统计学习题答案_第3章__概率与概率分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章概率与概率分布——练习题
1 .某技术小组有12人,他们的性别和职称如下,现要产生一名幸运者。试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师,(4)女性或工程师。并说明几个计算结果之间有何关系?
解:设A=女性,B=工程师,AB=女工程师,A+B=女性或工程师
(1)P(A)=4/12=1/3
(2)P(B)=4/12=1/3
(3)P(AB)=2/12=1/6
(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/2
2. 某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。
解:求这种零件的次品率,等于计算“任取一个零件为次品”(记为A)的概率()
P A。
考虑逆事件A=“任取一个零件为正品”,表示通过三道工序都合格。据题意,有:P A=---=
()(10.2)(10.1)(10.1)0.648
于是()1()10.6480.352
P A P A
=-=-=
3. 已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀只占15%。试求任一参考人员成绩优秀的概率。
解:设A表示“合格”,B表示“优秀”。由于B=AB,于是
P
B
A
P
P==0.8×0.15=0.12
(A
B
|
)
)
(
)
(
4.某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。
解:设A=第1发命中。B=命中碟靶。求命中概率是一个全概率的计算问题。再利用对立事件的概率即可求得脱靶的概率。
A
B
P
A
P
=
P+
B
B
P
A
P
)
(A
(
|
)
(
)
)
(
)
(
|
=0.8×1+0.2×0.5=0.9
脱靶的概率=1-0.9=0.1
或(解法二):P(脱靶)=P(第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1
5.已知某地区男子寿命超过55岁的概率为84%,超过70岁以上的概率为63%。试求任一刚过55岁生日的男子将会活到70岁以上的概率为多少?
解: 设A =活到55岁,B =活到70岁。所求概率为:
()()0.63(|)0.75()
()
0.84
P AB P B P B A P A P A =
===
6.某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策?
解:这是一个计算后验概率的问题。
设A =优质率达95%,A =优质率为80%,B =试验所生产的5件全部优质。 P(A)=0.4,P (A )=0.6,P (B|A )=0.955
, P(B |A )=0.85
,所求概率为:
6115.050612
.030951.0)
|()()|()()
|()()|(===
A B P A P A B P A P A B P A P B A P +
决策者会倾向于采用新的生产管理流程。
7. 某公司从甲、乙、丙三个企业采购了同一种产品,采购数量分别占总采购量的25%、30%和45%。这三个企业产品的次品率分别为4%、5%、3%。如果从这些产品中随机抽出一件,试问:(1)抽出次品的概率是多少?(2)若发现抽出的产品是次品,问该产品来自丙厂的概率是多少?
解:令A 1、A 2、A 3分别代表从甲、乙、丙企业采购产品,B 表示次品。由题意得:P (A 1)=0.25,P (A 2)=0.30, P (A 3)=0.45;P (B |A 1)=0.04,P (B |A 2)=0.05,P (B |A 3)=0.03;因此,所求概率分别为:
(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= =0.25×0.04+0.30×0.05+0.45×0.03=0.0385 (2)3506.00385
.00135.00.03
0.450.050.300.040.2503
.045.0)|(3==++=
⨯⨯⨯⨯B A P
8.某人在每天上班途中要经过3个设有红绿灯的十字路口。设每个路口遇到红灯的事件是相互独立的,且红灯持续24秒而绿灯持续36秒。试求他途中遇到红灯的次数的概率分布及其期望值和方差、标准差。
解:据题意,在每个路口遇到红灯的概率是p =24/(24+36)=0.4。
设途中遇到红灯的次数=X ,因此,X ~B(3,0.4)。其概率分布如下表:
9. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):