数学建模概论

合集下载

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

第一章 数学建模概述

第一章 数学建模概述
数学模型与数学建模方法
Slide 11
第一章 数学建模概述
3.模型构成. 根据所作的假设以及事物之间的联系 , 利用适当的数学工具去刻划各变 量之间的关系,建立相应的数学结构――即建立数学模型 .把问题化为数学问 题.要注意尽量采取简单的数学工具 ,因为简单的数学模型往往更能反映事物 的本质,而且也容易使更多的人掌握和使用.
数学模型与数学建模方法
Slide 6
第一章 数学建模概述
1.4 数学建模的一般方法
2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱" 系统,内部机理无法直接寻 求,通过测量系统的输入输出数据 ,并以此为基础运用统计分析方法 ,按照事先 确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数 f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表 达式,由于处理的是静态的独立数据,故称为数理统计方法. (2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法. (3) 回归分析法--用于对函数 f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表 达式,由于处理的是静态的独立数据,故称为数理统计方法. (4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.
数学模型与数学建模方法
Slide 2
第一章 数学建模概述
如航行问题: 甲乙两地相距 750 公里, 船从甲地到乙地顺水航行需要 30 小时, 而从乙地到甲地逆水航行需要 50 小时,问船速和水速各为多少?
假设船速和水速均为常数,并用 x 表示船速,用 y 表示水速,单位公里/小时。 则可得方程组
30( x y) 750, 50( x y) 750.

数学建模概述(李福乐)

数学建模概述(李福乐)

一、数学建模概述1.1 什么是数学建模通常我们把现实问题的一个模拟称为模型,如交通图、地质图、航空模型等。

利用数学的语言、公式、图、表、或符号等来模拟现实的模型称为数学模型。

我们知道,对于一个现实问题的研究,一般不需要甚至不可能直接研究现实问题的本身,而是研究模拟该现实问题的模型。

举个简单例子:某司机欲把某货物从甲地运往已地,应如何选择运输路线使总路程最短?该司机不会开着车去试探,而是利用交通图来确定自己的行车路线。

从这个简单的例子中我们可以看到数学建模的重要性。

1.2 数学建模包含哪些步骤数学建模主要包含模型建立、求解以及对结果的分析与检验等步骤。

模型建立 模拟现实问题建立数学模型,不仅要有一定的数学知识与技巧,还要有敏锐的洞察力与理解力,善于抓住问题的内在联系,作出合理的假设与简化,找出影响问题的各种因素及其相互关系。

建立数学模型,不仅要有一定的数学知识与技巧,还要具备其他学科的一些知识,另外还要有一定的编程能力。

一般来说,模型建立的方法不止一种。

如最短路线问题,可以用图论方法,也可以用线性规划方法,有时还可用动态规划的方法。

模型求解 在建立模型之后,就要求解模型,给出有效的计算方法。

例如旅行推销员问题:一个推销员要到n 个城市去推销,如何安排行程?如果用简单的组合算法,其计算步骤是!n 的倍数,随着n 的增大,计算量之大以至无法得到结果。

如30n ,即使以每秒以2410步的速度来计算,也需要8年多,况且现在的计算机还没有达到上述速度。

结果的分析与检验 有些问题需要对解的现实意义作出解释,检验模型的正确性,并对模型的稳定性进行分析。

如种群的相互竞争问题需要对解的现实意义作出解释,并对模型的稳定性进行分析。

二、基本知识微分方程在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。

大量的实际问题需要用微分方程来描述。

首先,我们要对实际研究现象作具体分析,然后利用已有规律、或者模拟,或近似的得到各种因素变化率之间的关系,从而建立一个微分方程。

数学模型概论

数学模型概论

人工智能与数学建模结合
人工智能算法和数学建模将进一步结 合,利用机器学习和深度学习技术进 行模型优化和预测。
面临的挑战与问题
模型的可解释性
多尺度建模
随着深度学习等黑箱模型的普及,模型的 可解释性成为关注焦点,如何解释模型决 策过程是亟待解决的问题。
多尺度现象在许多领域中普遍存在,如何 建立多尺度模型以描述不同尺度间的相互 作用是挑战之一。
供需关系
通过建立数学模型分析市场供需关系, 预测商品价格和供求量,为企业制定 生产和销售策略提供依据。
社会领域
人口预测
利用数学模型预测人口数量和结构变化 ,为政府制定人口政策和规划提供依据 。
VS
社会网络分析
通过建立数学模型分析社会网络结构,研 究人际关系、信息传播等社会现象。
生物领域
生态平衡
数学模型在生态学中的应用,如种群动态、生态平衡等,用于研究生态系统的行为和演化。
模型验证与修正
总结词
模型验证是确保模型准确性和可靠性的重要 步骤,而修正则是在模型出现问题时的必要 措施。
详细描述
验证方法包括对比实验、历史数据拟合等, 通过对比实际数据和模型预测结果,可以评 估模型的精度和误差。当模型出现偏差或异 常时,需要进行修正,这可能涉及到参数调 整、变量替换或模型结构修改等。修正后的 模型需要重新验证以确保其准确性和适用性
控制问题
总结词
数学模型在控制问题中起到核心作用,通过建立控制 系统的数学模型,可以实现有效的控制和调节。
详细描述
控制问题是指通过一定的控制手段,使系统达到预期的 状态或性能指标。数学模型可以建立控制系统的动态方 程和性能指标,通过分析和设计控制算法,实现系统的 稳定性和性能优化。例如,在机械系统中,数学模型可 以描述机械的运动状态和受力情况,设计控制器使得机 械系统能够稳定运行并达到预期的运动轨迹。

4 第2章 数学建模概述

4 第2章 数学建模概述

2. 问题分析
可以假设车型、轮胎类型、路面条件都相同; 假设汽车没有超载; 假设刹车系统的机械状况、轮胎状况、天气状况 以及驾驶员状况都良好; 假设汽车在平直道路上行驶,驾驶员紧急刹车, 一脚把刹车踏板踩到底, 汽车在刹车过程没有转方向. 这些假设都是为了使我们可以仅仅考虑车速对 刹车距离的影响. 这些假设是初步的和粗糙的,在建 模过程中,还可能提出新假设,或者修改原有假设.
2.1.2 数学建模的全过程
数学建模(Mathematical Modeling)是建立数学 模型解决实际问题的全过程,包括数学模型的建立、 求解、分析和检验四大步骤(见下图). 现实对象 的信息 检验 现实对象 的解答 分析 建立 数学模型 求解 数学模型 的解答
2.1.2 数学建模的全过程
(1)数学模型的建立,就是指从现实对象的信 息提出数学问题,选择合适的数学方法,识别常量、 自变量和因变量,引入适当的符号并采用适当的单位 制,提出合理的简化假设,推导变量和常量所满足的 数量关系,表述成数学模型.
2.1.4 数学建模的方法
4. 连续化和离散化
根据研究对象是随着时间(或空间)连续变化还 是离散变化,可以建立连续模型或者离散模型. 连续模型便于利用微积分求出解析解,并做理论 分析,而离散模型便于在计算机上做数值计算. 在数学建模的过程中,连续模型离散化、离散变 量视作连续变量都是常用方法. 典型的例子有微分方程模型及其数值解.
2.1.2 数学建模的全过程
(4)数学模型的检验,就是指把数学模型的解 答解释成现实对象的解答,给出实际问题所需要的分 析、预报、决策或控制的结果,检验现实对象的解答 是否符合现实对象的信息(包括实际的现象、数据或 计算机仿真) ,从而检验数学模型是否合理、是否适 用.

第0章数学建模概论

第0章数学建模概论

第0章数学建模概论第0章数学建模概论一般说来,数学建模是科学研究过程中的一个环节。

我们应当了解科学研究的大致过程,以及建模的大概步骤。

科学研究过程就是对客观事物的认识过程。

因此它仍然遵循着一般的认识规律。

不过它把这个认识过程组织得更加具体、周详、精确。

总的说来,可以说是一个科学研究思维的过程。

科学研究思维过程包括四大阶段,即发现问题、了解情况、深入思考和实践验证。

一项科学研究可以包括这个全过程,也可以是只在其中的一个或一个以上的阶段里进行工作并取得成果。

科学研究开始于发现问题。

人们在对客观事物的认识上产生了矛盾也就是出现了问题,必须解决这个矛盾或问题,提高认识,掌握了事物发展运动的规律,才能使事物按着人们的意图向前发展。

为了解决这个矛盾才需要进行科学研究。

所以科学研究的第一步就是善于认清矛盾,或者说善于发现问题。

一个科研工作者有了问题之后,就必然想对这一问题作深入的了解,了解关于这个问题的各方面的情况,了解它的来龙去脉,了解它的多方面的联系,为的是要把这一问题的有关现象或事实弄清楚。

深入思考是在上述的占有丰富资料的基础上进行的。

感性的东西并不能自发地变成理性的东西。

光是占有材料还不能上升到理论。

要想从占有材料中找出带有规律性的理论,还得在占有材料的基础上进行一番“去粗取精、去伪存真、由此及彼、由表及理”的功夫。

这番功夫总起来说就是深入思考,详细分析,它包含着多种形式的脑力加工。

所以,当我们面对一个实际问题进行科学研究时,首先,我们应该针对所要研究的实际问题,去查找其相关的背景知识,其次要了解所要研究问题的研究现状,包括国内的和国外的研究现状,第三,还应该与同行专家等相关人士进行充分的讨论,通过这些调查以后,科研小组提出自己的研究方向与可能的研究路线(注意,并不是所有的想法都能成功地转化为一个理论模型),然后,建立自己的模型,得到自己的科研成果。

我们用下面的草图来说明:在科学研究过程中,数学建模是其核心。

数学建模概论.

数学建模概论.
数学建模概论
太原理工大学数学系 魏毅强 教授
第一章 数学模型概论
1.1 数学模型与数学建模 1.2 数学建模示例1 1.3 数学建模示例2 1.4 数学建模示例3 1.5 数学模型的特点和分类 1.6 数学建模的方法和步骤 1.7 怎样撰写数学建模的论文
1.1 数学模型与数学建模
原型: 原型是指人们在现实世界里关心、研 究或者从事生产、管理的实际对象
数学建模将各种知识综合应用于解决实际 问题中,需要有较好的抽象概括能力、数学语 言的翻译能力、善于抓住本质的洞察能力、联 想及综合分析能力、掌握和使用当代科技成果 的能力等。从而数学建模是培养和提高同学们 应用所学知识分析问题、解决问题的综合能力 与素质的必备手段之一。
数学建模是一种创造性的思维活动,没有 统一模式和固定的方法,在数学建模过程中需 要充分发挥想象力,善于联想,新颖而独特地 提出问题、解决问题,并由此产生有价值的新 思想、新方法、新成果等。从而数学建模也是 培养和提高同学们想象力和创新能力的必备手 段之一。
数学模型是一种抽象的模拟,它用符号、 式子、程序、图形等数学语言刻划客观事物的 本质属性与内在联系,是现实世界的简化而又 本质的描述。
数学模型的三个主要功能是:解释、判 断与预测。也就是数学模型能用来解释某些 客观现象及发生的原因;数学模型能用来判 断原来知识,认识的可靠性;数学模型能用 来预测事物未来的发展规律,或为控制某一 现象的发展提供某种意义下的最优策略或较 好策略,为人们的行为提供指导。
问题分析
这是一类智力游戏问题,可经过一番逻辑 推理求解。当然也可视为一个多步决策问题, 每一步(此岸到彼岸或彼岸到此岸)都要对船 上的人员作出决策,在保证安全的前提下(两 岸的随从数不比商人多)经有限步使全体人员 过河

数学建模概论PPT课件

数学建模概论PPT课件

精选最新版ppt
20
数学建模的六个环节
六个环节各自的含义
(5)讨论和验证:根据模型求解的结果,讨论得到的解是 否和情况相符。模型的各个环节都可能影响模型的结果,例 如假设是否合适,归结为数学问题时推理是否正确,求解所 用的方法是否恰当,数据是否满足一定的精确度要求等等, 都应该在讨论的范围之内。
数学建模理论与实践
—— 数学建模概论
精选最新版ppt
1
本讲主要内容
数学建模的基本含义 数学建模的六个环节 数学建模的学习建议
精选最新版ppt
2
数学建模的基本含义 数学建模的六个环节 数学建模的学习建议
精选最新版ppt
3
数学建模的含义
数学模型的起源
1980年4月,美国数学教师协会(NCTM)公布了一份指 导80年代学校数学教育的纲领性文件《关于行动的议程》。 该文件指出:“80年代的数学教育大纲,应当在各年级都介 绍数学的应用,把学生引进到问题解决中去”;“数学课程 应当围绕问题解决来组织,数学教师应当创造一种使问题解 决得以蓬勃发展的课堂环境。” “必须把问题解决作为学校数学教育的核心”。
精选最新版ppt
9
数学建模的含义
数学建模是一个“迭代”的过 程
精选最新版ppt
10
数学建模的含义
传统的应用题与数学建模的关系
当前应用题教学的主要变化趋势是:问题的来源更生活化, 更贴近实际;条件和结论更模糊;可用信息和最终结论更有 待学生自己去挖掘;数据量或信息量趋于海量。因此,当前 应用题教学的发展趋势是逐步向数学建模过渡。数学建模要 从应用做起,从应用题的改革做起。
精选最新版ppt
11
数学建模的含义
一个简单的实例

数学模型概论

数学模型概论
而 h( ) f ( ) g ( ) 0, 2 2 2
由 h( ) 的连续性, 根据介值定理,在 (0, ) 中至
少存在一点 0 ,使得 h( 0 ) 0 ,即 又 f ( 0 ) g ( 0 ) 0
2 f ( 0 ) g ( 0 )

所以 f ( 0 ) g ( 0 ) 0
S k ( xk , y k )
k

决策,取奇偶数与前面表示意义相同,则状 态转移满足下列关系:
S k 1 S k (1) k d k
• 我们的问题就成为:求决策
k
dk D
( =1,2,…)使 • 状态按(2.2.1)式由初始状态 经步转移到 的最小 的n值。
Sk S
S1 (3,3)

建模分析
g ( ) 表示A,C与地面距离之和 f ( ) 表示B,D与地面距离之和
B y
B A C O C
则由三点着地,有
f ( ) g ( ) 0 0


2
A
x
不失一般性,设初始时:
0, g (0) 0, f (0) 0
D
D
数学模型
数学命题:. 假设: f ( ), g ( )是 的连续函数,g (0) 0,
结论:能放稳。
连续函数的介值定理
若f ( x)在闭区间 [a, b]上连续,f (a) f (b) 0, 则在开区间 (a, b)内至少存在一点 , 使f ( ) 0.
y

a
o


b

x
思考题1:长方形的椅子会有同样的性质吗?
思考题1:长方形的椅子会有同样的 性质吗?

数学建模简明教程课件:数学模型概论

数学建模简明教程课件:数学模型概论

AC与BD的位置互换,故有
2
f
2
0,
g
2
0
h(θ)=f(θ)-g(θ),显然有
h(0) 0,
h
π 2
0
26
h(θ)是连续函数,由连续函数的介值定理,存在
0
0,
π 2
,使得h(θ0)=0.又由于f(θ)·g(θ)=0,所以有
f(θ0)=g(θ0)=0.
就是说,存在θ0方向,使得四条腿能同时着地.因此问题
3
要用数学方法解决这些实际问题,就必须架设实际问题与数 学之间的桥梁,将实际问题转化为一个相应的数学问题,然 后对这个数学问题进行分析和计算,最后用所得的结果来解 答实际问题.
日常生活中,我们参观展览会、博览会,看到精美的汽 车模型、建筑模型、火箭模型、飞机模型、人造卫星模型等, 这些是反映实物形态的直观模型.在我们每个人的头脑中也 存储着不少模型,如认识的人的形象、社会活动规范、某项 技术方法等,这些是供人们思维决策的抽象模型.数学模型 这个概念并不是新名词,
白箱是指可以用像力学、电路理论等一些机理(指数量 关系方面)清楚的学科来描述的现象,其中需要研究的主要 内容是优化设计和控制方面的问题.灰箱主要是指应用领域 中机理尚不清楚的现象,对于这类问题,在建立和改善模型 方面还有许多工作要做.至于黑箱,主要包括的是在应用领 域中一些机理完全不清楚的现象.
8
(3)按照数学模型的结构可分为分析的模型、非分析的 模型和图论的模型.
10
1.2 数学建模的方法与步骤
在了解了数学模型的概念之后,如何建立数学模型,是 本教程的核心,本节我们给出建立数学模型的一般方法和步 骤.
11
1.Байду номын сангаас确问题

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

浙江大学数学建模第一章数学建模概论

浙江大学数学建模第一章数学建模概论
否则一处的车辆将会越积越多。
例4 飞机失事时,黑匣子会自动打开,发射 出某种射线。为了搞清失事原因,人们必须 尽快找回匣子。确定黑匣子的位置,必须确 定其所在的方向和距离,试设计一些寻找黑 匣子的方法。由于要确定两个参数,至少要 用仪器检测两次,除非你事先知道黑匣子发 射射线的强度。
方法一
点光源发出的射线在各点处的照度与其到点光源的 距离 的平方成反比,即
•例3 交通马路灯的宽在度 绿D是灯容易转测得换的,成问红题的灯关键时在 ,于L有
一个过渡的和状L确2定,态。其为中—确L定1—是L司亮,机还在一应发当段现将黄时灯L划亮间分及为判的两断段应黄:当L灯刹1 。
请分析黄车灯的反应应时当间内亮驶多过的久路程。,L2为刹车制动后 车辆驶过的路程。L1较容易计算,交通部门对司
间?请思考一下,载天十段开达五本5路会分着他分分的合钟题他就钟钟缘点。开不时。解故,往会间似而,故答会提从此乎故相人合前何中由遇条提地回而相时隐件前点家来遇他了不含,了?点已三到步那。够了十会行么提哦分哪合了这前钟点二一的。些到需十。假设

例2 某人第一天由 A地去B地,第二天由 B地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
点测得黑匣子方向后 ,到B点再测方向 ,AB 距
离为a ,∠BAC=α,∠ABC=β,利用正弦定理得
出 d = asinα/sin (α+β) 。需要指出的是,当
黑匣子位于较远处而 α又较小时,α+β可能非
常接近π(∠ACB接近于0),而sin(α+β)又
恰好位于分母上,因而对结果的精确性影响也会
很大,为了使结果较好,应使a也相对较大。
比例系数不随行星而 改变 这其中(必绝定对是某常一数力)学

数学建模章节义-PPT精品文档

数学建模章节义-PPT精品文档
日常问题:常见的录音机的转轴转动是匀速的吗?
思考
本题中计数器读数是均匀增长的吗?
观察或分析: 计数器读数增长越来越慢!
问题分析 录象机计数器的工作原理
右轮盘 主动轮 录象带 磁头 压轮 录象带运动方向 录象带运动 右轮盘半径增大 计数器读数增长变慢 0000 计数器
左轮盘
录象带运动速度是常数
右轮转速不是常数
数学建模的方法和步骤
基本方法
根据对客观事物特性的认识,找出反 •机理分析 映内部机理的数量规律。 将研究对象看作“黑箱”,通过对量测数据的 •测试分析 统计分析,找出与数据拟合最好的模型 •二者结合 机理分析建立模型结构,测试分析确定模型参数
t n 0 0000 20 40 60 80 1153 2045 2800 3420 140 160 183.5 4068 4621 5135 5619 6152
a 2.51106 , b 1.44102.
模型检验
应该另外测试一批数据检验模型:
2
——包括模型建立、求解、分析、检验。 观点:“所谓高科技就是一种数学技术”
数学建模三大功能——解释, 判断, 预见
R r
1. 解释——孟德尔遗传定律的“3:1”
2.判断——放射性废物处理
美国原子能委 员会提出如下处理 浓缩放射性废物: 封装入密封性很好 的坚固的圆桶中, 沉 入 300ft 的 海 里 , 而一些工程师提出 质疑?需要判断方 案的合理性。
Rr(Rr)
RR Rr rR rr

f阻 0 .08 v
F浮
3.预见——谷神星的发现
n 行星的轨 R 4 3 2 10 道半径 n 10 , 0 , 1 , 2 , 4 , 5 ?,

第一讲数学建模概论

第一讲数学建模概论
1313分类标准分类标准具体类别具体类别对某个实际问题了解的深入程度白箱模型灰箱模型黑箱模型模型中变量的特连续型模型离散型模型或确定性模型随机型模型等建模中所用的数学方法初等模型微分方程模型差分方程模型优化模型等研究课题的实际范畴人口模型生态系统模型交通流模型经济模型基因模型等数学建模实践的每一步中都蕴含着能力上的锻炼在调查研究阶段需要用到观察能力分析能力和数据处理能力等
f ( 0 ) > 0, 且 对任意 θ , f (θ ) ⋅ g (θ ) = 0
求证:至少存在 θ 0 ∈ ( 0 ,
π
2 f (θ 0 ) = g (θ 0 ) = 0
) ,使得
4 模型求解 证明: 将椅子转动
π
2
,对角线互换,由
π π
g ( 0 ) = 0, f ( 0 ) > 0 , 可得 f ( ) = 0 , g ( ) > 0 , 2 2 令 h (θ ) = f (θ ) − g (θ ), 则 h (0) = f (0) − g (0) > 0, π π π
§1.3 数学模型的分 类
分类标准
对某个实际问题 了解的深入程度 模型中变量的特 征 建模中所用的数 学方法
具体类别
白箱模型、灰箱模型、 白箱模型、灰箱模型、黑箱模型 连续型模型、离散型模型或确定性 连续型模型、 模型、 模型、随机型模型等 初等模型、微分方程模型、 初等模型、微分方程模型、差分方 程模型、 程模型、优化模型等
p = r(1− e cosθ )
p 1 2 2 ( r − rw ) + 3 ( r w ) = 0 r r
2 ••
b2 2πab 2 和焦参数 p = 将前面得到的结果 r w = a T •• 4π 2a3 1 2 代入, • 2 代入,即得 r − rw = − 2 T r

数学建模概论

数学建模概论

数学建模概论数学模型对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。

也可以说,数学建模是利用数学语言(符号、模拟现实的模型。

把现实模型抽象、简化为某种数学结构是数学模式子与图象) 型的基本特征。

它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。

数学建模把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。

建模步骤第一、模型准备。

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、模型假设。

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

第三、模型构成。

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,在这应用数学天地里,在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

第四、模型求解。

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。

一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析。

对模型解答进行数学上的分析。

“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精确的分析,决定了你的模型能否达到更高的档次。

第一章,数学建模概论

第一章,数学建模概论

第一章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。

生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。

利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型(简称数学建模),数学建模正在越来越广泛地受到人们的重视。

从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。

没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。

§1.1 数学模型与数学建模模型是客观实体有关属性的模拟。

陈列在橱窗中展览的飞机模型是参照飞机实体的形状,严格按照一定的比例简缩而制成的,它的外形一定要像真正的飞机,至于它是否真的能飞则是无关紧要的;然而参加航模比赛的飞机模型则全然不同了,如果飞行性能不佳或飞不起来,外形再像飞机,也不能算是一个好的模型。

模型并非一定要是实体的一种仿照,也可以是对实体的某些基本属性的抽象。

例如,一张电路图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该电路的结构特征。

数学模型(Mathematical Model)作为模型的一类,也是一种模拟,是以数学符号、数学表达式、程序、图形等为工具对现实问题或实际课题的本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略等。

数学模型一般并非现实问题的直接翻版,它们的建立常常既需要人们对现实问题有比较深入细微的观察和分析,又需要人们能灵活巧妙地利用各种数学知识。

这种应用各种知识从实际课题中抽象、提炼出数学模型的过程被称为数学建模(Mathematical Modeling)。

为了更清楚地说明什么是数学建模,让我们来看一个具体实例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5 数学建模的方法和步骤
在了解了数学模型的概念之后,如何建立 数学模型,是我们培训课程的核心,本节我们 给出建立数学模型的一般方法和步骤.
1. 明确问题(建模准备) 要建立现实问题的数学模型,第一步是对要解决的问 题有一个明确清晰的提法,通常我们碰到的某个实际问题, 在开始阶段是比较含糊不清的,又带有实际背景,因此在 建模前必须对问题进行全面、深入、细致的了解和调查, 查阅有关文献,同时要着手收集有关数据,收集数据时应 事先考虑好数据的整理形式,例如利用表格或框图形式等. 在这期间还应仔细分析已有的数据和条件,使问题进一步 明确化,即从数据中可得到什么信息,数据来源是否可靠, 所给条件有什么意义,哪些条件是本质的,哪些条件是可 以变动的等.对数据和条件的分析会进一步增强我们对问 题的了解,使我们更好地抓住问题的本质及特征,为建立 数学模型打下良好的基础.
(1)丰富灵活的想象力;
3. 提高学生综合素质和能 力
(2)抽象思维的简化能力; (3)学以致用的应用能力; (4)使用计算机的动手能力; (5)信息资料的查阅能力; (6)与时俱进的开拓能力; (7)解决问题的创新能力;
(8)团体协作的攻关能力。
1.3 数学建模的学习内容(学什么)

第一阶段:建模基础理论培训(共18课时) 建模绪论(2课时) 刘莉主讲 线性代数(8课时) 刘传宝主讲 线性规划(4课时) 刘莉主讲
2. 教育改革的需要 它把数学从“教师+黑板+粉笔”的传统教学 模式转变为“以教师为主导,以学生为主体,从 实际问题入手,把数学知识、数学软件、计算机 有机地结合,学生自己设计实验步骤创造性地解 决问题”的现代教学模式。数学建模本身就是教 学方式、教学内容、教学手段上的教学改革,是 数学教育走向素质教育的必然趋势。
概率统计基础(4课时)高峰主讲

第二阶段:建模方法和软件培训(共28课时) 初等数学建模(4课时) 微分方程建模(4课时) 运筹学建模(4课时) 统计方法建模(4课时) 数据拟合方法(4课时) Matlab软件入门(4课时) Lingo软件的使用(4课时)

第三阶段:暑期集中培训阶段(70课时)
杂化.二是要善于借鉴已有问题的数学模型,
许多实际问题,尽管现象和背景不同,但却具有相同的模 型,例如力学中描述力、质量和加速度之间关系的牛顿第
二定律F=ma,经济学中描述单价、销售金额和销售量之
间关系的公式C=pq等,数学模型都是y=kx.一个数学模 型应用于多个实际问题是屡见不鲜的.要学会观察和分析, 透过现象,抓住问题的本质特征,利用已有模型或在已有 模型上进行修正,以此提高我们的建模水平.
图 1-1
1.6 简单数学建模示例
案例1 【汽车租赁费用模型】
国庆长假期间,小王 租用了鑫鑫汽车租赁公司 一辆桑塔拉汽车外出旅游 .鑫鑫汽车租赁公司与小 王签订的租车合同中约定: 次日下午6时前交车按一天 计,交车时验车.租车的 收费标准见表.
车型 桑塔 纳
基本租金(元/辆、 里程收费(元/km) 天) 200 5

在中国 1992年由中国工业与应用数学学会组织举办 了我国10城市的大学生数学模型联赛,79所院校 的314队参加。教育部领导及时发现、并扶植、 培育了这一新生事物,决定从1994年起由教育部 高教司和中国工业与应用数学学会共同主办全国 大学生数学建模竞赛,每年一届。十几年来这项 竞赛的规模以平均年增长25%以上的速度发展。
事实上,按40人(团体票)购买享受6折优惠
的总门票费为60%×5×40=120元,而这一门票总费
用相当于只购买了 120 24人的门票.因此,
5
当24≤x<40时,按40人购买团体打折门票的费用低
于按实际人数购买门票的费用;当 0 < x ≤ 24时,
按实际人数购买门票的费用低于120元,可以按实际
案例2 【参观购票策略模型】
某展览馆为鼓励团体 消费,门票收费标准为: 每人5元,40人以上(含 40人)的团体票6折优 惠.试建立门票费用模型, 简单分析购票策略,并分 别计算当有32名、40名、 50名学生入馆参观时需要 支付的门票费.
一、模型假设与符号说明 1.假设一个参观团可以购买大于参观团人数的门 票数.
2012 年,来自全国33个省/市/自治 区(包括香港和澳门特区)及新加坡、美 国的1284所院校、21219个队(其中 本科组17741队、专科组3478队)、 63600多名大学生报名参加本项竞赛。
1.2 为什么学习数学建模
1. 数学建模对于高职教育的意义: 高等职业教育的培养目标是为生产和服 务第一线培养具备综合职业能力和全面素 质的高级实用性人才。而数学建模就是要 求大学生参与到具体的生产生活中去,并 解决实际问题,它所包含的数学训练、数 学思想、数学方法将来都会发挥积极的作 用;从某种意义上来说,数学建模竞赛是 提前让大学生了解今后走向工作岗位所需 要的能力和品质。
解:为了建立旅馆一天收入的数学模型, 可作如下假设:
假设1:每间客房最高定价为160元;
假设2:根据经理提供的数据,设随着房价 的下降,住房率呈线性增长; 假设3:设旅馆每间客房定价相等。
建立模型: 分析:根据题意,设y表示旅馆一天的总收入, x为与160元相比每间客房降低的房价。由假设2可得, 10% 每降低1元房价,入住率增加 0.005 . 因此旅馆一天的总收入为
y 150 (160 x)(0.55 0.005 x)
20
2. 合理假设
建立数学模型的主要目的在于解决现实问题.然而现
实问题不经过理想化、简单化处理就很难转变成数学问题, 即使建立了模型,也会因过于复杂而很难求解.因此,做 出合理的假设在数学建模中起着至关重要的作用.所谓合 理的假设,是指这些假设既能抓住问题的本质特征,又能 使问题得到简化,便于进行数学描述,我们称这样的假设 为简化问题的假设.这里要提醒注意的是:对于一个假设, 最重要的是它是否符合实际情况,而不是为了解决问题的
Matlab软件与实验(12课时/2天)
Lingo软件解优化模型(6课时/1天) 统计预测模型(6课时/1天)


插值与拟合模型(6课时/1天)
层次分析法(6课时/1天) 模型评价方法(6课时/1天)


数学建模经典案例分析(18课时/3天)
Excel数据处理(3课时/半天) 数模论文写作(3课时/半天) Word使用与信息收集技巧(4课时/半天) 第四阶段:实战模拟(3天)
小王在国庆前一天到租车公司取了车,同时交付 了1000元押金.大假第5天下午5时,他还车时支 付了2800元租车费(含押金).问小王驾车行驶 了多少km?
一、模型假设与符号说明
1.假设小王在租车期间没有造成汽车损坏,2800 元租车费为基本租金与驾车里程收费之和. 2.假设租车时间不到一天按一天计. 3.设小王的租车费为y元,汽车行驶了xkm.
二、模型的分析与建立
y 1000 5x
Байду номын сангаас
三、模型求解 将2800代入上式,得 2800=1000+5x 解之,得 x=360 (km) .
拓展思考
1.请做一个市场调研,了解目前汽车租赁价 格的确定方式,并提出你的建议. 2.如果一辆新桑塔拉的售价为9万元(含购 置税),汽车每年的保险费为3000元.根 据国家规定:私家车的报废年限为15年. 若公司估计该车一年中约有200天被租用. 若不考虑维修费等其它费用,试确定使公 司不亏损的最低租赁价格,并为汽车租赁 公司提供一个该款汽车的租赁方案.
方便.
3.建立模型
在已有假设的基础上,利用合适的数学工具,描述
问题中变量之间的关系,确定其数学结构,就得到了实际 问题的数学模型. 这里有两点要注意:一是构造一个具体问题的模型时, 首先应构成尽可能简单的数学模型,然后把构造的简单模 型与实际问题进行比较,再考虑将次要因素归纳进去,逐 渐逼近现实来修改模型,使之趋于完善.也就是说,数学 建模是一个不断精确化的过程,切忌建模之初就把问题复
三、模型求解
当x=32时,实际需要支付的门票费y=120元;
当x=40时,实际需要支付的门票费y=120元;
当x=50时,实际需要支付的门票费y=150元.
拓展思考 如果门票收费标准为:每人5元,20人以上 (含20人)40人以下(不含40人)的团体票每人 少1元,40人以上(含40人)的团体票以6折优 惠.请建立门票费用函数模型,并给出相应的购 票策略.
4.模型求解 不同的模型要用到不同的数学工具来 求解. 多数场合模型必须依靠计算机的数值 求解、模拟. 熟练利用数学软件包将会为我 们求解模型带来方便.
5.模型的检验与修正 建立数学模型的目的在于解决实际问题,因此必须把 模型所得的结果返回到实际问题,如果模型结果与实际状 况相符合,表明模型经检验是符合实际问题的.如果模型 结果很难与实际相符合,表明这个模型与所研究的实际问 题不符合,不能直接将它应用于实际问题.这时数学模型 的建立过程如果没有问题,就需要考察建模时关于问题所 做的假设是否合理,检查是否忽略了某些重要因素.再对 假设给出修正,重复前面的建模过程,直到使模型能反映 所给的实际问题.数学建模就是这样一个不断循环上升, 不断优化模型的过程. 建立数学模型的过程是一个迭代的过程,可以用下面 的框图(图1-1)表示.
2.设参观团有x人,个人实际所花的门票费为y 元.按x人购买张门票的费用为y1元.
二、模型的分析与建立 若按参观团实际人数购门票,门票费用模型 为
x 40 5 x y1 60 % 5 x x 40
在实际购买门票时,当x接近40人时,通过粗 略分析可知,按实际人数购买门票的费用可能高于 按40人购买团体打折门票的费用.
第一章 数学建模概论
第一章 数学建模概论
1.1 数学建模发展简介
相关文档
最新文档