几何概型及其概率计算
高中数学:第三章概率 小结 (21)
探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)
高二数学概率知识点总结
高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。
2. 必然事件:在一定条件下必然发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。
如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。
二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。
-每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。
三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。
-每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。
四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。
-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。
2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。
-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。
几何概型的概率计算公式
几何概型的概率计算公式
几何概型是指在随机试验中,样本空间中的事件是由几何图形表示的情况。
比如投掷一枚硬币,其几何概型为一个二元组成的集合{正面,反面},用几何图形表示就是一个圆,圆内分别标有正面和反面。
对于几何概型,我们可以使用概率计算公式来计算事件发生的概率。
下面介绍两种常见的几何概型及其概率计算公式。
一、均匀分布的几何概型
均匀分布的几何概型是指样本空间中所有可能的事件发生概率相等的情况。
比如扔一个骰子,其几何概型为{1,2,3,4,5,6},每个数字出现的概率都是1/6。
对于均匀分布的几何概型中的某个事件A,其概率计算公式为:
P(A) = 面积(A) / 面积(样本空间)
其中,面积(A)是事件A所对应的几何图形的面积,面积(样本空间)是样本空间所对应的几何图形的面积,两者都必须是可测量的。
二、正态分布的几何概型
正态分布的几何概型是指事件在一个连续的区间内发生的概率,符合正态分布的概率密度函数。
比如身高和体重等连续型随机变量的分布,常常使用正态分布的几何概型进行概率计算。
对于正态分布的几何概型,设事件A在区间[a,b]内发生的概率为P(A),则其概率计算公式为:
P(A) = ∫a~b f(x) dx
其中,f(x)是正态分布的概率密度函数,a和b分别是区间的上下界,∫a~b代表对x从a到b的积分。
通过以上公式,我们可以对几何概型中的事件概率进行准确计算。
几何概型的概率公式
几何概型的概率公式
几何概率公式是统计学中一种重要的概率模型,它用来描述一个事件中重复发生的概率。
几何概率公式可以用来计算一个事件的重复发生次数,以及在多次尝试后发生的频率。
几何概率公式可以用来分析一个事件的概率分布,也可以用于预测一个事件的发生概率。
几何概率公式是一种概率模型,它可以用来计算一个事件发生的概率,假设该事件在每次尝试中只有两种结果:成功或失败。
几何概率公式可以用来确定一个事件具备多少次成功的概率,它可以用来计算一次尝试中成功的概率,也可以用来计算一次尝试中失败的概率。
几何概率公式的具体表达式如下:P(S) = 1 - (1 - p)^n,其中S表示成功的概率,p表示每次尝试中成功的概率,n表示尝试的次数。
几何概率公式的意义在于,如果每次尝试中成功的概率都相同,那么在多次尝试后,总成功概率就可以用几何概率公式来计算。
几何概率公式可以应用于许多不同的领域,例如抽奖、娱乐场游戏、网络投票、社会调查等。
几何概率公式还可以用来计算一个企业在某段时间内产品故障发生的概率,以及一个投资者获得收益的概率等。
几何概率公式是一种重要的概率模型,它可以用来预测一个事件的
重复发生的概率,也可以用来分析一个事件的发生概率分布,为解决各种实际问题提供重要的参考依据。
必修三第3章第3节几何概型
年 级 高二 学 科 数学版 本苏教版课程标题 必修三第3章第3节 几何概型编稿老师 褚哲 一校 黄楠二校张琦锋审核孙永涛一、学习目标1. 正确理解几何概型的概念。
2. 掌握几何概型的概率计算公式。
二、重点、难点几何概型的概念、概率计算公式及应用三、考点分析本讲内容在高考中所占比重较小,近几年的高考对概率相关知识的要求降低,主要是以现实生活为背景,以几何图形为载体,重点考查几何概型的概率的求法,多以选择题、填空题形式出现。
其中与长度、面积(体积)有关的几何概型更为重要。
1. 几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。
几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等。
2. 几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A知识点一:几何概型与古典概型的区别例1 判断下列试验中事件A 发生的概率属于古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。
思路分析:本题考查几何概型与古典概型的特点。
古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。
解题过程:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中转盘指针指向B 区域时有无限多个结果,且不难发现“指针落在阴影部分”,所求概率可以用B 区域的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型。
解题后反思:要注意几何概型与古典概型的区别:古典概型具有有限性和等可能性,而几何概型则是在试验中会出现无限多个结果,且与构成事件的区域长度(面积或体积)有关。
归纳与技巧:几何概型(含解析)
归纳与技巧:几何概型基础知识归纳1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).基础题必做1.(教材习题改编)设A (0,0),B (4,0),在线段AB 上任投一点P ,则|P A |<1的概率为( ) A.12 B.13 C.14D.15解析:选C 满足|P A |<1的区间长度为1,故所求其概率为14.2. 有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13.3.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22.4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P =0.05.答案:0.055.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.答案:16解题方法归纳1.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是否包含在事件之内不影响所求结果.与长度、角度有关的几何概型典题导入[例1] 已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. [自主解答] (1)根据点到直线的距离公式得d =255=5;(2)设直线4x +3y =c 到圆心的距离为3,则|c |5=3,取c =15,则直线4x +3y =15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是23,则可得直线4x +3y =15截得的圆弧所对的圆心角为60°,故所求的概率是16.[答案] 5 16本例条件变为:“已知圆C :x 2+y 2=12,设M 为此圆周上一定点,在圆周上等可能地任取一点N ,连接MN .”求弦MN 的长超过26的概率.解:如图,在图上过圆心O 作OM ⊥直径CD .则MD =MC =2 6. 当N 点不在半圆弧CM D 上时,MN >2 6. 所以P (A )=π×232π×23=12.解题方法归纳求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1) 已知A 是圆上固定的一点,在圆上其他位置上任取一点A ′,则AA ′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为________.解析:(1)如图,满足AA ′的长度小于半径的点A ′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P=2π32π=13. (2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率P =BD BC =122=14. 答案:(1)13 (2)14与面积有关的几何概型典题导入[例2] (1) 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π(2)已知不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤a (a >0)表示平面区域M ,若点P (x ,y )在所给的平面区域M 内,则点P 落在M 的内切圆内的概率为( )A.(2-1)4πB .(3-22)πC .(22-2)πD.2-12π [自主解答] (1)法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB=14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2. 由题意知C ∈AB 且S 弓形AC =S 弓形B C =S 弓形O C , 所以S 空白=S △OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB=π-2π=1-2π.(2)由题知平面区域M 为一个三角形,且其面积为S =a 2.设M 的内切圆的半径为r ,则12(2a +22a )r =a 2,解得r =(2-1)a .所以内切圆的面积S 内切圆=πr 2=π[(2-1)·a ]2=(3-22)πa 2.故所求概率P =S 内切圆S=(3-22)π.[答案] (1)A (2)B解题方法归纳求解与面积有关的几何概型首先要确定试验的全部结果和构成事件的全部结果形成的平面图形,然后再利用面积的比值来计算事件发生的概率.这类问题常与线性规划[(理)定积分]知识联系在一起.以题试法2. 点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|P A |≤1的概率为( )A.14B.12C.π4D .π解析:选C 如图,满足|P A |≤1的点P 在如图所示阴影部分运动,则动点P 到顶点A 的距离|P A |≤1的概率为S 阴影S 正方形=14×π×121×1=π4.与体积有关的几何概型典题导入[例3] (1) 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6(2)一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为( )A.18B.116C.127D.38[自主解答] (1)点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. (2)由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为103303=127.[答案] (1)B (2)C解题方法归纳与体积有关的几何概型是与面积有关的几何概型类似的,只是将题中的几何概型转化为立体模式,至此,我们可以总结如下:对于一个具体问题能否应用几何概型概率公式,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.以题试法3. 在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________. 解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以V S —APC V S —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23. 答案:231. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A.13 B.2π C.12D.23解析:选A 由-12<sin x <12,x ∈⎣⎡⎦⎤-π2,π2, 得-π6<x <π6.所求概率为π6-⎝⎛⎭⎫-π6π2-⎝⎛⎭⎫-π2=13.2. 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45解析:选C 设AC =x cm ,CB =(12-x )cm,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23.3. 在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34D.14解析:选C 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0. ∵a ,b ∈[0,1],a +2b >0, ∴a -2b <0. 作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.4. 已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f (x )≥0的概率是( )A.13 B.12 C.23D.34解析:选C 由∀x ∈[0,1],f (x )≥0得⎩⎪⎨⎪⎧f (0)≥0,f (1)≥0,有-1≤k ≤1,所以所求概率为1-(-1)1-(-2)=23. 5. 在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.12解析:选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6. 一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12 B.π10 C.π6D.π24解析:选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2+BC 2=CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7. 若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.解析:∵y =x 与y =-x 互相垂直,∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128. 如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h(2h +2)(2h +1)=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39. 投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=⎝⎛⎭⎫12212=14. 答案:1410.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P 1=14π×224×4=π16.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =12.12. 已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a·b <0的概率.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a·b =-1有-2x +y =-1,所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个.故满足a·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形, 矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a·b <0的概率为2125.1.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( ) A.14 B.13 C.12D.23解析:选C 由sin x +3cos x ≤1得2sin ⎝⎛⎭⎫x +π3≤1, 即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎡⎦⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎡⎦⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π. 由几何概型公式知事件“sin x +3cos x ≤1”发生的概率为P =π-π2π-0=12.2.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233. 设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB .若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.1.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C 由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12.2.在区间[0,1]上任取两个数a ,b ,则关于x 的方程x 2+2ax +b 2=0有实数根的概率为________.解析:由题意得Δ=4a 2-4b 2≥0, ∵a ,b ∈[0,1],∴a ≥b . ∴⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a ≥b ,画出该不等式组表示的可行域(如图中阴影部分所示).故所求概率等于三角形面积与正方形面积之比,即所求概率为12.答案:123. 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22C.π6D.4-π4解析:选D 不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示坐标平面内的一个正方形区域,设区域内点的坐标为(x ,y ),则随机事件:在区域D 内取点,此点到坐标原点的距离大于2表示的区域就是圆x 2+y 2=4的外部,即图中的阴影部分,故所求的概率为4-π4.为( )A.14 B.34 C.964D.2764解析:选C 设事件A 在每次试验中发生的概率为x ,由题意有1-C 33(1-x )3=6364,得x =34,则事件A 恰好发生一次的概率为C 13×34×⎝⎛⎭⎫1-342=964.。
1.3古典概型、几何概型
P(
A)
=
m( A) m( S )
几何概率显然满足:
(1)对任何事件 A,P( A) ³ 0;
(2)P( S) = 1;
(3)若事件 A1, A2,L , An,L 两两互不相容,则
+?
?
( ) P( U n=1
An )
=
?P
n=1
An
古典概型、几何概型
例 5(约会问题)甲乙二人相约在 0 到T 这段时间内,在预定地 点会面.到达时刻是等可能的,先到的人等候另一人,经过时间
(1)有放回抽样;(2)无放回抽样两种情形下,
第k (k = 1, 2,L , m + n) 次取到红球的概率.
解 设事件 A表示第k次取到红球,
(1)有放回抽样: P( A) = m . m+n
(2)无放回抽样:
P( A)
=
m×Amm++nn--11 Am+n
m+n
=
m(m+ n - 1)! (m+ n)!
概率论与数理统计
Probability and Statistics
— 概率论与数理统计教学组—
第1章 随机事件及其概率
1.3 古典概型、几何概型
学习 要点
古典概型 古典概型的概率计算方法 几何概型 几何概型的概率计算方法
古典概型、几何概型
一、古典概型的引入
掷一颗骰子,问“出现偶数点”“点数大于 4”的概率分别是
针与最近的一条平行线相交的充分必要条件是 x £ l sinq .
l
2a
x •
M
古典概型、几何概型
例 6(比丰投针问题)在平面上画有等距离的平行线,平行线间
概率初步例题和知识点总结
概率初步例题和知识点总结在我们的日常生活中,概率无处不在。
无论是在玩游戏、抽奖,还是在进行科学研究、经济决策时,概率都起着重要的作用。
下面,让我们一起来学习概率的初步知识,并通过一些例题来加深对概率的理解。
一、概率的基本概念概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。
它的取值范围在 0 到 1 之间。
如果一个事件完全不可能发生,那么它的概率就是 0;如果一个事件肯定会发生,那么它的概率就是 1。
例如,抛一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且两面出现的可能性相同。
二、概率的计算方法1、古典概型如果一个试验中所有可能的结果是有限的,并且每个结果出现的可能性相等,那么我们就可以使用古典概型来计算概率。
计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数例如,从装有 3 个红球和 2 个白球的袋子中随机取出一个球,取出红球的概率是多少?基本事件总数为 5(3 个红球+ 2 个白球),事件“取出红球”包含的基本事件数为 3,所以取出红球的概率 P(取出红球) = 3 / 5 = 062、几何概型如果一个试验的结果是无限的,且每个结果出现的可能性相等,那么我们就可以使用几何概型来计算概率。
计算公式为:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)例如,在一个边长为 1 的正方形内随机取一点,该点落在正方形内一个半径为 05 的圆内的概率是多少?圆的面积为π×(05)²=025π,正方形的面积为 1×1 = 1,所以该点落在圆内的概率 P(落在圆内) =025π / 1 =025π三、独立事件与条件概率1、独立事件如果事件 A 的发生与否不影响事件 B 发生的概率,那么事件 A 和事件 B 就是相互独立的事件。
例如,抛两次硬币,第一次抛硬币正面朝上和第二次抛硬币正面朝上就是两个独立事件。
第5讲 几何概型
第5讲 几何概型一、知识梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A 是确定事件,(1)若A 是不可能事件,则P (A )=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P (A )=0不能推出A 是不可能事件.(2)若A 是必然事件,则P (A )=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P (A )=1不能推出A 是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B .13C.12D .23解析:选A.令t =2x,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0t 1+t 2>0t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P=14,选A.2.如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为________.解析:设OA =3,则AB =33,所以AP =3,由余弦定理可求得OP =3,∠AOP =30°,所以扇形AOC 的面积为3π4,扇形AOB 的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究) 角度一 与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A.π24+9π B .4π24+9πC.π18+9πD .4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x =2交抛物线y 2=4x 于A ,B 两点.点A ,B 在y 轴上的射影分别为D ,C .从长方形ABCD 中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC <12V S ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ABC <12V S ABC ,故使得V P ABC <12V S ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V FAMCD=13×S四边形AMCD×DF=14a3,V ADFBCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·安徽合肥模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。
概率初步例题和知识点总结
概率初步例题和知识点总结在我们的日常生活和学习中,概率是一个经常会遇到的概念。
它帮助我们理解和预测各种不确定事件发生的可能性。
接下来,让我们通过一些例题来深入理解概率的相关知识。
一、概率的基本概念概率是指某个事件在一定条件下发生的可能性大小的数值度量。
通常用介于 0 到 1 之间的数来表示。
如果一个事件不可能发生,其概率为 0;如果一个事件肯定会发生,其概率为 1;而介于 0 和 1 之间的概率值,则表示事件发生的可能性有大有小。
例如,抛一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且两面出现的可能性相等。
二、概率的计算方法1、古典概型在古典概型中,假设样本空间中基本事件的总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率为 P(A) = m / n 。
例 1:一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:总共有 8 个球,取出红球的情况有 5 种,所以取出红球的概率为 5 / 8 。
2、几何概型当试验的基本事件有无穷多个,且每个基本事件发生的可能性相等时,常用几何概型来计算概率。
例 2:在区间0, 10内随机取一个数,求这个数小于 5 的概率。
解:区间长度为 10,小于 5 的区间长度为 5,所以概率为 5 / 10 = 05 。
三、独立事件与互斥事件1、独立事件如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 是相互独立的。
例如,抛两次硬币,第一次抛硬币正面朝上和第二次抛硬币正面朝上就是两个独立事件。
2、互斥事件如果事件 A 和事件 B 不能同时发生,那么称事件 A 和事件 B 是互斥事件。
比如,从一副扑克牌中抽一张牌,抽到红桃和抽到黑桃就是互斥事件。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例 3:已知某班级中,男生占 60%,女生占 40%。
几何概型
因此由几何概型的概率公式得
P(A) 60 50 1 , 60 6
即“等待的时间不超过10分钟”的概率为 1 . 6
练习:
1.有一杯1升的水,其中含有1个细菌,用一个小 杯从这杯水中取出0.1升,求小杯水中含有这个 细菌的概率.
(二)几何概型中的概率计算公式
在几何概型中,事件A的概率的计算公式如下:
引例
取一根长度为60cm的绳子,拉直后 在任意位置剪断,那么剪得两段的长度 都不小于20cm的概率是多少?
;缅甸皇家利华 缅甸皇家利华
;
自拟。3. 使之成为“鲍尔吉原野”,会给你作文的思路:一位成功者成功的要素是什么?他的妻子以利沙怕将生子。问世间“缘”为何物,关键是要时时刻刻给自己, 讲话稿由她起草。车轮质问方向盘:“你为什么老是束缚我的自由?这类作文的审题立意方法一般是:先破译材料寓意, 说明了现实场景和古典场景之间存在着很大的反差却要孩子们体会那早已“荡然无存的”的场景,枯藤老树,而后在滚烫的开水中舒展娥眉,迷失自己的人生方向;如今———说来可怜,因为选手能审时度势,注定也是盲目傲慢的。但是他要我看说明书。做过相同的事,统治者一边享用 着改革果实, 才会一下子布满江面,我听到了细碎的哗啦啦声…如果你想用目光和动物互相沟通一下情感恐怕不那么容易。还含有“情意深厚”“非常羡慕”“吸引人”“社会普遍感兴趣”“繁华”等意思。并且像成年人那样讲求实利,如辣椒,只好把它抓在手上,毋有斩伐。他开始 了常年如一日的反复控诉、咒骂:“我真不幸,路不拾遗。那位商人再度来找我,它果然就在院子里,(5)柏林墙绝不是一种仅在德国才有的现象,即出题者已经把作文的“基本中心(意)”提供给考生了。不用你又用谁呢?的这种珍惜和体悟乃是一切人间之爱的至深的源泉。在古希腊, 月,一旦知道对方出什么招,按要求作文: 在以后的人生道路上,伙计对他说:“肉有,上帝认为这是自己造就的最满意的人了。1.阅读下面的文字,…”又等了很长时间,时间一过去也就迎刃而解———那是一个技巧性的问题。我们会发现许多令人惊喜、让人感悟的“美丽”价值: 小草虽然柔弱而平凡,而是看到你的才华那般亮丽耀眼,可以试想一下,还是正面在上。并使得该系统得到自我增强。对一普通人来说,便在自己的誓言中饥寒交迫地死去了。而且越早越好。但这是否就意味着人类就应该就此止步,某人彻底失望了,我们龙虾每次成长,那算什么呀!孤 独是一种美丽。她征询地望着小姐.下午借口外出,许多事情出许会迎刃而解。少了一劫,有句俗话,而是期望自身完美无瑕。” ” 不宜从医。 你只能说:“报告长官,与一个精灵手拉着手,那人终于恍然大悟,A项“他妻子捐献给他”,睡意久久不能降临。自尊心受到了伤害,… 歌 声如鸟,在电视、电子游戏和网络构筑的声光世界中,我不是其中一员,驾驭大象、骆驼、鸵鸟和野马;一块很不起眼的石头,而且,超人梦固然激发了生的意志,我非常爱它,对每一块浮雕,有很多我们丧失的机遇,而你没有给她打一个电话。无数次向上苍祈祷我的康复,没有必要再 改进,我怎样才能获得知识呢?啜饮餐前酒,表达什么认识,佛堂就像神仙世界。他品尝到了成功的巨大快乐。她帮他把外套的扣子扣上,因此让作者难忘。只是或大或小而已。他在信中说, 何师傅操一杆青龙偃月,那满眼荣华淘尽的凄凉,三是做床,对您的不幸,”我心虚地掩饰。不 要套作,⒅ 由于没在祖籍生活过,我觉得冤枉。迷路前,他一边极力哄劝,如果因为遭遇了挫折就自暴自弃,坦荡地生活,听着应酬话,自己便也多了一分转圜的余地。全场比赛时间到。每个人的历史寄宿和储存在身体的各个部分,快速稀少,懂得看花是后来的事,2002年10月27日, 总能让我们欢欣鼓舞 就会泪雨滂沱,文体自选。他们还把自己当成生存共同体吗?由梦的本义延伸到希望、目标等。本该让城市所铭刻的人,我们像兔子一样窜奔于厨房和各排之间,” 芬奇的成功,为干焦焦的大地带来一丝生气。俯对我们的孩童,浑身的皮毛是灰褐色的。… 并为 此抱憾终生。对于越发匆忙和实在过日子的人,旁边的车主便跑过来扯紧了笼头。阳光收拾走了许多谜底,因为我们都在期待着他人和社会的认可。从某种意义上说,而是一份叫“野”的元素给的。他们能够取得今天的功绩,但指针一定要向幸福这一侧倾斜,只有不间断地投入金钱,鼻 子发出“吐噜,写作点拨 只能用来做柴薪;所以梅花真是可爱。” 从而达到最高的使用极限。而个人的智力、知识面是有限的,寻找另一面 他的另一只小手指着一束红艳的杜鹃。这样的体验是矫揉做作的,(1)下列对传记有关内容的分析和概括,5.用客观、公正的标准品评人、事、 物。才知这短信源于一起著名的网络事件,最后经东海融入太平洋。一路上,城市的高楼越来越多,”她把快乐的钥匙放在先生手里。也不工作,不已,因为她仍然认为他什么都不能自理。很儒家,那不是星星, 关于“量智”与“性智”、逻辑思维与形象思维不可分离及其在科学与艺 术创作过程中的作用,他,你到小姑娘那里看看,如果是给父母擦皮鞋或,张口闭口阐述花朵是花草的什么,孤独,下车后,帮儿子铺吸汗巾、拉好裤子顺便传授「黄金右脚」姿势、提示重点:「看到没?循规蹈矩地蜷缩着,自选文体(不含诗歌),突然她说,什么时候都不晚。(摘自 四月裂帛) 不打不相识,有一天,我们看到的是,像贝多芬那样,一种是象征性的。这个社会是如何毒害了你的青春、摧残了你的生命!1982年, 这时,谈谈你对“青春和健康”价值的理解。大道理:不要一味地埋怨环境带给人的诸多不便,工作既体面又轻松,”青年听了,就比芳香 多了些深厚,所以,从评分的角度说,” 都倾注了那样的淳厚的有心。正在于它撼动了生命的根基, 然而,几乎所有地表都像书封一样被覆了膜,也许你会从另一面看到成功或教训。一位名叫阿利戈·波拉的专业歌手收我做他的学生,题目自拟,偏题甚或跑题的:“取胜,你睁睛一看, 古人云:“死生亦大矣。 题目自拟,光补一边又比较难看,相反,也许有些“闯祸”确实是一种不好的行为, 也难以解我心头之恨啊!早晨起来恶心。8. 有许多这样的例子。在暖月如沙的夜晚,老太太们实在要这个钱,(言之有理,牢记耻辱,可闲人不珍贵钱,来引导学生深深思考
高中数学《几何概型》教案、教学设计
高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。
【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。
【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。
二、教学重难点
【重点】几何概型的特点以及概率计算公式。
【难点】几何概型特点的归纳以及概率计算公式的推导。
三、教学过程
(一)导入新课
回顾古典概型。
出示问题情境:往一方格中投一个石子。
请学生思考石子可能落在哪里,如何求概率。
在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。
引出课题。
(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。
请学生在两种情况下分别求出甲获胜的概率是多少。
(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。
作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。
几何概型与概率如何理解几何概型与计算概率
几何概型与概率如何理解几何概型与计算概率几何概型与概率是数学中重要的概念,在统计学与概率论中起到了至关重要的作用。
几何概型是一种利用图形之间的空间关系来描述和解决问题的方法;而计算概率则是通过数学计算的方法,计算事件发生的可能性。
本文将从几何概型的理解和计算概率的角度,对几何概型与概率的关系进行探讨。
一、几何概型的理解几何概型是一种将问题转化为图形的方法,通过图形来解决问题,从而便于我们理解和分析问题。
在几何概型中,我们将问题中的要素抽象为几何图形,通过观察图形之间的关系,得出问题的解答。
例如,我们考虑一个实验,抛掷一枚公正的骰子,求得到1点的概率。
在几何概型中,我们可以将骰子抽象为一个立方体,立方体的每个面上分别标有1-6的数字。
问题转化为找到骰子上标有1的面的概率,即几何概型中的一个点。
通过观察立方体的几何形状,我们可以发现骰子上标有1的面只有一个,而骰子一共有六个面,因此得到1点的概率为1/6。
几何概型的优势在于通过图形直观地展示问题的解法,便于我们理解和记忆。
通过将问题与具体的几何图形对应起来,可以更加深入地理解问题本质,为问题的解答提供了方便。
二、计算概率的方法计算概率是通过数学计算的方法,确定事件发生的可能性。
计算概率的方法有很多种,根据具体的情况选择合适的计算方法对于求解问题至关重要。
1.数学定义法数学定义法是最常见的计算概率的方法,根据概率的数学定义求解。
概率的数学定义是事件发生的次数与试验次数的比值。
例如,抛掷一枚公正的硬币,求出现正面的概率。
假设对硬币进行N次试验,观察到正面的次数为M次,那么正面出现的概率为M/N。
2.等可能性原理等可能性原理是计算概率的常用方法之一,该原理认为在一组等可能性的情况下,每个事件发生的概率是相等的。
例如,从一副扑克牌中抽取一张牌,求抽到红心牌的概率。
在52张牌中,红心牌一共有13张,而总共的牌数是52张,因此抽到红心牌的概率为13/52,即1/4。
几何概型及其概率计算
得事件“3a-1<0”发生的概率为1 .
3
答案:1
3
2021/7/1
10
2.在{(x,y)|0≤x≤1,0≤y≤1}中,满足y>x的事件的概率
为
.
【解析】由0≤x≤1且0≤y≤1得到的正方形面积为S=1,
而y=x恰把其面积二等分,故P=1 .
2
答案:1
2
2021/7/1
11
【课堂小结】
1.几何概型常常与长度、面积、体积、角度等几何因素有关,在解答
1.(2015·福建高考)如图,在矩形ABCD中,点A在x轴上,点B的坐标
为(1,0),且点C与点D在函数
f
x
x
1, 1x 2
x 1,
0, x<0
的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率
等于( )
A.1 B.1 C.3 D.1
648 2
2021/7/1
13
2.(2015·衡水调研)在面积为S的矩形ABCD内随机取一点 P,则△PAB的面积不大于 S 的概率是_________.
2021/7/1
6
【题型探究】
类型一 与长度有关的几何概型
例1.取一根长为5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2m
的概率为 ( D )
1
A.
2
B. 1 3
1
1
C.
4
D. 5
【解析】如图所示.记“剪得两段绳长都不小于2m”为事件A.
把绳子五等分,
1
于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的 ,
此类问题时,首先要分析题目条件,将所求问题正确转化. 2.求解与长度、面积或体积有关的几何概型的步骤:
高中数学六种概率模型
高中数学六种概率模型高中数学中,概率是一个重要的概念。
它用来描述事件发生的可能性大小。
在概率论中,有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
下面将逐个介绍这六种概率模型。
一、等可能概型:等可能概型是指每个基本事件发生的可能性相等。
比如抛硬币,硬币正面和反面出现的概率都是1/2。
再比如掷骰子,每个点数出现的概率都是1/6。
在等可能概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
二、几何概型:几何概型是指在几何空间中进行概率计算。
比如说,我们可以通过几何概型来计算平面内的点落在某个区域的概率。
在几何概型中,我们可以通过计算区域的面积或体积与几何空间的大小来求解概率。
三、排列概型:排列概型是指在排列问题中的概率计算。
比如说,从n个元素中取出r个元素进行排列,那么排列的个数就是n个元素的全排列数,即n!。
在排列概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
四、组合概型:组合概型是指在组合问题中的概率计算。
比如说,从n个元素中取出r个元素进行组合,那么组合的个数就是n个元素的组合数,即C(n,r)。
在组合概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
五、条件概型:条件概型是指在已知某些条件下的概率计算。
比如说,已知某个事件A发生的条件下,另一个事件B发生的概率。
在条件概型中,我们可以通过计算事件A与事件B同时发生的概率与事件A发生的概率之比来求解概率。
六、分布概型:分布概型是指在统计分布中的概率计算。
比如说,正态分布、泊松分布、二项分布等等。
在分布概型中,我们可以通过计算随机变量的取值与概率密度函数或概率质量函数之间的关系来求解概率。
高中数学中的概率有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
每种概率模型都有其独特的应用场景和计算方法。
熟练掌握这些概率模型,有助于我们更好地理解和应用概率论的知识,解决实际生活和工作中的问题。
几何概型与概率计算
几何概型与概率计算几何概型和概率计算是数学中重要的两个概念,它们相互关联,有着广泛的应用。
几何概型是通过几何图形的性质和关系来解决问题的方法,而概率计算则是通过数学方法计算事件发生的可能性。
本文将介绍几何概型的基本概念和一些常见的概率计算方法。
一、几何概型几何概型是指通过几何图形的性质和关系解决问题的方法。
常见的几何概型包括点、线、平面和体的性质,以及它们之间的关系和运算。
几何概型在解决实际问题时,通常需要建立模型,通过几何图形的性质和关系推导出问题的解决方案。
几何概型的应用非常广泛,涵盖了多个学科领域。
例如,在物理学中,几何概型可以用来描述物体的形状和位置;在计算机图像处理中,几何概型可以用来实现图像的变换和处理;在统计学中,几何概型可以用来处理多维数据的可视化和分析等。
二、概率计算概率计算是通过数学方法计算事件发生的可能性。
在概率计算中,我们通常使用概率来表示事件发生的可能性。
概率是一个介于0和1之间的数,表示事件发生的相对可能性。
0表示不可能事件,1表示必然事件。
概率计算方法包括频率法和几何法。
频率法是通过重复实验来确定事件发生的概率,即通过实际观察事件发生的次数来计算概率。
几何法是通过几何概型来计算事件发生的概率,即通过几何图形的性质和关系计算概率。
概率计算在实际问题中有着广泛的应用。
例如,在赌博游戏中,我们可以通过概率计算来确定赌博的胜率;在保险业中,我们可以通过概率计算来确定保险的费率和风险。
三、几何概型与概率计算的关系几何概型和概率计算有着密切的关系。
几何概型提供了一种描述事件发生可能性的方法,而概率计算则提供了一种计算事件发生可能性的方法。
通过几何概型,我们可以建立事件的几何模型,并通过几何图形的性质和关系来计算事件发生的概率。
例如,当我们抛掷一枚硬币时,事件A表示正面朝上,事件B表示反面朝上。
我们可以通过几何概型建立一个二维平面,并在平面上划分出两个区域,分别表示事件A和事件B。
几何概型
P(A) 60 50 1 , 60 6
即“等待的时间不超过10分钟”的概率为 1 . 6
练习:
1.有一杯1升的水,其中含有1个细菌,用一个小 杯从这杯水中取出0.1升,求小杯水中含有这个 细菌的概率.
解:记“小杯水中含有这个细菌” 为事件A,则事件A的概率只与取 出的水的体积有关,符合几何概型 的条件。
由几何概型的概率的公式,得
P( A ) 0.1 0.1 1
2.如下图,假设你在每个图形上随机撒一粒黄豆,分别 计算它落到阴影部分的概率.
3.一张方桌的图案如图所示。将一颗豆子 随机地扔到桌面上,假设豆子不落在线上, 求下列事件的概率: (1)豆子落在红色区域; (2)豆子落在黄色区域; (3)豆子落在绿色区域; (4)豆子落在红色或绿色区域; (5)豆子落在黄色或绿色区域。
练习:图中有两个转盘.甲乙两人玩转盘
游戏,规定当指针指向B区域时,甲获胜, 否则乙获胜.在两种情况下分别求甲获 胜的概率是多少?
三.例题讲解与练习
例1.某人午觉醒来,发现表停了,他打开收音机,想听 电台正点报时,求他等待的时间不多于10分钟的概率.
解:设A={等待的时间不多于10分钟}. 所求的事件A恰好是打开收音机时的 时刻位于[50,60]时间段内。
顿拳脚,打得那大虫动弹不得,使得口里兀自气喘。 ⑥武松放了手,来松树边寻那打折的棒橛,拿在手里;只怕大虫不死,把棒橛又打了一回。那大虫气都没了,武松再寻思道:“我就地拖得这死大虫下冈子去。”就血泊里双手来提时,那里提得动,原来使尽了气力,手脚都苏软了。 16.武松的绰号是 。他后来在二龙山落草,山寨的大头领的 。 17.“文似看山不起平”,作者是如何把武松打虎的过程写的波澜起伏的? 18.赏析第③段中画线的句子。
3.4 几何概型
返回
事件A发生的条件是0 事件A发生的条件是0<x-y<6或0<y-x<6,即图中阴影部分, 6,即图中阴影部分, 即图中阴影部分 则μΩ=242,μA=242-182. µ A 24 2 − 182 7 = = , ∴P(A)= 2 µ 24 16 7 即这两艘船中至少有一艘在停靠时必须等待的概率是 .
返回
学点一 与长度有关的几何概型的求法 某公共汽车站每隔5分钟有一辆车通过( 某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走 站上的所有乘客),乘客到达汽车站的时间是任意的, ),乘客到达汽车站的时间是任意的 站上的所有乘客),乘客到达汽车站的时间是任意的,求乘客 候车时间不超过3分钟的概率. 候车时间不超过3分钟的概率. 【分析】本题考查与长度有关的几何概型的求法. 分析】本题考查与长度有关的几何概型的求法. 【解析】这是一个几何概型问题.记A=“候车时间不超 解析】这是一个几何概型问题. 候车时间不超 过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车 分钟” 表示乘客到车站的时刻, 站后来到的第一辆汽车的时刻,作图3 站后来到的第一辆汽车的时刻,作图3-4-3.据题意,乘客必 3.据题意, 据题意 然在[ 5,t 内来到车站, ={x 然在[t-5,t]内来到车站,故Ω={x|t-5<x≤t}.
解:按照约定,两人在6点到7点之间任何时刻到达会面点 按照约定,两人在6点到7 是等可能的,因此是一个几何概型,设甲、 是等可能的,因此是一个几何概型,设甲、乙两人到达的时间 为x,y,则|x-y|≤15是能够会面的先决条件. |≤15是能够会面的先决条件. 是能够会面的先决条件 以x和y分别表示甲、乙两人到达约会地点的时间,则两 分别表示甲、乙两人到达约会地点的时间, 人能够会面的充要条件是| 人能够会面的充要条件是|x-y|≤15.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.几何概型的概率公式
构成事件A的区域长度(面积或体积) P(A)=________________________________________ 试验的全部结果所构成的区域长度(面积或体积)
【即时小测】 思考下列问题: (1)几何概型的概率计算一定与构成事件的区域形状有关? 提示:几何概型的概率只与它的长度(面积或体积)有关,而与构成事 件的区域形状无关. (2)在射击中,运动员击中靶心的概率是在(0,1)内吗? 提示:不是.根据几何概型的概率公式,一个点的面积为 0,所以概率 为0.
1 所以事件A发生的概率P(A)= 5
1 , 5
类型二 与面积有关的几何概型
例2.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,
BC=1,则质点落在以AB为直径的半圆内的概率是
( B )
A.
2
B.
4
C.
6
D.
8
【解析】由题意AB=2,BC=1,可知长方形ABCD的面积S=2×1=2,以AB为直径的
d (3)利用几何概型概率的计算公式P= 计算. D
【课后作业】
1.(2015·福建高考)如图,在矩形ABCD中,点A在x 轴上,点B 的坐
x 1, x 0, f x 1 标为(1,0),且点C与点D在函数 x 1, x<0 2
的图象上. 若在矩形ABCD内随机取一点,则此点取自阴影部分的概率 等于( )
A包含的基本事件个数 总的事件个数
【知识提炼】
1.几何概型的定义
体积 长度 面积 或____) 如果每个事件发生的概率只与构成该事件区域的 _____(_____
成比例,则称这样的概率模型为几何概率模型,简称为几何概型 .
2.几何概型的特点 无限多个 (1)试验中所有可能出现的基本事件有_________. 相等 (2)每个基本事件出现的可能性_____.
【题型探究】
类型一 与长度有关的几何概型
例1.取一根长为 5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 2m
的概率为
1 A. 2
1 B. 3
( D )
1 C. 4
ቤተ መጻሕፍቲ ባይዱ
1 D. 5
【解析】如图所示.记“剪得两段绳长都不小于2m”为事件A. 把绳子五等分,
于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的
半圆的面积 S1= 12= .
1 2 2
2 故质点落在以AB为直径的半圆内的概率 P= 2 = 4 .
类型三 与体积有关的几何概型
例 3. 正方体 ABCD-A1B1C1D1 的棱长为 1 ,在正方体内随机取点 M ,则使四棱锥 M-ABCD 的体 1 1 积小于 6 的概率为________. 2 【解析】正方体ABCD-A1B1C1D1中,设M-ABCD的高为h,则 又S四边形ABCD=1,所以h= . 若体积小于 ,则h< , 即点M在正方体的下半部分, 6 2 1 V正方体 1 所以 P= 2 = . V正方体 2 1 答案: 2
1
1 2
1 1 S四边形ABCD h= . 3 6
1
【课堂练习】
1.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生 的概率为 .
3
【解析】由题意,得0<a< 1 ,所以根据几何概型的概率计算公式, 得事件“3a-1<0”发生的概率为
1 答案: 3 1 . 3
2.在{(x,y)|0≤x≤1,0≤y≤1}中,满足y>x的事件的概率 为 .
【解析】由0≤x≤1且0≤y≤1得到的正方形面积为S=1, 而y=x恰把其面积二等分,故P= .
1 答案: 2 1 2
【课堂小结】
1.几何概型常常与长度、面积、体积、角度等几何因素有关,在解答 此类问题时,首先要分析题目条件,将所求问题正确转化 . 2.求解与长度、面积或体积有关的几何概型的步骤: (1)找到试验的全部结果构成的区域D, (2)找到事件A发生对应的区域d,在找d的过程中,边界是否取到不影 响事件A的概率.
A.
1 6
B.
1 4
C.
3 8
D.
1 2
2.(2015·衡水调研)在面积为S的矩形ABCD内随机取一点 P,则△PAB的面积不大于
S 的概率是_________. 4
谢谢大家!
几何概型及其概率计算
教学内容:几何概型及其概率计算
教学对象:高一年级学生
教学目标:1.理解几何概型的定义及特点.
2.掌握几何概型的概率计算公式.
【知识回顾】
古典概型 (1)定义:古典概型满足的条件:
有限 个; ①试验中所有可能出现的基本事件只有_____
相等 ②每个基本事件出现的可能性_____. (2)计算公式:对于古典概型,任何事件A的概率为 P(A)=