高考数学大题练习.pdf

合集下载

新课标高考文科理科数学前三大题练习及详解 (7)

新课标高考文科理科数学前三大题练习及详解 (7)

前三题练习(3)1、平面直角坐标系中有点(1,cos )P x ,(cos ,1)Q x ,且[],44x ππ∈-.(Ⅰ)求向量OP 与OQ 的夹角θ的余弦值用x 表示的函数()f x ; (Ⅱ)求θ的最值. 2、已知数列{}nn a 12-的前n 项和nSn69-=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设)3log3(2nn a n b -=,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.3、 甲、乙两个同学解数学题,他们答对的概率分别是0.5与0.8,如果每人都解两道题,(Ⅰ)求甲两题都解对,且乙至少解对一题的概率;(Ⅱ)若解对一题得10分,未解对得0分、求甲、乙得分相等的概率.前三题练习(3)答案1、解:(Ⅰ))cos ,1(x OP=)1,(cos x OQ =x OQ OPcos 2=⋅∴xx OQ OP 222cos11cos cos1||||+=+∙+=∙xx x f 2cos1cos 2)(cos +==∴θ x ∈[4,4ππ-] .6分(Ⅱ)2cos ()[123cos cos x f x xx∈⇒=∈+10分 即]1,322[cos ∈θ又],0[πθ∈ , 0,322arccosmin max ==θθ 12分2.(Ⅰ)当1n =时,,62,2,3,32111110-=-=≥=∴==--n n n n S S a n a S a 时当故223--=n na ,即数列的通项公式为⎪⎩⎪⎨⎧≥-==-.)2(23,)1(32n n a n n …6分(Ⅱ)当1n =时,,31log 321=-=b 当),1()2.33log3(,222+=-=≥-n n n b n n n 时故,111)1(11+-=+=n nn n b n1165)111()3121(3111121+-=+-++-+=+++n n nb b b n由此可知,数列{}n b 的前n 项和n T 为⎪⎪⎩⎪⎪⎨⎧≥+-==)2(1165)1(31n n n T n …13分3、解(Ⅰ)24.0)8.02.08.0(5.022212222=+⨯⨯=C C C P (6)分(Ⅱ)两人都得零分的概率为 0202220.50.20.02C C ⨯=两人都得10分的概率为 121220.50.80.20.16C C ⨯⨯=两人都得20分的概率为 2222220.50.80.16C C ⨯=∴2212122222222220.50.20.50.80.20.50.80.34P C C C C C C =⨯+⨯⨯+⨯=13分ACEDPB。

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。

高考数学前三道大题练习

高考数学前三道大题练习

1ABCDS EFNB高考数学试题(整理三大题)(一)17.已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 14αβ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,,a (cos 2)α=,b ,且∙a b m =.求22cos sin 2()cos sin ααβαα++-的值.18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率.19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。

已知∠ABC =45°,AB =2,BC=22,SA =SB =3。

(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小;(二)17.在ABC △中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率;(II )连续抛掷2次,求向上的数之和为6的概率;(III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点。

求证:EF ∥平面SAD ;(三)17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率.19. 在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值(四)17.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC的中点。

高考文科数学大题专题练习 (3)

高考文科数学大题专题练习 (3)
因此数列{an}的通项公式为an=2n+1. 由Tn+2 n=bn-1,得Tn=2bn-2-n. 当n=1时,b1=2b1-2-1,b1=3. 当n≥2时,Tn-1=2bn-1-2-(n-1),且Tn-Tn-1=bn, 所以bn=2bn-2-n-[2bn-1-2-(n-1)], bn=2bn-1+1,bn+1=2(bn-1+1),bbn-n+1+11=2.
第7页
3.(2019·长郡中学月考)设数列{an}的前n项和为Sn,且Sn= n2-n+1,在正项等比数列{bn}中,b2=a2,b4=a5.
(1)求{an}和{bn}的通项公式; (2)设cn=anbn,求数列{cn=S1=1; 当n≥2时,an=Sn-Sn-1=(n2-n+1)-[(n-1)2-(n-1)+1]
第6页
b1=3对上式也成立,所以bn=n(n+2),即
1 bn

1 n(n+2)

121n-n+1 2,
所以Tn=
1 2
[
1-13

12-14

13-15
+…+
n-1 1-n+1 1

1n-n+1 2]=12(1+12-n+1 1-n+1 2)=34-2(n+21n)+(3n+2).
第14页
5.(2019·郑州市第一次质量预测)已知数列{an}为等比数 列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式; (2)令cn=bn·4bn+1+an,求数列{cn}的前n项和Sn.
第15页
解析 (1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)= 12,∴a1a2a3=212.
设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2= 26·q3=212,解得q=4,∴an=4·4n-1=4n.

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。

高考总复习-数学导数大题练习(详细答案)-

高考总复习-数学导数大题练习(详细答案)-

1.已知函数dx b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围; (II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.已知常数0>a ,e 为自然对数的底数,函数x e x f x-=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a>;(II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k=时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.已知2x =是函数2()(23)xf x x ax a e=+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f(I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值.8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意 10.已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=L ,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围; III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.答案1.解:函数)(x f 的导函数为b ac bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分) (II )依题意3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得6,1-==b a 所以396)(23++-=x x x x f …………(8分)(III)9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g-+-=8723与x 轴有三个交点;42381432--=+-='x x x x x g ,x⎪⎭⎫ ⎝⎛∞-32, 32⎪⎭⎫ ⎝⎛432,4()∞+,4()x g '+-+()x g增 极大值 减 极小值 增()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分) 2.解:(I ))0()1()('>-=x xx a x f(2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a当a=1时,)(x f 不是单调函数(5分)(II)32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x m x x g (6分) 2)0(',)3,1()(-=g x g 且上不是单调函数在区间Θ⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.解(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(27622+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-= (III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81,所以81|)sin 2()sin 2(|≤-βαf f .4.解:(I )01)(≥-='xe xf ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a>+>1,即a e a >. …………(4分)(II )xax a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22a x =,列表当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(aa a g -=,无极大值. 由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e a a ,∴22a e a>,∴22a ea>1)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点(ii )当122>a,即2>a 时 若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(ae 不存在零点 若0)2ln 1(2=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点; 综上所述,)(x g y =在(1,)ae 上,我们有结论:当02ae <<时,函数()f x 无零点;当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.5.解:(I )当1k=时,2()1xf x x -'=- )(x f 定义域为(1,+∞),令()0,2f x x '==得, ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求;②当0k >时,1()11()111k k x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k'∈++∞<时,x )22,0(a22a ),22(+∞a)(x g ' - 0+ )(x g单调递减极小值单调递增。

高考数学练习卷及含答案 (3)

高考数学练习卷及含答案 (3)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。

高考文科数学大题专题练习 (2)

高考文科数学大题专题练习 (2)
第21页
2.(2019·安徽省八校摸底考试)在△ABC中,内角A,B,C 的对边分别为a,b,c,已知(sinA+sinB)(a-b)=(sinC-sinB)c.
(1)求A; (2)已知a=2,△ABC的面积为 23,求△ABC的周长.
第22页
解析 (1)在△ABC中,由正弦定理及已知得(a+b)(a-b)= (c-b)c,化简得b2+c2-a2=bc.
第34页
(2)因为f(A)=sin2A+π6 +1=2,所以sin2A+π6 =1. 因为0<A<π,所以π6 <2A+π6 <136π,
ππ
π
所以2A+ 6 = 2 ,即A= 6 .
由S△ABC=12bcsinA=12,得bc=2.
又因为b+c=2 2 ,所以由余弦定理得a2=b2+c2-2bccosA
第33页
解析 (1)由题知f(x)=cos2x+ 3sinxcosx+12=sin2x+π6 +
1.令2x+
π 6

-π2 +2kπ,π2 +2kπ
,k∈Z,解得
x∈-π3 +kπ,π6 +kπ,k∈Z,所以函数f(x)的单调递增区间
为-π3 +kπ,π6 +kπ,k∈Z.
sinBsinC,得b2+c2-2bc=a2-bc,
所以bc=b2+c2-a2,所以cosA=b2+2cb2c-a2=12.
π 由A∈(0,π),得A= 3 .
第3页
(2)由 2a+b=2c,得 2a=2c-b,即2a2=4c2+b2-4bc. 将bc=b2+c2-a2代入2a2=4c2+b2-4bc,得2a2=3b2, 所以sinB= 36sinA= 22,B=π4 , 所以sinC=sin[π-(A+B)]=sinAcosB+cosAsinB= 6+ 2 4.

高考数学练习卷及含答案 (7)

高考数学练习卷及含答案 (7)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知关于x 的方程02=-+a ax x 有两个不等的实根,则()A、4-<a 或0>a B、0≥a C、04<<-a D、4->a 2.已知a ⊥b ,并且a ),3(x =,b)12,7(=,则x=()A47-B47C37-D373.等差数列{}n a 中,12010=S ,那么29a a +的值是()A12B24C 16D484.下列函数为奇函数的是()A.1+=x y B.2x y =C.xx y +=2D.3x y =5.已知a、b 为两个单位向量,则一定有()A.a =bB.若a //b ,则a =bC.1=⋅b a D.bb a a ⋅=⋅6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b 8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.311.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.38C种B.38A种C.39C种D.311C种12.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有()A.6种B.8种C.12种D.16种二、填空题(共4小题,每小题5分;共计20分)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.2.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.3.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.4.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.三、大题:(满分70分)1.已知数列{an}和{bn}满足a1=1,b1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.2.已知函数()11ln x f x x x -=-+.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线e xy =的切线.3.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C.(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P,Q 两点,点P 在第一象限,PE⊥x 轴,垂足为E,连结QE 并延长交C 于点G.(i)证明:PQG △是直角三角形;(ii)求PQG △面积的最大值.4.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.6.直线02=-+y x l :,一束光线过点)13,0(+P ,以︒120的倾斜角投射到l 上,经l 反射,求反射线所在直线的方程.参考答案:一、选择题:1-5题答案:AABDD 6-10题答案:ADACA 11-12题答案:AC6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x 3<1,解得x<1,故“|x﹣|<”是“x 3<1”的充分不必要条件,故选:A.7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log =log 23>log 2e=a,则a,b,c 的大小关系c>a>b,故选:D.8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.10、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.二、填空题:152、433、0,54、{1,6}三、大题:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a1+b1=l,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a1–b1=l,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(1)f(x)的定义域为(0,1),(1,+∞)单调递增.因为f(e)=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又1101x <<,1111111(ln ()01x f x f x x x +=-+=-=-,故f(x)在(0,1)有唯一零点11x .综上,f(x)有且仅有两个零点.(2)因为0ln 01e x x -=,故点B(–lnx0,01x )在曲线y=ex 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y=ex 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y=ex 的切线.3.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i)设直线PQ 的斜率为k,则其方程为(0)y kx k =>.由22142y kx x y =⎧⎪⎨+=⎪⎩得x =记u =(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii)由(i)得||2PQ =221||2PG k =+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k ++===++++‖.设t=k+1k ,则由k>0得t≥2,当且仅当k=1时取等号.因为2812tS t =+在[2,+∞)单调递减,所以当t=2,即k=1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.4.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==.由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.分析:先求1l 与2l 的交点,再列两条直线夹角公式,利用l 与3l 夹角为4π,求得l 的斜率.也可使用过两直线交点的直线系方程的方法省去求交点的过程,直接利用夹角公式求解.解法一:由方程组⎩⎨⎧=--=+0104302y x y x 解得直线1l 与2l 的交点)1,2(-.于是,所求直线l 的方程为)2(1-=+x k y .又由已知直线03253=+-y x l :的斜率253=k ,而且l 与3l 的夹角为4π,故由两直线夹角正切公式,得3314tan kk k k +-=π,即k k 251254tan +-=π.有125125±=+-k k ,15252±=+-k k ,当15252=+-k k 时,解得37-=k ;当15252-=+-kk 时,解得73=k .故所求的直线l 的方程为)2(731-=+x y 或)2(371--=+x y ,即01373=--y x 或01137=-+y x .解法二:由已知直线l 经过两条直线1l 与2l 的交点,则可设直线l 的方程为0)2()1043(=++--y x y x λ,(*)即010)42()3(=--++y x λλ.又由l 与3l 的夹角为4π,3l 的方程为0325=+-y x ,有212112214tanB B A A B A B A +-=π,即)42)(2()3(55)42()2)(3(1--++⨯---+=λλλλ,也即λλ+-=2312141,从而1231214=+-λλ,1231214-=+-λλ.解得139-=λ,1137=λ.代入(*)式,可得直线l 的方程为01373=--y x 或01137=-+y x .说明:此题用到两直线的夹角公式,注意夹角公式与到角公式的区别。

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。

全国统一高考数学练习卷及答案 (1)

全国统一高考数学练习卷及答案  (1)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120B.168C.204D.2162.不等式|x+log2x|<|x|+|log2x|的解集为()A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知α、β以及α+β均为锐角,x=sin(α+β),y=sinα+sinβ,z=cosα+cos β,那么x、y、z 的大小关系是()A.x<y<zB.y<x<zC.x<z<yD.y<z<x4.过曲线xy=a2(a≠0)上任意一点处的切线与两坐标轴构成的三角形的面积是()A.a2B.C.2a2D.不确定5.若展开式的第3项为144,则的值是()A.2B.1C.D.06.正四面体的内切球和外接球的半径分别为r 和R,则r:R 为()A.1:2B.1:3C.1:4D.1:97.已知椭圆的中心在原点,离心率且它的一个焦点与抛物线y2=4x 的焦点重合,则此椭圆的方程为()A.B.C.D.22a 9)21(0x -)1211(lim 20---→x x x x 2113422=+y x 16822=+y x 1222=+y x 1422=+y x8.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量单价(元/kg)22.42.83.23.64供给量(1000kg)506070758090表2市场需求量单价(元/kg)43.42.92.62.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间()A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内9.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为()A.41B.21C.2D.410.若曲线x x x f -=4)(在点P 处的切线平行于直线3x-y=0,则点P 的坐标为()A.(1,3)B.(-1,3)C.(1,0)D.(-1,0)11.已知函数)(x f y =是R 上的偶函数,且在(-∞,]0上是减函数,若)2()(f a f ≥,则实数a 的取值范围是()A.a≤2B.a≤-2或a≥2C.a≥-2D.-2≤a≤212.如图,E、F 分别是三棱锥P-ABC 的棱AP、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为()A.60°B.45°C.0°D.120°二、填空题(共4小题,每小题5分;共计20分)1.“面积相等的三角形全等”的否命题是______命题(填“真”或者“假”)2.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为_____3.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为_____万.(结果精确到0.01)4.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有____个,若把这些数按从小到大的顺序排列,则第100个数为______.三、大题:(满分70分)1.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2.已知a,b,c 为正数,且满足abc=1.证明:(1)222111a b c a b c ++≤++;(2)333()()()24a b b c c a +++≥++.3.如图,长方体ABCD–A1B1C1D1的底面ABCD 是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.4.知实数x ,y 满足04=-+y x ,求22)1()1(-+-y x 的最小值.5.直线x y 2=是ABC ∆中C ∠的平分线所在的直线,且A ,B 的坐标分别为)2,4(-A ,)1,3(B ,求顶点C 的坐标并判断ABC ∆的形状.6.两条直线m y x m l 352)3(1-=++:,16)5(42=++y m x l :,求分别满足下列条件的m 的值.(1)1l 与2l 相交;(2)1l 与2l 平行;(3)1l 与2l 重合;(4)1l 与2l 垂直;(5)1l 与2l 夹角为︒45.参考答案:一、选择题:1-5题答案:BAACC 6-10题答案:BACAC 11-12题答案:BA二、填空题:1、真2、3π3、0.994、126,24789三、大题:1.解:(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x+=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.2.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++.所以222111a b c a b c ++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.3.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D-xyz,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE =-,1(0,0,2)CC = .设平面EBC 的法向量为n=(x,y,x),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n=(0,1,1)--.设平面1ECC 的法向量为m=(x,y,z),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩ m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m=(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32.4.知实数x ,y 满足04=-+y x ,求22)1()1(-+-y x 的最小值.分析:本题可使用减少变量法和数形结合法两种方法:22)1()1(-+-y x 可看成点),(y x 与)1,1(之间的距离.解:(法1)由04=-+y x 得x y -=4(R x ∈),则2222)14()1()1()1(--+-=-+-x x y x961222+-++-=x x x x 10822+-=x x 2)2(22+-=x ,∴22)1()1(-+-y x 的最小值是2.(法2)∵实数x ,y 满足04=-+y x ,∴点),(y x P 在直线04=-+y x 上.而22)1()1(-+-y x 可看成点),(y x P 与点)1,1(A之间的距离(如图所示)显然22)1()1(-+-y x 的最小值就是点)1,1(A 到直线04=-+y x 的距离:21141122=+-+=d ,∴22)1()1(-+-y x 的最小值为2.说明:利用几何意义,可以使复杂问题简单化.形如22)()(b y a x -+-的式子即可看成是两点间的距离,从而结合图形解决.5.直线x y 2=是ABC ∆中C ∠的平分线所在的直线,且A ,B 的坐标分别为)2,4(-A ,)1,3(B ,求顶点C 的坐标并判断ABC ∆的形状.分析:“角平分线”就意味着角相等,故可考虑使用直线的“到角”公式将“角相等”列成一个表达式.解:(法1)由题意画出草图(如图所示).∵点C 在直线x y 2=上,∴设)2,(a a C ,则422+-=a a k AC ,312--=a a k BC ,2=l k .由图易知AC 到l 的角等于l 到BC 的角,因此这两个角的正切也相等.∴l BC lBC l AC AC l k k k k k k k k +-=⋅+-11,∴231212312242214222⋅--+---=⋅+-++--a a a a a a a a .解得2=a .∴C 的坐标为)4,2(,∴31=AC k ,3-=BC k ,∴BC AC ⊥.∴ABC ∆是直角三角形.(法2)设点)2,4(-A 关于直线x y l 2=:的对称点为),('b a A ,则'A 必在直线BC 上.以下先求),('b a A .由对称性可得⎪⎪⎩⎪⎪⎨⎧-⋅=+-=+-,24222,2142a b a b 解得⎩⎨⎧-==24b a ,∴)2,4('-A .∴直线BC 的方程为343121--=---x y ,即0103=-+y x .由⎩⎨⎧=-+=01032y x xy 得)4,2(C .∴31=AC k ,3-=BC k ,∴BC AC ⊥.∴ABC ∆是直角三角形.说明:(1)在解法1中设点C 坐标时,由于C 在直线x y 2=上,故可设)2,(a a ,而不设),(b a ,这样可减少未知数的个数.(2)注意解法2中求点)2,4(-A 关于l 的对称点),('b a A 的求法:原理是线段'AA 被直线l 垂直平分.6.两条直线m y x m l 352)3(1-=++:,16)5(42=++y m x l :,求分别满足下列条件的m 的值.(1)1l 与2l 相交;(2)1l 与2l 平行;(3)1l 与2l 重合;(4)1l 与2l 垂直;(5)1l 与2l 夹角为︒45.分析:可先从平行的条件2121b b a a =(化为1221b a b a =)着手.解:由mm +=+5243得0782=++m m ,解得11-=m ,72-=m .由163543m m -=+得1-=m .(1)当1-≠m 且7-≠m 时,2121b b a a ≠,1l 与2l 相交;(2)当7-=m 时,212121c c b b a a ≠=.21//l l ;(3)当1-=m 时,212121c c b b a a ==,1l 与2l 重合;(4)当02121=+b b a a ,即0)5(24)3(=+⋅+⋅+m m ,311-=m 时,21l l ⊥;(5)231+-=m k ,m k +-=542.由条件有145tan 11212=︒=+-k k k k .将1k ,2k 代入上式并化简得029142=++m m ,527±-=m ;01522=-+m m ,35或-=m .∴当527±-=m 或-5或3时1l 与2l 夹角为︒45.说明:由m m +=+5243解得1-=m 或7-=m ,此时两直线可能平行也可能重合,可将m 的值代入原方程中验证是平行还是重合.当m m +≠+5243时两直线一定相交,此时应是1-≠m 且7-≠m .。

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练

大题规范练(一)“17题~19题+二选一”46分练(时间:45 分钟分值:46 分)解答题(本大题共 4 小题,共46 分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知正项等差数列{ a n} 的前n项和为S n,且知足a1+a5=2a723,S7=63.(1)求数列{a n} 的通项公式a n;(2)若数列{b n}知足b1=a1 且b n+1-b n=a n+1,求数列1b n的前n项和T n.【导学号:07804229】[解] (1)法一:(等差数列的基本量)设正项等差数列{a n} 的首项为a1,公差为d,易知a n>0,2a1+a1+4d=1+2d7 a则2,7a1+21d=63a=31解得,d 2=∴a n=2n+1.22法二:(等差数列的性质)∵{ a n} 是等差数列且a1+a5=3,∴2a3=a7 272 a3,又a n>0,∴a3=7.∵S7=a1+a72=7a4=63,∴a4=9,∴d=a4-a3=2,∴a n=a3+( n-3)d=2n+1.+1-b n=a n+1 且a n=2n+1,(2)∵b n∴b n+1-b n=2n+3,当n≥2时,b n=( b n-b n -1-b n-2)+⋯+(b2-b1)+b1=(2 n+1)+(2n-1)+⋯+5+3=-1)+(b nn(n+2),当n=1时,b1=3知足上式,故b n=n( n+2).1 1 ∴=b nn n+=121 1-n n+2.1 ∴T n=+b11+⋯+b21+b n-1-11b n1=2 1-13+1 1-2 4+1-315+⋯+1-n-11n+1+1n-1n+212=1+12-1 1-n+1 n+23 =-42n+3n+n+.18.如图1,已知直角梯形ABCD 中,AB=AD=12CD=2,AB∥DC,AB⊥AD,E为C D 的中点,沿AE 把△DAE 折起到△PAE 的地点(D 折后变成P),使得PB=2,如图2.(1)求证:平面PAE⊥平面ABCE;(2)求直线P B 和平面PCE 所成角的正弦值.[解] (1)证明:如图(1),取AE 的中点O,连结PO,OB,BE.因为在平面图形中,如题图(图1),连结BD,BE,易知四边形ABED为正方形,图(1)因此在立体图形中,△PAE,△BAE为等腰直角三角形,因此PO⊥AE,OB⊥AE,PO=OB=2,因为PB=2,因此PO2+OB2=PB2,因此PO⊥OB,又AE∩OB=O,因此PO⊥平面ABCE,因为PO? 平面PAE,因此平面PAE⊥平面ABCE .(2)由(1)知,OB,OE,OP 两两垂直,以O为坐标原点,以OB,OE,OP 所在直线分别为x轴、y轴、z轴成立空间直角坐标系,如图(2),则O(0,0,0),P(0,0,2),B( 2,0,0),E(0,→→→=( 2,0,-2),EP=(0,-2,2),EC=( 2,2,0).2,0),C( 2,2 2,0),PB图(2)设平面PCE 的法向量为n=(x,y,z),→n·EP则→=0,=0,n·EC 即-2y+2z=0,2x+2y=0,令x=1,得y=-1,z=-1,故平面PCE 的一个法向量为n=(1,-1,-1).→因此cos〈PB,n〉=→PB·n 2 2==→2 3|PB| ·|n|6,36因此直线P B 和平面PCE 所成角的正弦值为.319.某学校为鼓舞家校互动,与某手机通信商合作,为教师办理流量套餐.为认识该校教师手机流量使用状况,经过抽样,获得100 位教师近 2 年每人手机月均匀使用流量L(单位:M) 的数据,其频次散布直方图以下:图3若将每位教师的手机月均匀使用流量分别视为其手机月使用流量,并将频次视为概率,回答以下问题.(1)从该校教师中随机抽取 3 人,求这3人中至多有 1 人手机月使用流量不超出300 M 的概率;(2)现该通信商推出三款流量套餐,详情以下:套餐名称月套餐费/元月套餐流量/MA 20 300B 30 500C 38 700这三款套餐都有以下附带条款:套餐费月初一次性收取,手机使用流量一旦高出套餐流量,系统就自动帮用户充值200 M 流量,资费20 元;假如又高出充值流量,系统就再次自动帮用户充值200 M 流量,资费20 元,以此类推,假如当月流量有节余,系统将自动清零,无法转入次月使用.学校欲订购此中一款流量套餐,为教师支付月套餐费,并肩负系统自动充值的流量资费的75%,其他部分由教师个人肩负,问学校正购哪一款套餐最经济?说明原因.[解] (1)记“从该校随机抽取 1 位教师,该教师手机月使用流量不超出300 M ”为事件 D.依题意,P(D )=(0.000 8+0.002 2) ×100=0.3.X~这3 人中手机月使用流量不超出300 M 的人数为X,则中随机抽取 3 人,设从该校教师B(3,0.3),中随机抽取 3 人,至多有 1 人手机月使用流量不超出300 M 的概率为P(X=校教师因此从该0 03+C31×0.3 ×(1-0.3)2=0.343+0.441=0.784.0)+P(X=1)=C3×0.3 ×(1-0.3)(2)依题意,从该校随机抽取 1 位教师,该教师手机月使用流量L∈(300,500] 的概率为(0.002 5(0.000 8+0.000 2) ×100=0.1.+0.003 5) ×100=0.6,L∈(500,700] 的概率为X1 元,则X1 的全部可能取值为当学校正购A 套餐时,设为学校为1位教师肩负的月花费20,35,50,且P(X1=20)=0.3,P(X1=35)=0.6,P( X1=50)=0.1,因此X1 的散布列为X1 20 35 50P 0.3 0.6 0.1因此E(X1)=20×0.3+35×0.6+50×0.1=32(元).费X2元,则X2的全部可能取值为30,45,肩负的月花为当学校正购B 套餐时,设学校为1位教师且P(X2=30)=0.3+0.6=0.9,P(X2=45)=0.1,因此X2 的散布列为X2 30 45P 0.9 0.1因此E(X2)=30×0.9+45×0.1=31.5(元).为费X3 元,则X3 的全部可能取值为38,当学校正购C 套餐时,设学校为1位教师肩负的月花且P(X3=38)=1,因此E(X3)=38×1=38(元).因为E(X2)<E(X1)<E(X3),.济因此学校正购B 套餐最经(请在第22~23题中选一题作答,假如多做,则依据所做第一题计分)22.选修4-4:坐标系与参数方程在极坐标方程为ρ系中,圆C的极坐标2=4ρ(cos θ+sin θ)-3.若以极点O为原点,极轴所在成立平面直角坐标系.为x轴直线【导学号:07804230】(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y 的最大值,并求出此时点P 的.直角坐标2=4ρ(cos θ+sin θ)-3,[解] (1)因为ρ因此x2+y2-4x-4y+3=0,即(x-2)2+(y-2)2=5为方程,圆C 的直角坐标(θ为参数).x=2+5cos θy=2+5sin θC的参数方程为因此圆2+y2-4x-4y+3=0,整理得5y2+4(1-t)y+t2 (2)法一:设x+2y=t,得x=t-2y,代入x-4t+3=0 (*) ,则对于y 的方程必有实数根.因此Δ=16(1-t)2-20(t2-4t+3) ≥0,化简得t2-12t+11≤0,解得1≤t≤ 1 1,即x+2y 的最大值为11.将t=11 代入方程(*) 得y2-8y+16=0,解得y=4,代入x+2y=11,得x=3,故x+2y 的最大值为11时,点P 的直角坐标为(3,4).法二:由(1)可设点P(2+5cos θ,2+5sin θ),则x+2y=6+5cos θ+2 5sin θ=6+55 2 55 cos θ+ 5 sin θ,设s in α=5 2 5,则c os α=,因此x+2y=6+5sin(θ+α),5 5当sin(θ+α)=1时,(x+2y)max=11,π此时,θ+α=+2kπ,k∈Z,即θ=2 π-α+2kπk(∈Z),2因此sin θ=cos α=2 55,cos θ=sin α=5,故点P 的直角坐标为(3,4).523.选修4-5:不等式选讲已知函数f(x)=|x-2|+2,g(x)=m|x|(m∈R).(1)解对于x 的不等式f( x)>5;(2)若不等式f(x) ≥g(x)对随意x∈R恒成立,求m 的取值范围.[解] (1)由f(x)>5,得|x-2|>3,∴x-2<-3 或x-2>3,解得x<-1 或x>5.故原不等式的解集为{ x|x<-1 或x>5} .(2)由f(x) ≥g(x),得|x-2|+2≥m|x|对随意x∈R恒成立,当x=0时,不等式|x-2|+2≥0恒成立,|x-2|+2当x≠0时,问题等价于m≤对随意非零实数恒成立,|x||x-2|+2 |x-2+2|∵=1,∴m≤1,即m 的取值范围是(-∞,1].≥|x| |x|。

高考数学大题专题练习 (1)

高考数学大题专题练习 (1)

10 10

5 5
3 ×
1010=
2 10 .
第8页
3.(2019·东北三省三校第一次联考)设函数 f(x)=sin2x-π6+ 2cos2x.
(1)当 x∈0,π2时,求函数 f(x)的值域; (2)△ ABC 的内角 A,B,C 所对的边分别为 a,b,c,且 f(A) =32, 2a= 3b,c=1+ 3,求△ ABC 的面积.
1--
11002=3
10 10 .
在△ ABC 中,由正弦定理得sinaA=sibnB,
即 3
310=sin2B,
10
第7页
∴sinB= 55.又 A∈π2,π,故 B∈0,π2,
∴cosB= 1-sin2B=
1-
552=2
5
5 .
∴cos(B - A) = cosBcosA + sinBsinA = 255 ×-
∵ 2a= 3b,∴由正弦定理可得 2sinA= 3sinB,
∴sinB=
2 2.
第11页
∵0<B<23π,∴B=π4.
∴sinC=sin(π-A-B)=sin(A+B)=
6+ 4
2 .
∵由正弦定理可得sincC= 42=sibnB,
∴b=2.
∴S△ ABC=12bcsinA=3+2
3 .
第12页
4.(2019·广东省六校第二次联考)已知△ ABC 的三个内角 A, B,C 所对的边分别为 a,b,c,且 asinAsinB+bcos2A=53a.
(1)求ba; (2)若 c2=a2+85b2,求角 C 的大小.
第13页
解析 (1)由正弦定理及已知条件得 sin2AsinB+sinBcos2A= 53sinA,即 sinB(sin2A+cos2A)=53sinA,

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习导数与函数 五1.已知函数f(x)=lnx -x ,g(x)=ax 2+2x(a<0).(1)求函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最值; (2)求函数h(x)=f(x)+g(x)的极值点. 2.已知函数f(x)=x 3-3x 2+2x ,g(x)=tx ,.(1)求函数的单调增区间;(2)令h(x)=f(x)-g(x),且函数h(x)有三个彼此不相等的零点0,m,n ,其中m<n . ①若n=2m ,求函数h(x)在x=m 处的切线方程; ②若对,恒成立,求实数t 的取值范围.3.已知函数f(x)=xlnx.(1)若函数,求g(x)的极值;(2)证明:f(x)+1<e x-x 2. (参考数据:,,,)4.已知函数f(x)=(x -1)e x+1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x-1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.5.已知函数f(x)=e x (x -ae x).(1)当a=0时,求f(x)的极值;(2)若f(x)有两个不同的极值点,求a 的取值范围. 6.已知函数,.(1)当m<1时,讨论函数f(x)的单调性; (2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2.求证.7.已知(1)求函数的单调区间; (2)求函数在上的最小值;(3)对一切的,恒成立,求实数的取值范围.8.已知函数f(x)=ln x,g(x)=21ax+b. (1)若曲线f(x)与g(x)在x=1处相切,求g(x)的表达式; (2)若φ(x)=1)1(+-x x m -f(x)在[1,+∞)上是减函数,求实数m 的取值范围.9.设函数f(x)=(1-x 2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a 的取值范围.10.已知函数,(为自然对数的底数).(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:.11.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)12.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x +1,求函数f(x)的解析式; (2)讨论函数f(x)的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 14.已知函数(1)求函数的极值;(2)设函数,其中k ∈R ,求函数在区间[1,e]上的最大值.15.已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1).(Ⅰ)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (Ⅱ)若函数y=|f (x )﹣t|﹣1有三个零点,求t 的值.答案解析1.解:(1)依题意,f′(x)=1x -1,令1x-1=0,解得x=1.因为f(1)=-1,f ⎝ ⎛⎭⎪⎫1e =-1-1e ,f(e)=1-e ,且1-e<-1-1e <-1, 故函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为-1,最小值为1-e. (2)依题意,h(x)=f(x)+g(x)=lnx +ax 2+x(x>0),h′(x)=1x +2ax +1=2ax 2+x +1x,当a<0时,令h′(x)=0,则2ax 2+x +1=0. 因为Δ=1-8a>0,所以h′(x)=2ax 2+x +1x =2a (x -x 1)(x -x 2)x ,其中x 1=-1-1-8a 4a ,x 2=-1+1-8a4a.因为a<0,所以x 1<0,x 2>0,所以当0<x<x 2时,h′(x)>0; 当x>x 2时,h′(x)<0,所以函数h(x)在区间(0,x 2)内是增函数,在区间(x 2,+∞)内是减函数,故x 2=-1+1-8a4a为函数h(x)的极大值点,无极小值点.2.解:(1),所以,令 得到,所以的单调增区间是.(2)由方程得是方程的两实根,故,且由判别式得, ①若,得,故,得,因此,故函数在处的切线方程为. ②若对任意的,都有成立,所以,因为,所以, 当时,对有,所以,解得,又因为,得,则有;当时,,则存在的极大值点,且,由题意得,将代入得,进而得到,得,又因为,得,综上可知t的取值范围是或.3.解:(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(2)要证f(x)+1<e x﹣x2.即证e x﹣x2﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),e x﹣x2﹣xlnx≥e x﹣2x2+x﹣1,故只需证明当x>0时,e x﹣2x2+x﹣1>0恒成立,令k(x)=e x﹣2x2+x﹣1,(x≥0),则k′(x)=e x﹣4x+1,令F(x)=k′(x),则F′(x)=e x﹣4,令F′(x)=0,解得:x=2ln2,∵F′(x)递增,故x∈(0,2ln2]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(2ln2,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,由零点存在定理,可知∃x1∈(0,2ln2),∃x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 4.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e). ①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a . 当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 5.解:(1)当a=0时,f(x)=xe x ,f′(x)=(x +1)e x,令f′(x)>0,可得x>-1,故f(x)在(-1,+∞)上单调递增, 同理可得f(x)在(-∞,-1)上单调递减,故f(x)在x=-1处有极小值f(-1)=-1e .(2)依题意,可得f′(x)=(x +1-2ae x )e x=0有两个不同的实根.设g(x)=x +1-2ae x ,则g(x)=0有两个不同的实根x 1,x 2,g′(x)=1-2ae x,若a≤0,则g′(x)≥1,此时g(x)为增函数,故g(x)=0至多有1个实根,不符合要求;若a>0,则当x<ln 12a 时,g′(x)>0,当x>ln 12a时,g′(x)<0,故此时g(x)在-∞,ln 12a 上单调递增,在ln 12a ,+∞上单调递减,g(x)的最大值为gln 12a =ln 12a -1+1=ln 12a,又当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→-∞,故要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0,得0<a<12或作图象知要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0.设g(x)=0的两个不同实根为x 1,x 2(x 1<x 2), 当x<x 1时,g(x)<0,此时f′(x)<0; 当x 1<x<x 2时,g(x)>0,此时f′(x)>0; 当x>x 2时,g(x)<0,此时f′(x)<0.故x 1为f(x)的极小值点,x 2为f(x)的极大值点,0<a<12符合要求.综上所述,a 的取值范围为(0,0.5). 6.解:, ,令,,, 令则, 当,即时, 令则;令则.此时函数在上单调递减;在上单调递增.当,即时, 令,则; 令则, 此时函数在上单调递减; 在和上单调递增. 由知,若有两个极值点, 则且,又,是的两个根,则, ,令,则, 令,则,令,则,所以在上单调递减;在上单调递增.,,,得证.7.8.解析:9.解:(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).10.(1);(2);(3)证明见解析.11.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以 由=0得①若,即时,在上,有,故函数单调递增所以 ②若,即时, 在上,有,故函数在上单调递减, 在上,有.故函数在上单调递增, 所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故12.解:(1)f(x)=ax 2+1(a >0),则f ′(x)=2ax ,k 1=2a ,g(x)=x 3+bx ,则g ′(x)=3x 2+b ,k 2=3+b , 由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b ,∴a+1=1+b ,即a=b ,代入①式,可得:a=3,b=3. (2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x 3+3x 2﹣9x+1则h ′(x)=3x 2+6x ﹣9, 令h'(x)=0,解得:x 1=﹣3,x 2=1;∴k ≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k ,2]上的最大值为h(﹣3)=28﹣3<k <2时,函数h(x)在区间[k ,2]上的最大值小于28 所以k 的取值范围是(﹣∞,﹣3] 13.解:(1)f′(x)=1-ax2(x≠0),由已知及导数的几何意义得f′(2)=3,则a=-8.由切点P(2,f(2))在直线y=3x +1上可得-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x -8x+9.(2)由(1)知f′(x)=1-ax2(x≠0).当a≤0时,显然f′(x)>0,这时f(x)在(-∞,0),(0,+∞)上是增函数. 当a>0时,令f′(x)=0,解得x=±a ,当x 变化时,f′(x),f(x)的变化情况如下表:所以当a>0时,f(x)在(-∞,-a),(a ,+∞)上是增函数, 在(-a ,0),(0,a)上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于 ⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.15.。

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ.(1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=,求714线段MP 的长.55.在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =,AB =PA =2,且E 为线段PB 上的一动点.22(1)若E 为线段PB 的中点,求证:CE ∥平面PAD ;(2)当直线CE 与平面PAC 所成角小于,求PE 长度的3π取值范围.56.如图,在几何体中,平面底面,四边形是正方111ABC A B C -11A ACC ⊥ABC 11A ACC 形,,是的中点,且11B C BC ∥Q 1A B 112AC BC B C ==,. 2π3ACB ∠=(Ⅰ) 证明:平面;1B Q ∥11A ACC (Ⅱ) 求直线与平面所成角的正弦值.AB 11A BB57.如图,已知和所在平面互相垂直,且,ABC V BCD V 090BAC BCD ∠=∠=,点分别在线段,AB AC =CB CD =,E F ,BD CD上,沿直线将向上翻折使得与重EF EFD V D A 合(Ⅰ)求证:;AB CF ⊥(Ⅱ)求直线与平面所成角。

AE ABC 58.如图,四边形是圆台的轴截面,,点在底面圆周上,且ABCD 1OO 24AB CD ==M ,.2π=∠AOM DM AC ⊥(Ⅰ)求圆台的体积;1OO (Ⅱ)求二面角的平面角的余弦值.A DMO--59.如图,已知菱形与等腰所在平面相互垂直..ABCD PAB ∆120PAB BAD ∠=∠=为PB 中点 .E (Ⅰ)求证:平面ACE ;//PD (Ⅱ)求二面角的余弦值B CE D --60.如图,在四面体中,平面⊥平面,, ,ABCD ACD BCD 90BCA ∠=︒1AC =,为等边三角形.2AB =BCD ∆(Ⅰ)求证:⊥平面AC BCD(Ⅱ)求直线与平面所成角的正弦值.CDABD61.已知:平行四边形ABCD 中,∠DAB =45°,AB =AD =2,平面AED ⊥平面ABCD ,△22AED 为等边三角形,EF ∥AB ,EF =,M 为线段BC 的中点。

全国统一高考数学练习卷及含答案 (1)

全国统一高考数学练习卷及含答案  (1)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。

2024届新高考数学大题精选30题--概率统计(1)含答案

2024届新高考数学大题精选30题--概率统计(1)含答案

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。

高考数学专题练习 (14)

高考数学专题练习 (14)

“12+4”限时标准练(八)(时间:40分钟 满分:80分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z =2i -1i (i 是虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] z =2i -1i =(2i -1)i i 2=i -2i 2=2+i ,复数z 在复平面内对应的点为(2,1),在第一象限.[答案] A2.为了保障人民群众的身体健康,在预防新型冠状病毒期间,贵阳市市场监督管理局加强了对市场的监管力度,为了考察生产口罩的某工厂生产的600个口罩是否合格,利用随机数表进行抽样测试,先将600个口罩进行编号,编号分别为001,002,…,599,600,再从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第5个样本编号为( )A .578B .324C .535D .522[解析] 第6行的第6个数开始的三位数分别为808,436,789,535,577,348,994,837,522,…,符合条件的编号分别为436,535,577,348,522,…,第5个样本数据为522.[答案] D3.已知cos ⎝ ⎛⎭⎪⎫π2+α=2cos(π-α),则tan ⎝ ⎛⎭⎪⎫π4-α=( ) A .-4 B .4 C .-13 D.13[解析] cos ⎝ ⎛⎭⎪⎫π2+α=2cos(π-α)⇒-sin α=-2cos α⇒tan α=2,所以tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=-13. [答案] C4.已知a =2- 13 ,b =log 213,c =log 1314,则( ) A .a >b >c B .a >c >bC .c >b >aD .c >a >b[解析] a =132⇒0<a <1,b =-log 23<0,c =log 34>1,所以c >a >b .[答案] D5.在⎝ ⎛⎭⎪⎫x +3x n 的二项展开式中,各项系数之和为A ,二项式系数之和为B ,若A +B =72,则二项展开式中常数项的值为( )A .6B .9C .12D .18 [解析] 在⎝ ⎛⎭⎪⎫x +3x n 中,令x =1,得A =4n ,由题意知B =2n ,所以4n +2n =72,得n =3,⎝ ⎛⎭⎪⎫x +3x 3的二项展开式的通项公式为T r +1=C r 3(x )3-r ⎝ ⎛⎭⎪⎫3x r =3r C r 3x 3-3r 2 ,令3-3r 2=0,得r =1,所以常数项为T 2=3C 13=9.[答案] B6.已知A ,B ,C ,D 四点在球O 的表面上,且AB =BC =2,AC =22,若四面体ABCD 的体积的最大值为43,则球O 的表面积为( )A .7πB .9πC .10πD .12π[解析] 根据题意有AB 2+BC 2=AC 2,所以△ABC 在以AC 为直径的截面圆内,如图,S △ABC =12×2×2=2.当平面DAC ⊥平面ABC 时,所得四面体体积最大,此时,设高为h ,则V D -ABC =13S △ABC h =13×2h =43,解得h =2,设O 1为AC 的中点,则OO 1⊥平面ABC ,在Rt △OO 1C 中,根据OO 21+O 1C 2=OC 2,得(2-R )2+(2)2=R 2(R 为球O 的半径),解得R =32,所以球的表面积S =4πR 2=9π.[答案] B7.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( ) A.⎣⎢⎡⎭⎪⎫19π4,27π4 B.⎣⎢⎡⎭⎪⎫9π2,13π2 C.⎣⎢⎡⎭⎪⎫17π4,25π4 D .[4π,6π)[解析] ∵x ∈[0,1],ω>0,∴ωx +π4∈⎣⎢⎡⎦⎥⎤π4,ω+π4,∵f (x )的图象在区间[0,1]上恰有3个最高点,∴9π2≤ω+π4<6π+π2,解得17π4≤ω<25π4.[答案] C8.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为T ,延长FT 交双曲线右支于点P .若线段PF 的中点为M ,M 在线段PT 上,O 为坐标原点,则|OM |-|MT |=( )A .b -aB .a -bC .c -aD .c -b[解析] 如图,设F ′是双曲线的右焦点,连接PF ′.∵点M ,O 分别为线段PF ,FF ′的中点,∴|OM |=12|PF ′|=12(|PF |-2a )=12|PF |-a =|MF |-a ,∴|OM |-|MT |=|MF |-|MT |-a =|FT |-a .连接OT ,∵FT 是圆的切线,∴OT ⊥FT ,在Rt △FOT 中,|OF |=c ,|OT |=a ,∴|FT |=|OF |2-|OT |2=b ,∴|OM |-|MT |=b -a .故选A.[答案] A二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知集合M ={0,1,2},N ={x ||x -1|≤1},则( )A .M =NB .N ⊆MC .M ∩N =MD .(∁R M )∪N =R [解析] 由|x -1|≤1得0≤x ≤2,即N =[0,2],又M ={0,1,2},所以M ∩N =M ,M ⊆N ,(∁R M )∪N =R ,故选CD.[答案] CD10.某篮球职业联赛中,运动员甲在最近几次参加的比赛中的投篮情况如下表(不包含罚球):投篮次数 投中两分球的次数 投中三分球的次数100 55 18B ,“没投中”为事件C ,用频率估计概率,则下述结论中,正确的是( )A .P (A )=0.55B .P (B )=0.18C .P (C )=0.27D .P (B +C )=0.55[解析] 由题意可知,P (A )=55100=0.55,P (B )=18100=0.18,事件“A +B ”与事件C 为对立事件,且事件A ,B ,C 互斥,所以P (C )=1-P (A +B )=1-P (A )-P (B )=0.27,所以P (B +C )=P (B )+P (C )=0.45.故选ABC.[答案] ABC11.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥AFB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等[解析] 由题意及图形知,当点F 与点B 1重合时,∠CAF =60°,故A 错误;由正方体ABCD —A 1B 1C 1D 1的两个底面平行,EF ⊂平面A 1B 1C 1D 1,知EF ∥平面ABCD ,故B 正确;由几何体的性质及图形知,三角形BEF 的面积是定值,点A 到平面DD 1B 1B 的距离是定值,故可得三棱锥A —BEF 的体积为定值,故C 正确;由图形可以看出,B 到直线EF 的距离与A 到直线EF 的距离不相等,故△AEF 的面积与△BEF 的面积不相等,故D 错误.故选AD.[答案] AD12.设x 3+ax +b =0(a ,b ∈R ),下列条件中,使得该三次方程仅有一个实根的是( )A .a =-3,b =2B .a =-3,b =-3C .a =-3,b >2D .a =-1,b =2[解析] A 中,方程为x 3-3x +2=0,可得x 3-x 2+x 2-3x +2=0,即x 2(x -1)+(x -1)(x -2)=0,即(x -1)(x 2+x -2)=0,即(x -1)2(x +2)=0,可得方程有两个根1,-2,不符合题意,所以不正确;B 中,方程为x 3-3x -3=0,令f (x )=x 3-3x -3,则f ′(x )=3x 2-3=3(x +1)(x -1),当x <-1,或x >1时,f ′(x )>0,f (x )单调递增;当-1<x <1时,f ′(x ) <0,f (x )单调递减,f (-1)=-1<0,f (1)=-5<0,当x →-∞时,f (x )→-∞,当x →+∞,f (x )→+∞,f (x )的大致图象如图所示,所以函数f (x )只有—个零点,即方程仅有—个实根,所以正确;C 中,方程为x 3-3x +b =0,令f (x )=x 3-3x +b ,则f ′(x )=3x 2-3=3(x -1)(x +1),由选项B 的分析,f (1)为极小值,且f (1)=-2+b ,当b >2时,f (1)>0,所以函数f (x )有一个零点,即方程仅有一个根,所以正确;D 中,方程为x 3-x +2=0,令f (x )=x 3-x +2,则f ′(x )=3x 2-1=3⎝ ⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33,由类似选项B 的分析,极大值为f ⎝ ⎛⎭⎪⎫-33=2+239>0,极小值f ⎝ ⎛⎭⎪⎫33=2-239>0,所以函数f (x )仅有一个零点,所以方程仅有一个根,所以正确,故选BCD.[答案] BCD三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填写在各小题的横线上.)13.已知向量a 与b 的夹角为60°,|a |=2,|b |=3,则|3a -2b |=__________.[解析] |3a -2b |2=9a 2+4b 2-12a ·b =72-12×2×3×cos60°=36,所以|3a -2b |=6.[答案] 614.已知圆C 的圆心是抛物线x 2=4y 的焦点,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的标准方程为___________________________________________________.[解析] 因为抛物线x 2=4y 的焦点为(0,1),所以圆C 的圆心为(0,1).圆C 的圆心到直线4x -3y -2=0的距离为|-3-2|42+(-3)2=1,又|AB |=6,所以圆C 的半径r =12+32=10,所以圆C 的标准方程为x 2+(y -1)2=10.[答案] x 2+(y -1)2=1015.已知随机变量X ~B (2,p ),Y ~N (2,σ2),若P (X ≥1)=0.64,P (0<Y <2)=p ,则P (Y >4)=__________.[解析] ∵随机变量X ~B (2,p ),P (X ≥1)=0.64,∴P (X ≥1)=P (X =1)+P (X =2)=1-P (X =0)=1-(1-p )2=0.64,解得p =0.4或p =1.6(舍),∴P (0<Y <2)=p =0.4,∴P (Y >4)=12(1-0.4×2)=0.1.[答案] 0.116.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(3-cos A )sin B =sin A (1+cos B ),a +c =6,则△ABC 的面积的最大值为__________.[解析] 根据(3-cos A )·sin B =sin A (1+cos B ),得3sin B =sin A +sin A cos B +cos A sin B =sin A +sin C , 由正弦定理可得:3b =a +c =6,∴b =2.∵6=a +c ≥2ac ,∴ac ≤9(当且仅当a =c =3时等号成立),∵cos B =a 2+c 2-b 22ac =(a +c )2-2ac -42ac=16-ac ac , ∴sin B =1-cos 2B = 1-⎝ ⎛⎭⎪⎪⎫16-ac ac 2 =4ac 2ac -16, ∴S △ABC =12ac sin B =12×ac ×4ac2ac -16=22ac -16≤22×9-16=22(当且仅当a =c =3时等号成立),∴△ABC 面积的最大值为2 2.[答案] 22。

2024届高考(江西、广西、贵州、甘肃专用)数学大题必刷专项(立体几何)练习(附答案)

2024届高考(江西、广西、贵州、甘肃专用)数学大题必刷专项(立体几何)练习(附答案)

2024届高考(江西、广西、贵州、甘肃专用)数学大题必刷专项(立体几何)练习一、解答题1.(2023ꞏ安徽亳州ꞏ安徽省亳州市第一中学校考模拟预测)已知四棱锥P ABCD -中,侧面PAD 为等边三角形,底面ABCD 为直角梯形,//AB CD ,90ABC ∠=︒,122BC CD AB ===,PA BD ⊥.(1)求证:平面PAD ⊥平面ABCD ; (2)求直线PC 与平面PBD 所成角的正弦值.2.(2023ꞏ湖北黄冈ꞏ浠水县第一中学校考模拟预测)如图,在三棱台111-A B C ABC 中,112A B =,4AB AC ==,11AA CC ==13BB =,π2BAC ∠=.(1)证明:平面11A ACC ⊥平面ABC ;(2)设D 是BC 的中点,求平面11A ACC 与平面1A AD 夹角的余弦值.3.(2023ꞏ湖北恩施ꞏ校考模拟预测)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,2AC BE ==,M 为线段CD上一点.(1)求证:DE AM ⊥;(2)若EM 与平面ACD 所成角为π3,求平面AMB 与平面ACD 所成锐二面角的余弦值. 4.(2023ꞏ山东泰安ꞏ统考模拟预测)四棱锥S ABCD -中,底面ABCD 为矩形,2,60AD SA SAB ==∠= ,45SAD ∠= ,平面SAD 与平面SBC 的交线为l .(1)求证:直线l 平行于平面ABCD ; (2)求二面角D SA B --的余弦值.5.(2023ꞏ山东泰安ꞏ统考模拟预测)如图1,在平行四边形ABCM 中,2AB BC ==,60MAD ∠=︒,D 为CM 的中点,12AF FC = ,AH HD = ,沿AD 将△MAD 翻折到PAD的位置,如图2,PF AC ⊥.(1)证明://HF 平面PBD ;(2)求平面PBC 和平面PCD 的夹角.6.(2023ꞏ福建宁德ꞏ校考模拟预测)如图,已知多面体EACBD 中,EB ⊥底面ACBD ,EB =1,AB =2,其中底面由以AB 为直径的半圆ACB 及正三角形ABD 组成(1)若BC =1,求证:BC ∥平面ADE .(2)半圆AB 上是否存在点M ,使得二面角M AE D --是直二面角?若存在,求出AMBM的值;若不存在,请说明理由.7.(2023ꞏ福建厦门ꞏ统考模拟预测)筝形是指有一条对角线所在直线为对称轴的四边形.如图,四边形ABCD 为筝形,其对角线交点为,2O AB BD BC ===,将ABD △沿BD 折到A BD ' 的位置,形成三棱锥A BCD -'.(1)求B 到平面A OC '的距离;(2)当1A C '=时,在棱A D '上是否存在点P ,使得直线BA '与平面POC 所成角的正弦值为14?若存在,求A P A D ''的值;若不存在,请说明理由.8.(2023ꞏ安徽合肥ꞏ合肥市第六中学校考模拟预测)如图所示的几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以边AD 所在直线为旋转轴旋转2π3得到的,M 是BE 的中点.(1)设N 是 CF上的一点,且AN CD ⊥,求FDN ∠的大小; (2)当2AB =,4=AD 时,求二面角C AM F --的余弦值.9.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知直角梯形形状如下,其中AB AD ⊥,26DC AB AE ==,6AB =,2AD =.(1)在线段CD 上找出点F ,将四边形ADFE 沿EF 翻折,形成几何体A BE D CF ''-.若无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,请指出点F 的具体位置(无需给出证明过程).(2)在(1)的条件下,若二面角A EF B '--为直二面角,求棱台A BE D CF ''-的体积,并求出此时二面角B A D E ''--的余弦值.10.(2023ꞏ山西ꞏ校联考模拟预测)如图,斜四棱柱1111ABCD A B C D -的底面ABCD 为等腰梯形,且//AB CD ,点1A 在底面的射影点O 在四边形ABCD 内部,且1112,4,1,AD BC CD AA AB A O AA BC ======⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)在线段11B D 上是否存在一点M ,使得平面MBC 与平面ABCD夹角的余弦值为7,若存在,求111B MB D 的值;若不存在,请说明理由. 11.(2023ꞏ河北ꞏ统考模拟预测)在圆柱12O O 中,等腰梯形ABCD 为底面圆1O 的内接四边形,且1AD DC BC ===,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,1CG =.(1)求证:平面1O CG ∥平面ADE ;(2)设DP DE λ=,[]0,1λ∈,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值. 12.(2023ꞏ湖南长沙ꞏ长郡中学校考模拟预测)如图,在直角梯形ABCD 中,//AD BC ,AD CD ⊥,四边形CDEF 为平行四边形,对角线CE 和DF 相交于点H ,平面CDEF ⊥平面ABCD ,2BC AD =,60DCF ∠=o ,G 是线段BE 上一动点(不含端点).(1)当点G 为线段BE 的中点时,证明://AG 平面CDEF ;(2)若1,2AD CD DE ===,且直线DG 与平面CDEF 成45 角,求二面角E DG F --的正弦值.13.(2023ꞏ广东佛山ꞏ华南师大附中南海实验高中校考模拟预测)如图,在四棱锥P ABCD -中,AB CD ,AB AD ⊥,22BC CD AB ===,E 为PC 中点.(1)在棱PD 上是否存在点Q ,使得//AQ 平面EBD ?说明理由;(2)若PC ⊥平面PAD ,PC PD =,求平面PAD 与平面EAB 所成角的余弦值.14.(2023ꞏ广东广州ꞏ广州六中校考三模)四棱锥P ABCD -中,AD BC ∥,22AB AD BC ===,60ABC ∠=︒,PA CD ⊥,PD AC ⊥,点E 是棱PD 上靠近点P 的三等分点.(1)证明:PA ⊥平面ABCD ;(2)若平面PAC 与平面EAC 的夹角的余弦值为10,求四棱锥P ABCD -的体积. 15.(2023ꞏ广东深圳ꞏ深圳中学校考模拟预测)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =.DG ⊥平面ABCD ,2DA DC DG ===.(1)求平面EBC 与平面BCF 的夹角的正弦值;(2)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.16.(2023ꞏ广东深圳ꞏ统考模拟预测)在正三角形ABC 中,E 、F 、P 分别是AB -、AC 、BC 边上的点,满足AE :EB CF =:FA CP =:1PB =:2(如图1).将AEF △沿EF 折起到1A EF 的位置,使二面角1A EF B --成直二面角,连结11,A B A P (如图2)(1)求证:FP //平面1A EB ; (2)求证:1A E ⊥平面BEP ;(3)求直线1A E 与平面1A BP 所成角的大小.17.(2023ꞏ江苏无锡ꞏ校联考三模)如图,已知在平面四边形ABCD 中,2AB BC ==,AC CD ==,=90ACD ∠︒,现将ABC 沿AC 翻折到PAC △的位置,使得2PD =.(1)求证:平面PAD ⊥平面ACD ;(2)点M 在线段CD 上,当二面角M AP D --的大小为6π时,确定M 点的位置.18.(2023ꞏ江苏常州ꞏ江苏省前黄高级中学校考模拟预测)如图,在三棱台ABC —111A B C 中,1111122BB B C C C BC AB BC ====⊥,,平面11AA B B ⊥平面11BB C C .(1)证明:AB ⊥平面11BB C C ; (2)若二面角1B C C A --的大小是π6,求侧面11AAC C 与底面ABC 所成二面角的正弦值. 19.(2023ꞏ江苏苏州ꞏ模拟预测)在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD OP λ= 且1,12λ⎡⎤∈⎢⎥⎣⎦.(1)证明:平面DBC ⊥平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A DB C --的余弦值为519时,求点M 到平面BCD 的距离.20.(2023ꞏ辽宁沈阳ꞏ东北育才学校校考模拟预测)如图,棱长为2的正方体1111ABCD A B C D -中,P 为线段11B D 上动点.(1)证明:CP 平面1A BD ;(2)当直线BP 与平面11A BCD D 到平面1A BP 的距离. 21.(2023ꞏ江苏盐城ꞏ盐城中学校考三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面⊥BDF 平面BCG ;(2)若平面BDF 与平面ABG且线段AB 长度为2,求点G 到直线DF 的距离.22.(2023ꞏ重庆沙坪坝ꞏ重庆南开中学校考模拟预测)如图所示,正三棱柱111ABC A B C -中各条棱长均为2,点,,M N E 分别为棱1,,AC AA AB 的中点.(1)求异面直线MN 和CE 所成角的正切值; (2)求点B 到平面MEN 的距离.23.(2023ꞏ云南ꞏ校联考模拟预测)如图,正ABC 是圆柱底面圆O 的内接三角形,其边长为a .AD 是圆O 的直径,PA 是圆柱的母线,E 是AD 与BC 的交点,圆柱的轴截面是正方形.(1)记圆柱的体积为1V ,三棱锥-P ABC 的体积为2V ,求12V V ; (2)设F 是线段PE 上一点,且12FE PF =,求二面角A FC O --的余弦值. 24.(2023ꞏ黑龙江哈尔滨ꞏ哈尔滨三中校考模拟预测)在长方体1111ABCD A B C D -中,12AB BC CC ==,点P 为棱11C D 上任意一点.(1)求证:平面11AAC C ⊥平面PBD ;(2)若点E 为棱1CC 上靠近点C 的三等分点,求点P 在棱11C D 上什么位置时,平面BDE 与平面PBD . 25.(2023ꞏ吉林ꞏ长春吉大附中实验学校校考模拟预测)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面,,ABC E F 分别是,PA PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,证明:l ⊥平面PCB ;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.26.(2023ꞏ江苏ꞏ金陵中学校联考三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE AD =,ABC 为底面圆O 的内接正三角形,圆锥的高18DO =,点P 为线段DO 上一个动点.(1)当PO =PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.27.(2023ꞏ广东深圳ꞏ校考二模)如图1所示,等边ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 边的中点.现将ABC 沿CD 折叠,如图2所示.(1)证明:CD EF ⊥;(2)折叠后若AB a =,求二面角A BD E --的余弦值.28.(2023ꞏ湖南邵阳ꞏ邵阳市第二中学校考模拟预测)如图,在ABC 中,90B ?,P 为AB 边上一动点,//PD BC 交AC 于点D ,现将PDA 沿PD 翻折至PDA ' .(1)证明:平面CBA '⊥平面PBA ';(2)若24PB CB PD ===,且A P AP '⊥,线段A C '上是否存在一点E (不包括端点),使得锐二面角E BD C --的余弦值为14,若存在求出A E EC '的值,若不存在请说明理由.29.(2023ꞏ湖南衡阳ꞏ校考模拟预测)如图,ADM △是等腰直角三角形,AD DM ⊥,四边形ABCM 是直角梯形,AB BC ⊥,MC BC ⊥,且222AB BC CM ===,平面ADM ⊥平面ABCM .(1)求证:AD BM ⊥;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,三棱锥M ADE -的体积为18? 30.(2023ꞏ浙江温州ꞏ统考二模)已知三棱锥D ABC -中,△BCD 是边长为3的正三角形,,AB AC AD AD ==与平面BCD(1)求证:AD BC ⊥;(2)求二面角D AC B --的平面角的正弦值.参考答案一、解答题1.(2023ꞏ安徽亳州ꞏ安徽省亳州市第一中学校考模拟预测)已知四棱锥P ABCD -中,侧面PAD 为等边三角形,底面ABCD 为直角梯形,//AB CD ,90ABC ∠=︒,122BC CD AB ===,PA BD ⊥.(1)求证:平面PAD ⊥平面ABCD ; (2)求直线PC 与平面PBD 所成角的正弦值. 【答案】(1)证明见解析【详细分析】(1)由题意,利用勾股定理逆定理证明AD BD ⊥,由已知PA BD ⊥,证明BD ⊥平面PAD ,从而证明平面PAD ⊥平面ABCD ; (2)建立空间直角坐标系,利用空间向量法计算可得.【过程详解】(1)四棱锥P ABCD -中,90ABC ∠=︒,122BC CD AB ===,则BD ==AD 4AB =, 222BD AD AB ∴+=,AD BD ∴⊥,又PA BD ⊥,且PA AD A ⋂=,,PA AD ⊂平面PAD , BD ∴⊥平面PAD ,又BD ⊂平面ABCD ,∴平面ABCD ⊥平面PAD ,即平面PAD ⊥平面ABCD ;(2)如图建立空间直角坐标系,则()0,0,0D ,()0,B,()C,P,所以()0,DB =uu ur,(PC =-,DP =,设平面PBD 的法向量为(),,n x y z=,则00n DB n DP ⎧⋅==⎪⎨⋅==⎪⎩ ,令x =1z=-,所以)1n =-,设直线PC 与平面PBD 所成角为θ,则sin 248n PC n PCθ⋅===⨯⋅ , 所以直线PC 与平面PBD.2.(2023ꞏ湖北黄冈ꞏ浠水县第一中学校考模拟预测)如图,在三棱台111-A B C ABC 中,112A B =,4AB AC ==,11AA CC ==13BB =,π2BAC ∠=.(1)证明:平面11A ACC ⊥平面ABC ;(2)设D 是BC 的中点,求平面11A ACC 与平面1A AD 夹角的余弦值.【答案】(1)证明见解析 (2)23【详细分析】(1)由线面垂直证面面垂直,根据题中条件,在平面ABC 中,AB 垂直于两平面的交线AC ,只需再证其与平面11A ACC 内的另外一条与AC 相交的直线垂直即可.(2)建立空间直角坐标系,两平面法向量的夹角余弦值的绝对值即为平面11A ACC 与平面1A AD 夹角的余弦值. 【过程详解】(1)证明:由三棱台111-A B C ABC 知:11//A B AB ,在梯形11A ABB 中,取AB 的中点E ,连接1B E , 因112A B =,4AB AC ==故11A B AE =,四边形11A AEB 是平行四边形,∴11B E AA ==122EB AB ==,13BB = 所以22211B E EB BB +=,1π2BEB ∴∠=,即1B E AB ⊥, 因11//B E AA ,所以1BA AA ⊥, 又因π2BAC ∠=,所以BA AC ⊥, 又因1AA AC A = ,所以BA ⊥平面11A ACC , 因BA ⊂平面ABC ,所以平面11A ACC ⊥平面ABC ; (2)解:取AC 的中点O ,11AC 的中点F ,连接OD ,OF ,则//OD AB , 因AB AC ⊥,所以OD AC ⊥,由条件知:四边形11A ACC 是等腰梯形,所以OF AC ⊥, 平面11A ACC ⋂平面=ABC ACOF ⊂平面11A ACC ,平面11A ACC ⊥平面ABC∴OF ⊥平面ABC ,分别以OA ,OD ,OF 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图,则在等腰梯形11A ACC中,由平面几何知识可得:2OF ==,∴()2,0,0A ,()0,2,0D ,()11,0,2A ,()2,2,0AD =- ,()11,0,2AA =-设平面1A AD 的法向量(),,x y z μ=r, 则由1AA AD μμ⎧⊥⎪⎨⊥⎪⎩ 得22020x y x z -+=⎧⎨-+=⎩,令2x =,得2y =,1z =,所以()2,2,1μ=,又平面11A ACC 的法向量()0,1,0ν=, 设平面11A ACC 与平面1A AD 的夹角为θ,则2cos 3μνθμν⋅===⋅. 3.(2023ꞏ湖北恩施ꞏ校考模拟预测)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD均为正三角形,2AC BE ==,M 为线段CD上一点.(1)求证:DE AM ⊥; (2)若EM 与平面ACD 所成角为π3,求平面AMB 与平面ACD 所成锐二面角的余弦值. 【答案】(1)证明见解析;13.【详细分析】(1)取AC 中点O ,利用面面垂直的性质、线面垂直的性质证明//DE OB 即可推理作答.(2)利用(1)中信息,建立空间直角坐标系,借助空间向量求解作答.【过程详解】(1)取AC 中点O ,连接DO 、OB ,在正ACD 和正ABC 中,2AC =,则,,DO AC BO AC DO BO ⊥⊥=,而平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,BO ⊂平面ABC ,于是DO ⊥平面ABC ,BO ⊥平面ACD ,又BE ⊥平面ABC ,即有//DO EB ,而DO EB ==因此四边形DOBE 是平行四边形,则//DE OB ,从而DE ⊥平面ABC ,AM ⊂平面ADC , 所以DE AM ⊥.(2)由(1)知,DE ⊥平面ADC ,EMD ∠为EM 与平面ADC 的所成角,即π3EMD ∠=, 在Rt EDM △中,1πtan3DE DM ===,即M 为DC 中点, 由(1)知,,,OB OC OD 两两垂直,建立如图所示的空间直角坐标系O xyz -,则1(0,1,0),(0,1,0),(0,2A B D C M -,3(0,2AB AM == ,显然平面DAC 的一个法向量为1(1,0,0)= n ,设平面MAB 的一个法向量为2(,,)n x y z =,则2203022n AB y n AM y z ⎧⋅+=⎪⎨⋅=+=⎪⎩,令1x =,得2(1,n = ,121212|||cos ,|||||n n n n n n ⋅〈〉===所以平面AMB 与平面ACD所成锐二面角的余弦值为13. 4.(2023ꞏ山东泰安ꞏ统考模拟预测)四棱锥S ABCD -中,底面ABCD为矩形,2,60AD SA SAB ==∠= ,45SAD ∠= ,平面SAD 与平面SBC 的交线为l .(1)求证:直线l 平行于平面ABCD ; (2)求二面角D SA B --的余弦值.【答案】(1)证明见解析【详细分析】(1)根据题意证得//AD 平面SBC ,结合线面平行的性质定理证得//AD 直线l ,再由线面平行的判定定理,即可证得//l 平面ABCD ;(2)以点A 为原点,建立空间直角坐标系,设(,,)AS a b c = ,取AB 的方向向量(0,1,0)e = ,根据60SAB ∠= ,45SAD ∠=,利用向量的夹角公式,求得AS =,进而求得平面ADS 和平面ABS 的一个法向量,结合向量的夹角公式,即可求解. 【过程详解】(1)证明:因为底面ABCD 是矩形,可得//AD BC , 又因为AD ⊄平面SBC ,BC ⊂平面SBC ,所以//AD 平面SBC , 因为AD ⊂平面SAD ,且平面SAD ⋂平面SBC l =,所以//AD 直线l , 又因为l ⊄平面ABCD ,AD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:以点A 为原点,,AD AB ,垂直于平面ABCD 的直线AZ 分别为x 轴、y 轴和z轴,建立如图空间直角坐标系,则(0,0,0),A D,则AD =,设(,,)AS a b c = ,取AB的方向向量(0,1,0)e = ,因为60SAB ∠= ,45SAD ∠= ,可得cos ,2AS AD AS AD AS AD ⋅==1cos ,2AS e AS e AS e ⋅===,又因为2SA =,可得2AS == ,即2224a b c ++=,解得1,1a b c ===,即AS =,设平面ADS 法向量为111(,,)m x y z =,则111100m AD m AS y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取11z =,可得110,1x y ==-,所以(0,1,1)m =-, 设平面ABS 的法向量为222(,,)n x y z =,则222200n e y n AS y z ⋅==⎧⎪⎨⋅++=⎪⎩,取取2z =221,0x y ==,所以(1,0,n =,所以cos ,3m n m n m n ⋅===-,由图象可得,二面角D SA B --为锐二面角, 所以二面角D SA B --的余弦值为3.5.(2023ꞏ山东泰安ꞏ统考模拟预测)如图1,在平行四边形ABCM中,2AB BC ==,60MAD ∠=︒,D 为CM 的中点,12AF FC = ,AH HD = ,沿AD 将△MAD 翻折到PAD的位置,如图2,PF AC ⊥.(1)证明://HF 平面PBD ; (2)求平面PBC 和平面PCD 的夹角.【答案】(1)证明见解析(2)π4【详细分析】(1)确定PAD 为正三角形,AC BD G ⋂=,证明//HF DG ,得到证明. (2)确定AD ⊥平面PHF ,AC BC ⊥,建立空间直角坐标系,确定平面PCD 和平面PBC 的法向量,根据向量的夹角公式计算得到答案.【过程详解】(1)PA PD ==,60PAD ∠=︒,PAD 为正三角形,AH HD =,则H 为AD 中点,设AC BD G ⋂=,//CD AB ,12CD AB =,故12CG GA =,故G 为AC 的三等分点,13AF AC =,F 为AC 的三等分点,即F 为AG 的中点,故//HF DG ,DG ⊂平面PBD ,HF ⊄平面PBD ,故//HF 平面PBD .(2)由题设易得AD =,60DAB ∠=︒,22212cos 312292BD AD AB AD AB BAD =+-⋅∠=+-=, 故222AD BD AB +=,即AD BD ⊥,//HF DG ,故AD HF ⊥,AD PH ⊥,PH HF H = ,、PH HF 在面PHF 内,故AD ⊥平面PHF .PF 在面PHF 内,故AD PF ⊥,又PF AC ⊥,AC AD A = ,、AC AD 在面ABCD 内,故PF ⊥平面ABCD .在Rt PFH 中,PF =由题意易得∠ABC =60°,∠BAC =30°,则∠ACB =90°,故AC BC ⊥,过点C 作平面ABCD 的垂线为z 轴,以CA CB,分别为x 轴、y 轴正方向,建立如图所示坐标系.则()0,0,0C,()B ,()3,0,0A,(P,3,2D ⎛⎫⎪ ⎪⎝⎭,3,2CD ⎛⎫= ⎪ ⎪⎝⎭,(CP =,()CB = , 设平面PCD 的一个法向量为(,,)n x y z =,则30220n CD x y n CP x ⎧⋅==⎪⎨⎪⋅==⎩,令1x =,则y z ==(n =设平面PBC 的一个法向量为111(,,)m x y z =,则111020m CB m CP x ⎧⋅==⎪⎨⋅==⎪⎩ , 令11x =,则10y =,1z =,所以(1,0,m =,设平面PBC 和平面PCD 的夹角为θ,[]0,πθ∈,则cos cos ,2m n θ=== ,π4θ=, 所以平面PBC 和平面PCD 的夹角为π4. 6.(2023ꞏ福建宁德ꞏ校考模拟预测)如图,已知多面体EACBD 中,EB ⊥底面ACBD ,EB =1,AB =2,其中底面由以AB 为直径的半圆ACB 及正三角形ABD 组成(1)若BC =1,求证:BC ∥平面ADE .(2)半圆AB 上是否存在点M ,使得二面角M AE D --是直二面角?若存在,求出AMBM的值;若不存在,请说明理由. 【答案】(1)证明见过程详解(2)存在,AMBM=【详细分析】(1)根据题意详细分析可得30CAB ∠=︒,进而可证AD AC ⊥,AD //BC ,根据线面平行的判定定理详细分析证明;(2)建系,设()()cos ,sin ,0,0,πM θθθ∈,分别求平面ADE 、平面MAE 的法向量,结合面面垂直的向量关系运算求解.【过程详解】(1)由题意可得:AC BC ⊥,则1sin 2BC CAB AB ∠==, 且CAB ∠为锐角,则30CAB ∠=︒,因为三角形ABD 为正三角形,则60DAB ∠=︒, 可得90DAC DAB CAB ∠=∠+∠=︒,即AD AC ⊥, 所以AD //BC ,AD ⊂平面ADE ,BC ⊄平面ADE ,可得BC ∥平面ADE .(2)如图,以AB 的中点O 为坐标原点,AB 为x 轴,AB 的中垂线为y 轴建立空间直角坐标系,则()()()()1,0,0,1,0,0,0,,1,0,1A B D E --, 可得()()2,0,1,1,AE AD =-=-uu u r uuu r , 设平面ADE 的法向量(),,n x y z =,则200n AE x z n AD x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令x =1,y z =-=,即1,n =-r,设()()cos ,sin ,0,0,πM θθθ∈,平面MAE 的法向量(),,m a b c =, 因为()cos 1,sin ,0AM θθ=-uuu r ,则()20cos 1sin 0m AE a c m AM a b θθ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ , 令sin a θ=,则1cos ,2sin y z θθ=-=,即()sin ,1cos ,2sin m θθθ=-u r,若二面角M AE D --是直二面角,则()1cos 0n m θθθ⋅=--+=r u r,整理得cos 1θθ+=,联立方程22cos 1sin cos 1θθθθ⎧+=⎪⎨+=⎪⎩,解得sin 3837cos 38θθ⎧=⎪⎪⎨⎪=-⎪⎩或sin 0cos 1θθ=⎧⎨=⎩,因为()0,πθ∈,则sin 0θ>,可得sin 3837cos 38θθ⎧=⎪⎪⎨⎪=-⎪⎩,即37,3838M ⎛⎫- ⎪ ⎪⎝⎭ 所以AM BM ===,可得当19AMBM ==时,二面角M AE D --是直二面角.7.(2023ꞏ福建厦门ꞏ统考模拟预测)筝形是指有一条对角线所在直线为对称轴的四边形.如图,四边形ABCD为筝形,其对角线交点为,2O AB BD BC ===,将ABD △沿BD 折到A BD ' 的位置,形成三棱锥A BCD -'.(1)求B 到平面A OC '的距离;(2)当1A C '=时,在棱A D '上是否存在点P ,使得直线BA '与平面POC 所成角的正弦值为14?若存在,求A PA D ''的值;若不存在,请说明理由.【答案】(1)1 (2)存在;13A P A D =''或79A P A D =''【详细分析】(1)根据线面垂直的判定可得BD ⊥平面A OC ',进而可得B 到平面A OC '的距离112d BD ==. (2)以O 为原点,,,OD OE OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,再设[]()1,,0,12A P A D λλλλ⎛⎫='=-∈ ⎪ ⎪⎝'⎭,根据线面角的空间向量求法求解即可.【过程详解】(1)因为2AB BD BC ===,所以BD 不可能为四边形ABCD 的对称轴,则AC 为四边形ABCD 的对称轴, 所以AC 垂直平分BD ,所以,A O BD CO BD '⊥⊥. A O '⊂平面,A OC CO '⊂平面,A OC A O CO O ⋂'='所以BD ⊥平面A OC '. 所以B 到平面A OC '的距离112d BD ==. (2)存在点P ,使得直线BA '与平面POC 所成角的正弦值为14. 过O 作OE ⊥平面BCD ,所以,,OD OE OC 两两垂直.以O 为原点,,,OD OE OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系由(1)得平面BCD ⊥平面A OC ',因为1,1OA OC A C =='='所以12A ⎛⎫ ⎪ ⎪⎝⎭'.设[]()1,,0,122A P A D λλλλλ⎛⎫='=-∈ ⎪ ⎪⎝'⎭11,2222OP OA A P λλλ⎛⎫=+=-- ⎪ ⎪''⎝⎭()OC =设平面POC 的法向量(),,n x y z =r0n OC n OP ⎧⋅=⎪⎨⋅=⎪⎩所以011022y x y z λλ=⎧⎪⎫⎨⎛⎫++-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎩ 令2z λ=,则1x λ=-所以平面POC 的一个法向量()1,0,2n λλ=-设直线BA '与平面POC 所成角为θ12BA ⎛⎫= ⎪ ⎪⎝⎭'1sin cos ,4BA n BA n BA n θ⋅===='''. 所以13λ=或79λ=,所以存在点P ,使得直线BA '与平面POC 所成角的正弦值为1143A P A D =''或79A P A D =''. 8.(2023ꞏ安徽合肥ꞏ合肥市第六中学校考模拟预测)如图所示的几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以边AD 所在直线为旋转轴旋转2π3得到的,M 是BE 的中点.(1)设N 是 CF上的一点,且AN CD ⊥,求FDN ∠的大小; (2)当2AB =,4=AD 时,求二面角C AM F --的余弦值.【答案】(1)π6(2)1319【详细分析】(1)依题意可得CD ⊥平面AND ,即可得到CD DN ^,从而得解; (2)建立空间直角坐标系,利用空间向量法计算可得. 【过程详解】(1)因为AN CD ⊥,AD CD ⊥,又,AN AD ⊂平面AND ,AN AD A = ,所以CD ⊥平面AND . 又DN ⊂平面ADN ,所以CD DN ^. 又2π3FDC ∠=,所以2πππ362FDN FDC NDC ∠=∠-∠=-=. (2)由(1)以D 为坐标原点,分别以DC ,DN ,DA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,4A ,()2,0,0C ,()M,()F -, 故()2,0,4AC =-,()AM =,()4AF =--,设(),,m x y z=是平面AMC 的一个法向量.由00m AM m AC ⎧⋅=⎪⎨⋅=⎪⎩,得0240x x z ⎧=⎪⎨-=⎪⎩,取1x =,可得11,2m ⎛⎫= ⎪ ⎪⎝⎭ . 设(),,n a b c =是平面AMF 的一个法向量.由00n AM n AF ⎧⋅=⎪⎨⋅=⎪⎩,得040a a c ⎧=⎪⎨--=⎪⎩,取1a =,可得11,2n ⎛⎫=- ⎪ ⎪⎝⎭ .所以11113cos ,19m n m n m n +-⋅==⋅ ,由图可知二面角C AM F --为锐二面角, 所以二面角C AM F --的余弦值为1319.9.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知直角梯形形状如下,其中AB AD ⊥,26DC AB AE ==,6AB =,2AD =.(1)在线段CD 上找出点F ,将四边形ADFE 沿EF 翻折,形成几何体A BE D CF ''-.若无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,请指出点F 的具体位置(无需给出证明过程).(2)在(1)的条件下,若二面角A EF B '--为直二面角,求棱台A BE D CF ''-的体积,并求出此时二面角B A D E ''--的余弦值. 【答案】(1)4DF =或F 为靠近点D 的三等分点;.【详细分析】(1)延长,DA CB 交于点O ,连接OE 并延长交CD 于F,翻折后证明平面//AEB 平面DFC 即可推理作答.(2)根据给定条件,证明D E '⊥平面EFC ,再利用锥体的体积公式结合割补法求出体积,建立空间直角坐标系求出面面角的余弦作答.【过程详解】(1)在直角梯形ABCD 中,延长,DA CB 交于点O ,连接OE 并延长交CD 于F ,如图,//AB CD ,212DC AB ==,2AE =,于是2DF DO DCAE AO AB===,则4DF =,F 为靠近点D 的三等分点,将四边形ADFE 沿EF 翻折,即将ODF △沿EF 翻折,无论二面角A EF B '--多大, 所成几何体均为三棱锥O DFC -,显然//,AE DF DF ⊂平面,DFC AE ⊄平面DFC , 于是//AE 平面DFC ,同理//BE 平面DFC ,而,,AE BE E AE BE ⋂=⊂平面AEB , 因此平面//AEB 平面DFC ,从而几何体A BE D CF ''-是棱锥O DFC -被平行于底面DFC 的平面所截,截面和底面间的部分,即几何体A BE D CF ''-是棱台,所以无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,4DF =,F 为靠近点D 的三等分点.(2)翻折前2,2DF AE DC AB ==,将DA ,FE ,CB 延长一倍,三线交予点O , 在等腰直角三角形ODF 中,DE OF ⊥,在棱台A BE D CF ''-中,D E OF '⊥, 又二面角A EF B '--为直二面角,D E '⊥平面EFC ,即三棱锥D OFC '-的体积为1111843232D OFC V D E FC OD '-'=⋅⋅=⋅⋅⋅=又三棱锥A OBE '-的体积18A OBE D OFC V V ''--==则有棱台A BE D CF ''-的体积为A BE D CF V ''-== 在线段DC 上取2DG =,有AE DG =,四边形AEGD 为平行四边形,,AD EG EG EB =⊥ ,又D E '⊥面EFC ,则,D E EB D E EG ''⊥⊥,以E 为原点,,2EG EB B 'x ,y ,z 的单位向量建立空间直角坐标系,则(2,2,0),(0,0,(0,4,0),(0,0,0)O D B E '--,(2,2,(2,6,0)OD OB '==,(2,2,0),(0,0,OE ED '==,取平面OD B '的法向量为1(,,)n a b c = ,11220260n OD a b n OB a b '⎧⋅=++=⎪⎨⋅=+=⎪⎩,令1b =,取1(n =- , 取面OD E '的法向量2(,,)n r s t =,则222200n OE r s n ED ⎧⋅=+=⎪⎨⋅==⎪'⎩,令1r =,得2(1,1,0)n =- ,显然二面角B A D E ''--的平面角为锐角,设为α,121212cos |cos ,3||||n n n n n n α⋅=〈〉===, 所以二面角B A D E ''--的余弦值为3.10.(2023ꞏ山西ꞏ校联考模拟预测)如图,斜四棱柱1111ABCD A B C D -的底面ABCD 为等腰梯形,且//AB CD ,点1A 在底面的射影点O 在四边形ABCD 内部,且1112,4,1,AD BC CD AA AB A O AA BC ======⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)在线段11B D 上是否存在一点M ,使得平面MBC 与平面ABCD夹角的余弦值为7,若存在,求111B MB D 的值;若不存在,请说明理由. 【答案】(1)证明见解析 (2)存在,1111.2B M B D =【详细分析】(1)作出辅助线,得到四边形ADCE 为菱形,得到AC BC ⊥,得到线面垂直,得到平面ABCD ⊥平面11ACC A ;(2)建立空间直角坐标系,得到各点坐标,设111B M B D BD λλ== ,由二面角的大小得到12λ=. 【过程详解】(1)在等腰梯形ABCD 中,12,4AD BC CD AA AB =====, 过C 作//CE AD 交AB 于E ,则四边形ADCE 是菱形, 2AE EB ∴==,BCE ∴△是等边三角形,60,60,30ABC DCE ECB ACD ACE ∠∠∠∠∠∴===== , 90,ACB AC BC ∴∠=⊥ ,又111,,,AA BC AA AC A AA AC ⊥⋂=⊂平面11AAC C ,∴BC ⊥平面11ACC A ,又BC ⊂平面ABCD ,∴平面ABCD ⊥平面11ACC A .(2)由(1)平面ABCD ⊥平面11ACC A ,∵1A O ⊥平面1,ABCD A O ⊂平面11ACC A ,∴点1A 在底面的射影O 在AC 上,且1A O AC ⊥,又111,2,A O AA AO ==∴=由(1)知AC =CO ∴=以O 为原点,1,,OA OE OA 分别为,,x y z 轴,建立如图空间直角坐标系O xyz -,则O ())()()()()10,0,0,,2,0,,0,1,0,0,0,1AB C D A -,则())()1,3,0,0,2,0AA BD BC ==-=- ,设111B M B D BD λλ==,[]0,1λ∈,则()))1111,3,03,1BM BB B M AA B M λλ=+=+=+-=-,易知平面ABCD 的一个法向量为()0,0,1m =, 设平面MBC 的法向量为(),,n x y z = ,则)20130n BC y n BM x y z λλ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,解得0y =, 令1x =得,z =,故()n =,cos ,7m n m n m n ⋅===,解得:12λ=, 所以1111.2B M B D = 11.(2023ꞏ河北ꞏ统考模拟预测)在圆柱12O O 中,等腰梯形ABCD 为底面圆1O 的内接四边形,且1AD DC BC ===,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,1CG =.(1)求证:平面1O CG ∥平面ADE ;(2)设DP DE λ=,[]0,1λ∈,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值为35. 【答案】(1)证明见解析(2)13λ=或23λ=【详细分析】(1)先证明AE ∥平面1O CG 以及AD ∥平面1O CG ,根据面面平行的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求得平面ABG 的一个法向量,根据空间角的向量求法,即可求得答案.【过程详解】(1)在圆柱12O O 中,AE CG ∥,AE ⊄平面1O CG ,CG ⊂平面1O CG , 故AE ∥平面1O CG ;连接1DO ,因为等腰梯形ABCD 为底面圆1O 的内接四边形,1AD DC BC ===,故111π3AO D CO D BO C ∠=∠=∠=, 则1AO D 为正三角形,故11π3O AD CO B ∠=∠=,则1AD O C ∥, AD ⊄平面1O CG ,1O C ⊂平面1O CG , 故AD ∥平面1O CG ;又,,AE AD A AE AD ⋂=⊂平面ADE , 故平面ADE ∥平面1O CG .(2)如图,以1O 为坐标原点,在底面圆1O 过点1O 垂直于平面ABFE 作直线为x 轴, 以112,O B O O 为,y z 轴建立空间直角坐标系,由于1,1AD DC BC CG ====,由(1)可知11AO =, 故()()1101001,010(0,11),,22,,,,,,,,A B G D E ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2,,,3(020)1,AB AG ⎛⎫== ⎪ ⎪⎝⎭, 设平面ABG 的一个法向量为(,,)n x y z =,则00n AB n AG ⎧⋅=⎪⎨⋅=⎪⎩,即20302y x y z =⎧⎪⎨++=⎪⎩,令x =n =,由DP DE λ=,[]0,1λ∈,11,2DE ⎫=-⎪⎪⎝⎭,可得1111222,,222,,22,P AP λλλλλλ⎛⎫⎛⎫---=--+ ⎪ ⎪ ⎪ ⎪∴⎝⎭⎝⎭, 设直线AP 与平面ABG 所成角为π,[0,2θθ∈,则||sin |cos ,|35||||n AP n AP n AP θ⋅=〈〉===, 即得29920λλ-+=,解得13λ=或23λ=,符合[]0,1λ∈,故13λ=或23λ=.12.(2023ꞏ湖南长沙ꞏ长郡中学校考模拟预测)如图,在直角梯形ABCD 中,//AD BC ,AD CD ⊥,四边形CDEF 为平行四边形,对角线CE 和DF 相交于点H ,平面CDEF ⊥平面ABCD ,2BC AD =,60DCF ∠=o ,G 是线段BE 上一动点(不含端点).(1)当点G 为线段BE 的中点时,证明://AG 平面CDEF ;(2)若1,2AD CD DE ===,且直线DG 与平面CDEF 成45 角,求二面角E DG F --的正弦值.【答案】(1)证明见解析【详细分析】(1)连接,GH AG ,由三角形中位线和边长关系可知四边形ADHG 是平行四边形,即可证明//AG 平面CDEF ;(2)根据题意可知,以C 为原点建立空间直角坐标系,可设BG BE λ=利用空间向量即可表示出DG,进而确定G 点位置,再分别求得两平面的法向量即可得出二面角E DGF --的正弦值为7. 【过程详解】(1)证明:连接,GH AG ,如下图(1)中所示:因为四边形CDEF 为平行四边形,所以H 是CE 中点, 又G 点为线段BE 的中点,则//GH BC ,且12GH BC =, 又//AD BC 且12AD BC =,所以,//GH AD GH AD =, 所以四边形ADHG 是平行四边形,所以//AG DH ,又AG ⊄平面CDEF ,DH ⊂平面CDEF ,所以//AG 平面CDEF ;(2)以C 为原点,,CB CD 为,x y 轴,过C 且在平面CDEF 内与CD 垂直的直线为z 轴,建立空间直角坐标系,如图(2)所示:由平面CDEF ⊥平面ABCD ,60DCF ∠=o ,2CD DE ==可知,,CDF DEF V V 均为边长为2的正三角形,则有()()((02020000D B E F ,,,,,,,,,设()2,3,01BG BE λλλλ==-<< ,则()()()2,32,2,022,3DG BG BD λλλλ=-=---=--,()1,0,0e =为平面CDEF 的法向量,所以cos ,2DG e ==,解得12λ=(其中0λ=舍去),所以31,2G ⎛ ⎝⎭, 设平面EDG 的法向量为()111,,m x y z =r,则有()(()11111111111,,011,,1,02222m DE x y z y m DG x y z x y z ⎧⋅=⋅=+=⎪⎪⎨⎛⎫⋅=⋅-=-+=⎪ ⎪ ⎪⎪⎝⎭⎩, 令11z =,则11x y ==()m =.设平面FDG 的法向量为()222,,n x y z =r,则有()(()22222222222,,0,011,,1,022n DF x y z y n DG x y z x y ⎧⋅=⋅-=-=⎪⎪⎨⎛⋅=⋅-=-=⎪ ⎪⎝⎭⎩, 令21z =,则220,x y ==()n =所以cos ,7m n m n m n ⋅===-.所以二面角E DG F --= 即二面角E DG F --的正弦值为7. 13.(2023ꞏ广东佛山ꞏ华南师大附中南海实验高中校考模拟预测)如图,在四棱锥P ABCD -中,AB CD ,AB AD ⊥,22BC CD AB ===,E 为PC 中点.(1)在棱PD 上是否存在点Q ,使得//AQ 平面EBD ?说明理由;(2)若PC ⊥平面PAD ,PC PD =,求平面PAD 与平面EAB 所成角的余弦值.【答案】(1)存在,理由见解析【详细分析】(1)取PD 的中点Q ,利用线面平行的判定证明AQ ∥平面EBD ; (2)取DC 的中点为O ,证明,BO DC BO PO ⊥⊥,PO CD ⊥,以点O 为坐标原点,建立坐标系,利用向量法证明即可.【过程详解】(1)取PD 的中点Q ,连接,QE AQ ,则QE ∥CD ,又AB ∥CD ,QE AB =,所以四边形ABEQ 为平行四边形,AQ ∥BE . 因为BE ⊂平面EBD ,AQ ⊄平面EBD ,BE ∥AQ , 所以AQ ∥平面EBD .(2)取DC 的中点为O ,连接,BO PO,AD =,1PO =. 若PC ⊥平面PAD ,PC PD =,因为,PD AD ⊂平面PAD , 则PC PD ⊥,PC AD ⊥,且PC PD ==,又AD CD ⊥,PC CD C ⋂=,,PC CD ⊂平面PCD ,所以AD ⊥平面PCD , 所以AD PO ⊥,又BO ∥AD ,所以,BO DC BO PO ⊥⊥, 又PC PD =,DC 的中点为O ,所以PO CD ⊥, 则以点O 为原点,建立如下图所示的空间直角坐标系:()))()()110,0,1,1,0,,0,1,0,0,1,0,0,,22P ABD CE ⎛⎫-- ⎪⎝⎭()110,1,0,,22AB BE ⎛⎫== ⎪⎝⎭ ,平面PAD 的法向量为()0,1,1PC =-. 设平面EAB 的法向量为(),,n x y z =r,011022AB n y BE n y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令2z =,则,0,23n ⎛⎫= ⎪ ⎪⎝⎭r 设平面PAD 与平面EAB 所成角为θcos cos ,PC nPC n PC nθ⋅===⋅ 所以平面PAD 与平面EAB14.(2023ꞏ广东广州ꞏ广州六中校考三模)四棱锥P ABCD -中,AD BC ∥,22AB AD BC ===,60ABC ∠=︒,PA CD ⊥,PD AC ⊥,点E 是棱PD 上靠近点P 的三等分点.(1)证明:PA ⊥平面ABCD ;(2)若平面PAC 与平面EAC 的夹角的余弦值为10,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析(2)2【详细分析】(1)先证明AC ⊥平面PAD ,从而推出AC PA ⊥,结合PA CD ⊥,根据线面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,确定平面PAC 的法向量,求得平面EAC 的法向量,根据面面角的向量求法可求得PA 的长,根据棱锥的体积公式即可求得答案. 【过程详解】(1)依题意,在4BC △中,60,2,1ABC AB BC ∠=== ,由余弦定理可得AC ===则222AC BC AB +=,∴AC BC ⊥,∵AD BC ∥,∴AD AC ⊥,又,,,PD AC PD AD D PD AD ⊥=⊂ 平面PAD , ∴AC ⊥平面PAD ,∵PA ⊂平面PAD ,∴AC PA ⊥,又PA CD ⊥,,,CD AC C CD AC =⊂ 平面ABCD , 故PA ⊥平面ABCD ;(2)以A 为坐标原点,,,AC AD AP的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,设AP m =,则(0,0,0),),(0,2,0(0,0,)A C D P m ,22(0,,)33E m ,由(1)可知,,,,,AC PA PA AD PA AC A PA AC ⊥⊥=⊂ 平面PAC ,故AD ⊥平面PAC ,∴平面PAC 的一个法向量为(0,2,0)AD =,设平面EAC 的法向量为(,,)n x y z =,且AC = ,22(0,,)33AE m = ,则00,220033n AC y mz n AE =⎧⋅=⎪∴⎨⎨+=⋅=⎪⎪⎩⎩ , 取1z =-,所以(0,,1)n m =-,因为平面PAC 与平面EAC的夹角的余弦值为10,所以|cos ,|||10||||AD n AD n AD n ⋅〈〉===,解得3m =, 所以四棱锥P ABCD -的体积为111(12)33322ABCD S PA ⨯⨯=⨯+=15.(2023ꞏ广东深圳ꞏ深圳中学校考模拟预测)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =.DG ⊥平面ABCD ,2DA DC DG ===.(1)求平面EBC 与平面BCF 的夹角的正弦值;(2)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学大题1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值;(2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。

2.(12分) 在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点.(I)求证:CM ⊥EM:(Ⅱ)求DE 与平面EMC 所成角的正切值.3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率;(Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率.4.(12分)在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。

若B A cos cos =ab且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x-2C),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。

5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N.(1)求a 的值;(2)问:|PM|·|PN|是否为定值?若是,则求出该定值,若不是,则说明理由:(3)设O 为坐标原点,求四边形OMPN 面积的最小值。

6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=xe 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围;(2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.7. (12分)设P :函数y =ax 2-2x +1在[1,+∞)内单调递减,Q :曲线y =x 2-2ax +4a +5与x 轴没有交点;如果“﹁P 或Q ”为真,“﹁P 且Q ”为假,求a 的取值范围.8.(12分)从集合{}1,2,3,4,5的所有非空子集....中,等可能地取出一个。

(Ⅰ) 记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (Ⅱ) 记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望E ξ9. (12分)已知函数1()ln(1),01xf x ax x x−=++≥+,其中0a > ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围。

10.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2)x x +万元。

假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元。

(Ⅰ)试写出y 关于x 的函数关系式;(Ⅱ)当m =640米时,需新建多少个桥墩才能使y 最小?11. (12分)若()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4−上的最大值是12;(I )求()f x 的解析式; (II )是否存在实数,m 使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

12. (14分)已知函数2()(1)f x x =−,数列{}n a 是公差为d 的等差数列,{}n b 是公比为q (,1q R q ∈≠)的等比数列.若1(1),a f d =−3(1),a f d =+1(1),b f q =−3(1).b f q =+ (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若{}n c 对n N *∈,恒有312112323n n nc c c c a b b b nb ++++⋅⋅⋅+=,求13521n c c c c −+++⋅⋅⋅+ 的值; (Ⅲ)试比较3131n n b b −+与12n n a a ++的大小.答案:1.解:(1)a ⊥b ⇒sin θ+2cos θ-4sin θ=0⇒tan θ=32………6分 (2)a ∥b ⇒2sin θ-(cos θ-2sin θ)=0⇒tan θ=41sin θ=-1717 cos θ=-17174………………………6分2.解析:本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理能力.方法一:(I)证明:因为AC=BC ,M 是AB 的中点, 所以CM⊥AB. 又EA ⊥平面ABC , 所以CM⊥EM. (Ⅱ)解:连结MD,设AE=, 则BD=BC=AC=2, 在直角梯形EABD 中, AB=,M 是AB 的中点,所以DE=3,EM=,MD=因此DM⊥EM,因为CM⊥平面EMD,所以CM⊥DM,因此DM⊥平面EMC, 故∠DEM 是直线DE 和平面EMC 所成的角.在Rt△EMD 中,MD=EM=,tan∠DEM=方法二: 如图,以点为坐标原点,以,分别为轴和轴,过点作与平面垂直的直线为轴,建立直角坐标系,设,则,,.,.(I )证明:因为,,所以,故.(II )解:设向量与平面EMC 垂直,则n ⊥, n ⊥,即n ·=0,n ·=0. 因为,,所以y 0=﹣1,z 0=﹣2, 即n =(1, ﹣1, ﹣2). 因为=(),cos <n, >=DE 与平面EMC 所成的角θ是n 与夹角的余角,所以tan θ=.3.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且P(A)=0.6,P(B)=0.75.(Ⅰ)解法一 任选1名下岗人员,该人没有参加培训的概率是 P 1=P(·)=P()·P()=0.4×0.25=0.1.所以该人员参加过培训的概率是1-P 1=1-0.1=0.9. 解法二 任选1名下岗人员,该人只参加过一项培训的概率是 P 2=P(A·)+P (·B)=0.6×0.25+0.4×0.75=0.45.该人参加过两项培训的概率是P 1=P (A·B)=0.6×0.75=0.45. 所以该人参加过培训的概率是P 2+P 1=0.45+0.45=0.9.(Ⅱ)解法一 任选3 名下岗人员,3人中只有2人参加过培训的概率是 P 4=×0.92×0.1=0.243.3人都参加过培训的概率是P 5=0.93=0.729.所以3人中至少有2人参加过培训的概率是P 4+P 5=0.243+0.729=0.972. 解法二 任选3名下岗人员,3人中只有1人参加过培训的概率是 ×0.9×0.12=0.027.3人都没有参加过培训的概率是0.13=0.001.所以3人中至少有2人参加过培训的概率是1-0.027-0.001=0.972.4.解:(1)由a b B A =cos cos 结合正弦定理得A B B A sin sin cos cos =,则sin2A=sin2B,则在三角形中有A=B ,或A+B=2π当A=B 时,由sinC=cosA 得cosA=sin2A=2sinAcosA 得sinA=21或 cosA=0(舍)∴A=B=6π,C=32π当A+B=2π时,由sinC=cosA 得cosA=1(舍)综上:∴A=B=6π,C=32π……………………………………………………(6分)(2)由(1)知f(x)=sin(2x+6π)+cos(2x-3π)=sin(2x+6π)+cos(-2π+2x+6π)=2sin(2x+6π)由2k π-2π≤2x+6π≤2k π+2π得k π-3π≤x ≤k π+6π(k ∈Z ) 所以函数f(x)的单调递增区间为[k π-3π,k π+6π](k ∈Z )……………(6分)相邻两对称轴间的距离为2π…………………………………………………(1分)5.解(1)∵f(2)=2+2a =2+22,∴a=2………………………………(3分) (2)设点P 的坐标为(x 0,y 0),则有y 0=x 0+2x ,x 0>0由点到直线的距离公式可知:|PM|=2||00y x −=1x ,|PN|=x 0, 故有|PM|·|PN|=1,即|PM|·|PN|为定值,这个值为1…………………(5分) (3)由题意可设M(t,t),可知N(0,y 0).∵PM 与直线y=x 垂直,∴k PM ·1=-1,即tx ty −−00=-1, 解得t=21(x 0+y 0),又y 0=x 0+02x ∴t=x 0+22x . ∴S △OPM =221x +22,S △OPN =2120x +22 ∴S △MPN = S △OPM + S △OPN =21(20x +201x )+2≥1+2 当且仅当x 0=1时,等号成立。

∴此时四边形OMPN 面积有最小值1+2……………………………………(5分)6.(1)∵f ’(x)=222xpx px +−,要使f(x)为单调增函数,须f ’(x)≥0恒成立,即px 2-2x+p ≥0恒成立,即p ≥122+x x =x x 12+恒成立,又xx 12+≤1,所以当p ≥1时,f(x)在(0,+∞)为单调增函数。

要使f(x)为单调减函数,须f ’(x) ≤0恒成立, 即px 2-2x+0≤0恒成立,即p ≤122+x x =x x 12+恒成立,又xx 12+>0, 所以当p ≤0时,f(x)在(0,+ ∞)为单调减函数。

综上所述,f(x)在(0,+∞)为单调函数,p 的取值范围为p ≥1或p ≤0…(4分)(2)∵f ’(x)=p+xx p 22−,∴f ’(1)=2(p-1),设直线l :y=2(p-1)(x-1), y=2(p-1)(x-1) y=xe 2当p=1时,方程无解;当p ≠1时由△=(p-1)2-4(p-1)(-e)=0,得p=1-4e ,综上,p=1-4e ……………………………………………………(4分) (3)因g(x)=xe2在[1,e]上为减函数,所以g(x)∈[2,2e] ①当p ≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max =f(1)=0<2,不合题意②当p ≥1时,由(1)知f(x)在[1,e]上递增,f(1) <2,又g(x)在[1,e]上为减函数,故只需f(x)max >g(x)min ,x ∈[1,e],即:f(e)=p(e-e 1)-2lne >2⇒p >142−e e . ③当0<p <1时,因x-x1≥0,x ∈[1,e]所以f(x)=p(x-x 1)-2lnx ≤(x-x 1)-2lnx ≤e-e1-2lne <2不合题意综上,p 的取值范围为(142−e e,+∞)……………………………………(5分)7、解:由P 知,a =0或⎪⎩⎪⎨⎧≤<,11,0aa 解得a ≤0.由Q 知,Δ=(-2a )2-4(4a +5)<0,解得-1<a <5.“﹁P 或Q ”为真,“﹁P 且Q ”为假,∴P 与Q 一真一假; 若P 正确,Q 不正确,则有⎩⎨⎧≥−≤≤.51,0a a a 或∴a ≤-1.若P 不正确,Q 正确,则有⎩⎨⎧<<−>.51,0a a ∴0<a <5. 综上可知,a 的取值范围为a ≤-1或0<a <5.8、∵l 与g(x)图象相切,∴ 得(p-1)(x-1)=xe ,即(p-1)x 2-(p-1)x-e=09、解:(Ⅰ)22222'(),1(1)(1)(1)a ax a f x ax x ax x +−=−=++++∵()f x 在x=1处取得极值,∴2'(1)0,120,f a a =+−=即解得 1.a =(Ⅱ)222'(),(1)(1)ax a f x ax x +−=++∵0,0,x a ≥> ∴10.ax +>①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 的单调增区间为(0,).+∞②当02a <<时,由22'()0,'()0,a af x x f x x a a−−>><<解得由解得 ∴()),a a f x a a+∞2-2-的单调减区间为(0,单调增区间为(,). (Ⅲ)当2a ≥时,由(Ⅱ)①知,()(0)1;f x f =的最小值为当02a <<时,由(Ⅱ)②知,min =f(x)2()(0)1,af f a−<=矛盾。

相关文档
最新文档