f(g(x)),其中x∈A。
5. 反函数若函数f: A → B是一个双射函数,那么存在一个函数g: B → A,使得对于任意的x∈A和y∈B,有f(g(y)) = y和g(f(x)) = x成立。
函数的基本概念与性质
函数的基本概念与性质函数是数学中一个重要的概念,它在数学推理和问题解决中扮演着重要的角色。
在本文中,我们将介绍函数的基本概念和性质,并探讨它们在数学中的应用。
一、函数的基本概念在数学中,函数是用来描述两个集合之间的关系的工具。
我们可以将函数视为一个“输入-输出”的机器,它将一个集合中的元素映射到另一个集合中的元素。
这里的集合可以是实数集、自然数集、复数集等等。
具体来说,设有集合A和集合B,函数f是从集合A到集合B的映射,即f:A→B。
我们用f(x)表示函数f在元素x上的取值。
其中,x是A中的元素,f(x)是B中的元素。
函数的输入可以有一个或多个自变量,而输出则是函数的值。
通常,我们将自变量放在函数表达式的括号中,例如f(x)或f(x,y)。
二、函数的性质函数具有一些重要的性质,下面我们将讨论其中的几个。
1. 定义域和值域:函数的定义域是指所有可能的输入的集合,而值域是指所有可能的输出的集合。
对于函数f:A→B,A就是其定义域,B 就是其值域。
2. 单射和满射:如果一个函数的每一个自变量对应唯一的函数值,那么这个函数就是单射。
如果一个函数的值域等于其目标集合B,那么这个函数就是满射。
3. 一一对应:如果一个函数既是单射又是满射,那么它就是一一对应的,也就是说,每一个自变量都对应着唯一的函数值,而且函数值覆盖了整个目标集合B。
4. 反函数:对于一一对应的函数,我们可以定义它的反函数。
如果函数f:A→B是一一对应的,那么它的反函数f^(-1):B→A满足f^(-1)(f(x))=x和f(f^(-1)(y))=y对于所有合理的输入x和y成立。
5. 复合函数:对于两个函数f:A→B和g:B→C,我们可以定义它们的复合函数h(x)=g(f(x)),其中x是A中的元素。
复合函数将一个集合中的元素通过两个函数的映射关系转换到另一个集合中。
三、函数的应用函数在数学中有着广泛的应用,下面我们将介绍几个常见的应用领域。
函数的基本概念与性质
函数的基本概念与性质函数是数学中一种重要的概念,广泛应用于不同领域的数学和科学研究中。
在本文中,我们将探讨函数的基本概念以及其相关的性质。
一、函数的基本概念函数是一种特殊的关系,它建立起自变量和因变量之间的映射关系。
通常用f(x)表示函数,其中x是自变量,f(x)是对应的因变量。
具体而言,一个函数将每一个自变量值映射到唯一的因变量值上。
函数的定义域是所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。
通过定义域和值域,我们可以确定函数的范围和可行域。
二、函数的性质1. 单调性:函数的单调性用来描述函数在定义域内的变化趋势。
如果函数随着自变量的增加而增加,则称其为递增函数;如果函数随着自变量的增加而减小,则称其为递减函数。
如果函数在定义域内递增和递减交替出现,则称其为摆动函数。
2. 奇偶性:函数的奇偶性描述了函数的对称性。
如果对于任意的x 值,f(-x) = -f(x),则称函数为奇函数;如果对于任意的x值,f(-x) =f(x),则称函数为偶函数。
奇函数通常关于原点对称,偶函数通常关于y轴对称。
3. 周期性:周期函数是指在一定范围内满足f(x + T) = f(x),其中T为最小正周期。
常见的周期函数包括正弦函数和余弦函数,它们在数学建模和信号处理等领域有着广泛的应用。
4. 极值:函数的极值包括最大值和最小值,它们表示函数在特定区间内取得的最大和最小的因变量值。
通过导数可以求得函数的极值点,这对于优化问题的求解非常有用。
5. 零点:函数的零点是指满足f(x) = 0的自变量值。
通过求解方程f(x) = 0,可以确定函数的零点。
零点在许多应用领域中具有重要的意义,比如方程的根、函数的交点等。
三、函数的图像与应用函数的图像是函数在坐标系中的几何表示。
通过绘制函数的图像,我们可以更直观地理解函数的性质和变化规律。
函数的图像有助于我们分析函数的特征,比如在哪些区间内函数递增或递减,是否具有对称性等。
函数概念与性质
函数概念与性质函数是数学中一个非常重要的概念,广泛应用于数学、物理、计算机科学等领域。
本文将围绕函数的概念和性质展开论述。
一、函数的概念函数是一个映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
在数学上,函数常常用符号表示,如f(x)或y =f(x)。
其中,x被称为自变量,y被称为因变量。
函数可以理解为数学世界中的“机器”,将给定的输入映射为唯一的输出。
二、函数的性质1. 定义域和值域:函数的定义域是输入的所有可能取值的集合,而值域是输出的所有可能取值的集合。
函数的定义域和值域决定了函数的有效输入和输出范围。
2. 单调性:函数的单调性描述了函数值随自变量的增减而变化的趋势。
如果函数随着自变量的增加而递增,则称其为递增函数;如果函数随着自变量的减少而递增,则称其为递减函数。
3. 奇偶性:函数的奇偶性指函数在定义域内的变化情况。
如果函数满足f(-x) = -f(x),则函数为奇函数;如果函数满足f(-x) = f(x),则函数为偶函数。
4. 对称轴:偶函数的对称轴为y轴,即函数图像关于y轴对称;奇函数没有对称轴。
5. 极值与最值:在函数连续的情况下,极值是指函数在一定区间内取得的最大值或最小值;最值是指函数在整个定义域内取得的最大值或最小值。
6. 零点:函数在定义域内使得f(x) = 0的点称为函数的零点或根。
零点是函数图像与x轴的交点。
三、函数的图像特征函数的图像是通过绘制自变量和因变量的关系得到的。
通过观察函数图像,可以了解函数的基本特征。
1. 函数图像的凹凸性:如果函数在某一区间内的图像是向上凹的,则称函数在该区间具有上凹性;如果函数在某一区间内的图像是向下凹的,则称函数在该区间具有下凹性。
2. 零点图像:零点是函数与x轴的交点,绘制函数图像时,零点对应的点会与x轴相交。
3. 驻点与拐点:函数图像上的驻点是函数在某一点上的导数为零的点;拐点则是函数图像上出现凹凸变化的点。
四、实例分析以一元二次函数为例,分析函数概念和性质的具体应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高考数学(理科)一轮复习讲义:函数的概念及其性质函数的概念及其性质知识点一、函数的基本概念1、函数与映射的概念(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素是:定义域、值域和对应关系.3、表示函数的常用方法列表法、图象法和解析法.4、分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这种函数称为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.小题速通1、若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()2、下列函数中,与函数y=x相同的函数是()A.y=x2xB.y=(3x2)32C.y=lg 10x D.y=2log2x3、已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+16x ,x ≤1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=( ) A .-2 B .4 C .2 D .-1 4、已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74 C.43 D .-43 易错点1、解决函数有关问题时,易忽视“定义域优先”的原则.2、易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.1、(2018·合肥八中模拟)已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4) 2、下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根; ②A =R ,B =R ,f :x →x 的倒数; ③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方. 其中是A 到B 的映射的是( ) A .①③ B .②④ C .③④ D .②③知识点二、函数定义域的求法函数y=f(x)的定义域小题速通1、函数f(x)=1-|x-1|a x-1(a>0且a≠1)的定义域为________.2、函数y=lg(1-2x)+x+3的定义域为________.易错点1、求复合型函数的定义域时,易忽视其满足内层函数有意义的条件.2、求抽象函数的定义域时,易忽视同一个对应关系后的整体范围.1、(2018·辽宁锦州模拟)已知函数f(x2-3)=lg x2x2-4,则f(x)的定义域为________.2、已知函数f(x)的定义域为[0,2],则函数g(x)=f(2x)+8-2x的定义域为________.知识点三、函数的单调性与最值1、函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2、函数的最值小题速通1、(2018·珠海摸底)下列函数中,定义域是R 且为增函数的是( )A .y =2-xB .y =xC .y =log 2xD .y =-1x2、函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)3、(2018·长春质量检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)4、已知定义在R 上的函数f (x )为增函数,当x 1+x 2=1时,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,则实数x 1的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 5、函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.易错点1、易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2、若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x .1、函数f (x )=x1-x在( )A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数2、设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.知识点四、函数的奇偶性1、定义及图象特征(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.小题速通1、下列函数中的偶函数是()A.y=2x-12x B.y=x sin x C.y=ex cos x D.y=x2+sin x2、定义在R 上的奇函数f (x )满足f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=3x -1,则f (9)=( )A .-2B .2C .-23 D.233、(2018·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23 4、若函数f (x )(x ∈R)是奇函数,函数g (x )(x ∈R)是偶函数,则( )A .函数f (x )-g (x )是奇函数B .函数f (x )·g (x )是奇函数C .函数f [g (x )]是奇函数D .函数g [f (x )]是奇函数易错点1、判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2判断分段函数奇偶性时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 1、已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则( )A .f (m )<f (1)B .f (m )>f (1)C .f (m )=f (1)D .f (m )与f (1)大小不能确定2、函数f (x )=⎩⎨⎧log 2x ,x >0,log 2-x ,x <0的奇偶性为________.知识点五、函数的周期性1、周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 2、最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期. 3、重要结论周期函数的定义式f (x +T )=f (x )对定义域内的x 是恒成立的,若f (x +a )=f (x +b ),则函数f (x )的周期为T =|a -b |. 若在定义域内满足f (x +a )=-f (x ),f (x +a )=1f x ,f (x +a )=-1f x (a >0).则f (x )为周期函数,且T =2a 为它的一个周期.4、对称性与周期的关系(1)若函数f (x )的图象关于直线x =a 和直线x =b 对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期. (2)若函数f (x )的图象关于点(a,0)和点(b,0)对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期. (3)若函数f (x )的图象关于点(a,0)和直线x =b 对称,则函数f (x )必为周期函数,4|a -b |是它的一个周期. 小题速通1、已知函数f (x )=⎩⎪⎨⎪⎧sin x 4π,x >0,f x +2,x ≤0,则f (-5)的值为( )A .0 B.22C .1 D.2 2、已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x +1)=f (1-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则f (31)=( )A .0B .1C .-1D .23、(2018·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2017)=________. 易错点在利用周期性定义求解问题时,易忽视定义式f (x +T )=f (x )(T ≠0)的使用而致误.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.过关检测练习一、选择题1.函数f (x )=lg(x -1)-4-x 的定义域为( )A .(-∞,4]B .(1,2)∪(2,4]C .(1,4]D .(2,4] 2.(2017·唐山期末)已知f (x )=x +1x-1,f (a )=2,则f (-a )=( )A .-4B .-2C .-1D .-33.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a 的值为( )A .-3B .±3C .-1D .±1 4.下列几个命题正确的个数是( )(1)若方程x 2+(a -3)x +a =0有一个正根,一个负根,则a <0; (2)函数y =x 2-1+1-x 2是偶函数,但不是奇函数; (3)函数f (x +1)的定义域是[-1,3],则f (x 2)的定义域是[0,2];(4)若曲线y =|3-x 2|和直线y =a (a ∈R)的公共点个数是m ,则m 的值不可能是1. A .1 B .2 C .3 D .4 5.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( )A .a =-2B .a =2C .a ≤-2D .a ≥26.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1x D .f (x )=ln(x +1)7.已知函数f (x )=log 13(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞) C.⎣⎡⎦⎤-12,2 D.⎝⎛⎦⎤-12,2 8.(2018·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )A.23 B .-23 C.43 D .-43 二、填空题9.f (x )=a sin x -b log 3(x 2+1-x )+1(a ,b ∈R),若f (lg(log 310))=5,则f (lg(lg 3))=________.10.设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7,若f (x )≥a +1对一切x ≥0成立,则a 的取值范围为________.11.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的________条件(填“充分不必要,必要不充分,充要,既不充分也不必要).12.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 三、解答题13.设函数f (x )=⎩⎨⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式;(2)画出f (x )的图象.14.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.高考研究课:一函数的定义域、解析式及分段函数全国卷5年命题分析考点 考查频度 考查角度 函数的概念 5年1考 函数定义问题分段函数5年3考分段函数求值及不等式恒成立问题题型一、函数的定义域问题[典例] (1)(2018·长沙模拟)函数y =lgx +1x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)(2)若函数f (x )= 22+2-x ax a-1的定义域为R ,则a 的取值范围为________.方法技巧函数定义域问题的3种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. 即时演练1、函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6] 2、已知函数f (2-x )=4-x 2,则函数f (x )的定义域为( )A .[0,+∞)B .[0,16]C .[0,4]D .[0,2]题型二、函数解析式的求法函数的解析式是函数的基础知识,高考中重视对待定系数法、换元法、利用函数性质求解析式的考查.题目难度不大,以选择题、填空题的形式出现.[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. (3)(2018·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________. 方法技巧求函数解析式的常见方法换函数方程法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f (-x ),f ⎝⎛⎭⎫1x ,则可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x )即时演练1.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 2.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.题型三、分段函数分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为低档题或中档题.常见的命题角度有: 1分段函数求值问题;2求参数值或自变量的取值范围; 3研究分段函数的性质.角度一:分段函数求值问题1、已知函数f (x )=⎩⎨⎧log 2x +1,x ≥1,e x -1,x <1,则f [f (ln 2)]=________.角度二:求参数或自变量的取值范围2、设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,log 22x ,x >1,则满足f (x )≤2的x 的取值范围是________. 3、已知函数f (x )=⎩⎨⎧1-|x |,x ≤1,x 2-4x +3,x >1,若f (f (m ))≥0,则实数m 的取值范围是( )A .[-2,2]B .[-2,2]∪[4,+∞)C .[-2,2+2]D .[-2,2+2]∪[4,+∞)角度三:研究分段函数的性质4、已知函数f (x )=⎩⎨⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)5、已知函数f (x )的定义域为R ,且f (x )=⎩⎨⎧2-x-1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)方法技巧分段函数问题的3种类型及求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. (3)研究分段函数的性质可根据分段函数逐段研究其性质,也可根据选项利用特殊值法作出判断.高考真题演练1.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x2.(2015·全国卷Ⅱ)设函数f (x )=⎩⎨⎧1+log 22-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .123.(2015·全国卷Ⅱ)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-144.(2013·全国卷Ⅱ)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]高考达标检测一、选择题1.(2018·广东模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+xB.21+x 2 C.1-x 21+x 2 D.1-x 1+x 2.函数f (x )=1ln2x +1的定义域是( )A.⎝⎛⎭⎫-12,+∞B.⎝⎛⎭⎫-12,0∪(0,+∞)C.⎣⎡⎭⎫-12,+∞ D .[0,+∞) 3.设函数f :R→R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 017D .2 018 4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( )A .2B .0C .1D .-15.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x6.(2018·青岛模拟)已知函数f (x )=⎩⎨⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A.⎩⎨⎧⎭⎬⎫14,4 B.{}1,4 C.⎩⎨⎧⎭⎬⎫1,14 D.⎩⎨⎧⎭⎬⎫1,14,47.(2018·莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f 2xlog 122-x 的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2C.⎝⎛⎭⎫32,+∞D.⎣⎡⎭⎫12,2 8.(2018·武汉调研)函数f (x )=⎩⎨⎧sin πx 2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-22B .-22C .1D .1或22二、填空题9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 10.已知函数y =lg(kx 2+4x +k +3)的定义域为R ,则实数k 的取值范围是________. 11.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数:①f (x )=x -1x ;②f (x )=x +1x;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号)12.(2016·北京高考)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. 三、解答题 13.已知f (x )=x 2-1,g (x )=⎩⎨⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2));(2)求f (g (x ))与g (f (x ))的表达式.14.水库的储水量随时间而变化,现用t 表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t 的近似函数关系式为:v (t )=⎩⎪⎨⎪⎧1240-t 2+15t -51e t +50,0<t ≤9,4t -93t -41+50,9<t ≤12.(1)该水库的储水量小于50的时期称为枯水期,问:一年内哪几个月份是枯水期? (2)求一年内该水库的最大储水量.(取21的值为4.6计算,e 3的值为20计算)能力提高训练题1.已知函数f (x )=⎩⎨⎧2x-1,0≤x ≤1,f x -1+m ,x >1在定义域[0,+∞)上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( )A.n n +12 B .22n -1+2n -1 C.1+2n22D .2n -12.设函数f (x )=⎩⎨⎧x -[x ],x ≥0,f x +1,x <0,其中[x ]表示不超过x 的最大整数,如[-1.5]=-2,[2.5]=2,若直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,则k 的取值范围为( )A.⎣⎡⎦⎤-12,-13B.⎝⎛⎭⎫-12,-13C.⎝⎛⎦⎤-1,-12D.⎝⎛⎭⎫-1,-12 高考研究课二函数的单调性、奇偶性及周期性全国卷5年命题分析考点 考查频度 考查角度函数的单调性 5年4考 利用单调性解不等式、比较大小、求最值函数的奇偶性 5年5考 奇偶性的判断及应用求值函数的周期性未考查题型一、函数的单调性高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.,常见的命题角度有:1确定函数的单调性; 2求函数的值域或最值; 3比较两个函数值; 4解函数不等式;5利用单调性求参数的取值范围.角度一:确定函数的单调性1.(2018·昆明调研)下列函数中,在区间(0,+∞)内单调递减的是( )A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x -x2.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x 2B .y =(x -1)2C .y =2-xD .y =log 0.5x3.(2018·广东佛山联考)讨论函数f (x )=axx 2-1(a >0)在(-1,1)上的单调性.方法技巧确定函数单调性的常用方法定义法 先确定定义域,再根据取值、作差、变形、定号的顺序得结论 图象法 若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降写出它的单调性导数法先求导,再确定导数值的正负,由导数的正负得函数的单调性[提醒] 复合函数y =f (φ(x ))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时,为增函数;单调性不同时为减函数.角度二:求函数的值域或最值4.函数y =2x 2+2x 的值域为( )A.⎣⎡⎭⎫12,+∞ B .[2,+∞) C.⎝⎛⎦⎤0,12 D .(0,2] 5.(2016·北京高考)函数f (x )=xx -1(x ≥2)的最大值为________.方法技巧利用单调性求函数的最值的关键是准确判断其单调性,而判断方法常用定义法及导数法.角度三:比较两个函数值6.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a7.(2018·哈尔滨联考)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c 方法技巧比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.角度四:解函数不等式8.已知偶函数f (x )在区间[0,+∞)上单调递减,则满足f (2x -1)<f (5)的x 的取值范围是( )A .(-2,3)B .(-∞,-2)∪(3,+∞)C .[-2,3]D .(-∞,-3)∪(2,+∞)9.已知函数f (x )={ x 2+x ,x ≥0,x -x 2,x <0,若f (a )>f (2-a ),则a 的取值范围是________. 方法技巧在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.角度五:利用单调性求参数的取值范围10.(2018·济宁模拟)函数f (x )=⎩⎨⎧ a x,x >1,b\lc(rc\(a\vs4al\co1(4-a2))x +2,x ≤1,)满足对任意的实数x 1≠x 2都有f x 1-f x 2x 1-x 2>0成立,则实数a 的取值范围为____________.方法技巧利用函数单调性求参数的策略(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; (2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.题型二、函数的奇偶性[典例] (1)(2018·重庆适应性测试)下列函数为奇函数的是( )A .y =x 3+3x 2B .y =e x +e -x 2C .y =x sin xD .y =log 23-x3+x(2)(2018·湖北武汉十校联考)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -x B.12(e x +e -x ) C.12(e -x -e x ) D.12(e x -e -x )(3)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________. 方法技巧应用函数奇偶性可解决的4类问题(1)判定函数奇偶性 ①定义法:②图象法:③性质法:设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)利用函数的奇偶性求值首先判断函数解析式或解析式的一部分的奇偶性,然后结合已知条件通过化简、转换求值. 即时演练1.若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 2.已知函数f (x )=a sin x -b tan x +4cos π3,且f (-1)=1,则f (1)=( )A .3B .-3C .0D .43-13.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( )A.17B .-1C .1D .7 题型三、函数的周期性[典例] (1)设定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 018)=________.(2)(2018·烟台模拟)若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )={ x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________.方法技巧函数周期性问题的求解策略(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期. 即时演练1.已知函数f (x )的定义域为R ,且满足f (x -1)=f (x +1)=f (1-x ),当x ∈[-1,0]时,f (x )=e -x ,设a =f (-2),b =f (3),c =f (8),则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=错误!其中a ∈R.若f 错误!=f 错误!,则f (5a )的值是________.题型四、函数性质的综合应用高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查. 常见的命题角度有: 1单调性与奇偶性结合; 2周期性与奇偶性结合; 3单调性、奇偶性与周期性结合.角度一:单调性与奇偶性结合1.定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( )A .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32B .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫-14D .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14 2.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,则满足f (1-m )+f (1-m 2)<0的实数m 的取值范围为________.角度二:周期性与奇偶性结合3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ) A.12 B .-14 C.14 D .-12角度三:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 方法技巧函数性质综合应用问题的3种常见类型及求解策略(1)单调性与奇偶性结合注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性. (2)周期性与奇偶性结合此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.高考真题演练1.(2017·全国卷Ⅱ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]2.(2014·全国卷Ⅱ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数3.(2015·全国卷Ⅱ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.4.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.5.(2014·全国卷Ⅱ)偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.高考达标检测一、选择题1.(2017·北京高考)已知函数f (x )=3x -⎝⎛⎭⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数2.(2018·辽宁阶段测试)设函数f (x )=ln(1+x )+m ln (1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 3.已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0 D .ln x +ln y >0 4.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .25.(2018·湖南联考)已知函数f (x )是R 上的奇函数,且在区间[0,+∞)上单调递增,若a =f ⎝⎛⎭⎫sin 2π7,b =f ⎝⎛⎭⎫cos 5π7,c =f ⎝⎛⎭⎫tan 5π7,则a ,b ,c 的大小关系为( ) A .b <a <c B .c <b <a C .b <c <a D .a <b <c6.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3] 7.设函数f (x )=ln (1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝⎛⎭⎫13,1 B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫13,+∞ 8.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1 B.45 C .-1 D .-45二、填空题9.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.10.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________. 11.已知定义在R 上的函数f (x )满足f (-x )=f (x ),且对于任意x 1,x 2∈[0,+∞),x 1≠x 2,均有f x 2-f x 1x 1-x 2>0.若f ⎝⎛⎭⎫-13=12,2f ⎝⎛⎭⎫log 18x <1,则x 的取值范围为________. 12.(2017·江苏高考)已知函数f (x )=x 3-2x +e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.三、解答题13.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.14.(2018·湖南长郡中学测试)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1. (1)求f (x )在[-1,1]上的解析式;(2)证明:f (x )在(0,1)上是减函数.能力提高训练题1.已知奇函数f (x )(x ∈D ),当x >0时,f (x )≤f (1)=2.给出下列命题:①D =[-1,1];②对∀x ∈D ,|f (x )|≤2;③∃x 0∈D ,使得f (x 0)=0;④∃x 1∈D ,使得f (x 1)=1.其中所有正确命题的个数是( )A .0B .1C .2D .32.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-13,13B.⎣⎡⎦⎤-33,33C.⎣⎡⎦⎤-16,16D.⎣⎡⎦⎤-66,66。