平行线中辅助线的添加

合集下载

平行线中常见作辅助线的技巧的九种类型

平行线中常见作辅助线的技巧的九种类型

( 2 ) 如 图 ① , 在 AB ∥ DE 的 条 件 下 , 你 能 得 出 ∠ B , ∠BCD,∠D之间的数量关系吗?请说明理由. 解:∠B+∠BCD+∠D=360°.理由如下: 因为CF∥AB,所以∠B+∠BCF=180°. 因为AB∥DE,所以CF∥DE. 所以∠FCD+∠D=180°. 所以∠B+∠BCF+∠FCD+∠D=180°+ 180°,即∠B+∠BCD+∠D=360°.
6.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?
解:∠BCD=∠B-∠D.理由如下: 如图,过点C作CF∥AB,所以∠B=∠BCF. 因为AB∥DE,CF∥AB,所以CF∥DE. 所以∠DCF=∠D.所以∠B-∠D=∠BCF-∠DCF. 因为∠BCD=∠BCF-∠DCF, 所以∠BCD=∠B-∠D.
解:AB∥CD.理由如下: 如图,连接 BD. 在三角形 BDE 中,∠1+∠2+∠E=180°. 因为∠E=∠3+∠4, 所以∠1+∠2+∠3+∠4=180°, 即∠ABD+∠CDB=180°. 所以 AB∥CD.
2.【2020·攀枝花】如图,平行线AB,CD被直线EF所截, 过点B作BG⊥EF于点G,已知∠1=50°,则∠B= ( C) A.20° B.30° C.40° D.50°
BS版平行线中常见作辅助线的技巧的九种
类型
提示:点击 进入习题
1 见习题 2C 3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题 9 见习题
答案显示
1.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位 置关系,并说明理由.
【点拨】本题可通过连接 B,D 两点构造截线,进而利用平行线 的判定说明 AB∥CD.
4 . ( 1 ) 如 图 ① , 若 AB ∥ DE , ∠ B = 135° , ∠ D = 145°,求∠BCD的度数.

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。

平行线可以用于解决许多几何问题。

有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。

这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。

方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。

这个方法可以在几何证明中使用,以创建所需的形状或角度。

下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。

然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。

这样,你就可以利用这个平行四边形来证明或解决其他几何问题。

方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。

这种方法通常用于证明几何性质。

例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。

然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。

方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。

通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。

然后,利用这些相似三角形的性质来解决几何问题。

例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。

通过观察,可以发现三角形ADE与三角形BCF相似。

这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。

方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。

中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。

这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。

例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。

通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。

添加辅助线解决平行线中角的问题 PPT

添加辅助线解决平行线中角的问题 PPT

提问:
1、我们学过的直线平行的条件有哪些? 2、平行线的性质又有哪些呢? 3、练习:如图,AB//CD//EF,那么 B A AE E EC C ( CD)
(A) 180 (B) 270 (C) 360 (D) 540
A E
C
B F
D
若将上图做一下变化,我们来观察一下:
已知:如图,AB//CD,那么 A、C与AEC 有什么关系?为什么?
A
B
1
2
F
C
3 4
E
D
A
B
E
F
C
D
理由: 过E做EF//AB
EF //AB (所作)
AB//CD(已知) EF//CD(平行于同一直线的两直线平行) C CE 1F 8 (两0 直线平行,同旁内角互补) E/F /AB(已知)
A AE 1F 8(0 两直线平行,同旁内角互补)
即 A C AEC
返回
感谢您的聆听!
添加辅助线解决平行线中角的问题
两直线平行
请注意:
性质
{1.同位角相等 2.内错角相等 判定 3.同旁内角互补
1.由_角__的__关__系__得到_两__直__线__平__行__的结 论是平行线的判定; 用途:说明直线平行
2.由_两__直__线__平__行___得到_角__相__等__或__互__补___的 结论是平行线的性质. 用途:说明角相等或互补
A
B
E
E
C
D
答: A C A E 3 C 60
理由
如果点E的位置发生变化,如图,已知:AB//CD,A、 C与 AEC 又有
什么样的关系呢?
A
B
E
C

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法

初中几何辅助线做法辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;要证线段倍与半,延长缩短可试验;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形里面作高线,平移一腰试试看;平行移动对角线,补成三角形常见;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;圆半径与弦长计算,弦心距来中间站;圆上若有一切线,切点圆心半径连;切线长度的计算,勾股定理最方便;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;要想作个外接圆,各边作出中垂线;还要作个内接圆,内角平分线梦圆;如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难;辅助线,是虚线,画图注意勿改变; 假如图形较分散,对称旋转去实验;基本作图很关键,平时掌握要熟练; 解题还要多心眼,经常总结方法显;切勿盲目乱添线,方法灵活应多变; 分析综合方法选,困难再多也会减;一、见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题;二、在比例线段证明中,常作平行线;作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来;三、对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四、在解决圆的问题中1、两圆相交连公共弦;2、两圆相切,过切点引公切线;3、见直径想直角4、遇切线问题,连结过切点的半径是常用辅助线5、解决有关弦的问题时,常常作弦心距;。

第3讲 平行线辅助线(学生版)

第3讲 平行线辅助线(学生版)

第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。

初二几何辅助线添加方法

初二几何辅助线添加方法

初二几何辅助线添加方法几何辅助线是在解决几何问题时,通过添加额外的线段或线条来帮助我们更好地理解和解决问题。

在初二阶段的几何学中,辅助线的使用是非常重要的,可以帮助我们找到问题的关键点,简化问题的分析和解决过程。

下面将介绍几个常见的初二几何辅助线添加方法。

第一种方法是绘制垂直辅助线。

在解决一些关于垂直关系的问题时,我们可以通过添加垂直辅助线来辅助解题。

例如,在求两条平行直线之间的距离时,我们可以通过在两条直线上分别取一点,然后通过添加垂直辅助线来构建一个直角三角形,从而求出距离。

第二种方法是绘制平行辅助线。

在求两条直线平行或相交关系时,我们可以通过添加平行辅助线来辅助解题。

例如,在求两条平行线之间的距离时,我们可以通过添加一条与两条平行线相交的直线,然后构建一个平行四边形,从而求出距离。

第三种方法是绘制角平分线。

在解决涉及到角度的问题时,我们可以通过添加角平分线来辅助解题。

例如,在求一个角的角平分线时,我们可以通过画出这个角的两条边的延长线,然后通过它们的交点来构建角平分线。

第四种方法是绘制对称线。

在求对称形状或对称位置的问题时,我们可以通过添加对称线来辅助解题。

例如,在求一个图形的对称轴时,我们可以通过添加对称线来找到对称轴的位置。

除了上述介绍的四种常见的几何辅助线添加方法外,还有许多其他的方法。

例如,绘制中垂线来求三角形的垂心和外心,绘制角的角平分线来求多边形的内角和,等等。

每个问题都有其特定的解题方法和特定的辅助线添加方法。

总结起来,初二几何辅助线的添加方法是非常多样的。

通过合理地添加辅助线,可以帮助我们更好地理解和解决几何问题。

在解题过程中,我们应该根据问题的特点和要求,选择合适的辅助线添加方法。

同时,多进行几何练习,多掌握不同的辅助线添加方法,可以提高我们的解题能力和思维灵活性。

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法平行线中常见的添辅助线的方法:(1) 在平行线内(或外)一点作直线的平行线;(2) 加截线(连接两点、延长线段相交)例:探究:(1) 、如图1,若AB//CD ,则/ B+ / D= / E ,你能说明为什么吗?(2) 、反之,若/ B+ / D= / E ,直线AB 与CD 有什么位置关系?请证明(3) 、若将点E 移至图2所示位置,此时之间有什么关系?请证明。

(4) 、若将点E 移至图3所示位置,情况又如何?(5) 、若将点E 移至图4所示位置,情况又如何?(6) 、在图5中,AB//CD ,/ B+ / D+ / F 与/ E+ / G 又有何关系?平行线拓展延伸题、填空题BDA 、10° B 、15° C 、20° A L ________ ~B A —-------------------- B \E ZP C z f --------------------— — C D CD图1图2 1 如图,已知 AB // CD ,若/ A=20。

,/ E=35°,则/ C 等于____________2、如图,I 1//I 2,/ 1=120°,/ 2=100°,则/ 3= ________________ 。

4、如图,AB // CD , 1 50°, 2 110°,则 3 ______________ 。

6、如图,已知 AB // EF ,/ BAC=p ,/ ACD=x ,/ CDE=y ,/ DEF=q,用 p 、q 、 y 来表示x 得 ___________________________ 。

、选择题如图1, AB / CD ,且/BAP=60° —a ,Z APC=45° + a ,2、 如图2, AB//CD ,且 A 25 , C 45,贝U E 的度数是(A. 60B. 70C. 110D. 80 3、如图3,已知AB // CD ,则角a 、B 、丫之间的关系为( )BD/ PCD=30°—a ,贝U a (),证明:BC丄CD。

辅助线添加口诀

辅助线添加口诀

辅助线做法口诀
1、辅助线,如何添?把握规律有几点。

2、三角形,角分线,可向两边作垂线。

3、角分线,平行线,等腰三角形来添。

4、角分线,加垂线,三线合一试试看。

5、线段的,中垂线,可向两端把线连。

6、证线段,倍与半,截长补短可试验。

7、三角形,边中点,连接即成中位线。

8、三角形,有中线,延长中线一样长。

9、特殊的,四边形,对称中心等分点。

10、梯形里,作高线,平移一腰试试看。

11、对角线,平行移,补成三角形常见。

12、证相似,线段比,添线平行成习惯。

13、等积式,比例换,寻找线段很关键。

14、直接证,有困难,等量代换少麻烦。

15、斜边上,作高线,比例中项一大片。

16、圆半径,圆弦长,弦心距来中间站。

17、圆周上,有切线,切点圆心把线连。

18、是直径,或半圆,想成直角径连弦。

初中几何辅助线大全

初中几何辅助线大全
∴BP-PC<AB-AC
(补短法) 延长AC至M,使AM=AB,连接PM,
在△ABP和△AMP中

()(21)(公共边已知辅助线的作法APAPAMAB
∴△ABP≌△AMP (SAS)
∴PB=PM (全等三角形对应边相等)
又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边)
CD
14图ABCDEFM1234
BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的
AD至E,使DE=AD,连接BE,则AE=2AD
∵AD为△ABC的中线 (已知)
∴BD=CD (中线定义)
在△ACD和△EBD中
∴AB-AC>PB-PC。
7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC
AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,
AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设
:分别延长DA,CB,它们的延长交于E点,
圆中常用辅助线的添法
解决与圆有关的问题时,常常需要添加适当的辅助线,架起
从而使问题化难为易,顺其自然地得到解决,因此,灵活
对提高学生分析问题和解决问题的能力是
1)见弦作弦心距
常作其弦心距(有时还须作出相应的半径),通过垂径平分
2)见直径作圆周角
"直径所对的
"这一特征来证明问题。
3)见切线作半径
∴EF=MF (全等三角形对应边相等)
∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)
∴BE+CF>EF

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述高中立体几何是数学中的一门重要分支,它主要研究空间中各种几何体的性质和相互关系。

在解决立体几何问题时,辅助线技巧是非常实用的工具。

通过巧妙地引入辅助线,可以简化问题的解决过程,提高解题效率。

本文将简要介绍一些常用的高中立体几何辅助线技巧,帮助读者更好地理解和应用这些方法。

一、平行线辅助线技巧在解决与平行线相关的立体几何问题时,可以尝试通过引入平行线辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用平行线比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入平行线辅助线来构造相应的比例关系。

在求解平行四边形的面积比时,可以通过连接对角线,将平行四边形分割成两个三角形,从而利用三角形面积公式求解面积比。

2. 使用平行线截线关系当需要求解立体几何体内部的长度或角度关系时,可以考虑通过引入平行线截线关系来简化问题。

在求解空间中两条直线的夹角时,可以通过引入一条与之平行的辅助线,从而将问题转化为求解两条平行线与辅助线的夹角,利用平行线夹角定理求解出所需的夹角值。

二、相似三角形辅助线技巧在解决与相似三角形相关的立体几何问题时,可以尝试通过引入相似三角形辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用相似三角形比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入相似三角形辅助线来构造相应的比例关系。

在求解棱锥的体积或表面积比时,可以通过在棱锥中引入一条高线,构造出两个相似三角形,从而利用相似三角形的边比关系求解出所需的比例值。

2. 使用相似三角形角度关系当需要求解立体几何体内部的角度关系时,可以尝试通过引入相似三角形辅助线来简化问题。

在求解棱锥的顶角时,可以通过在棱锥中引入一条高线,构造出一个与之相似的三角形,从而将该问题转化为求解相似三角形的对应角度关系,进而得到所需的顶角值。

三、垂线辅助线技巧在解决与垂线相关的立体几何问题时,可以尝试通过引入垂线辅助线来简化问题。

平行线中辅助线的添加

平行线中辅助线的添加

平⾏线中辅助线的添加
授之以渔
ZU 型辅助线的添加
题型⼀、“U ”型中辅助线请安题号把图重新编号
已知:如图,AB ∥CD ,求证:∠BED=360°-(∠B+∠D )。

证明:过点E 作EF ∥AB ,则∠B+∠1=180°()。

∵AB ∥CD (已知),
⼜∵EF ∥AB (已作),
∴EF ∥CD ()。

∴∠D+∠2=180°()。

∴∠B+∠1+∠D+∠2=180°+180°()。

⼜∵∠BED=∠1+∠2,
∴∠B+∠D+∠BED=360°()。

∴∠BED==360°-(∠B+∠D )()。

变式.已知:如图,AB ∥CD,求∠BAE +∠AEF +∠EFC +∠FCD 的度数.
题型⼆、“Z ”型中辅助线
如图所⽰,AB ∥ED ,∠B =48°,∠D =42°, 证明:BC ⊥CD 。

(选择⼀种辅助线)
变式1 已知:如图9,AB ∥CD ,∠ABF=∠DCE 。

求证:∠BFE=∠FEC 。

变式2已知:如图,AB ∥CD ,求证:∠BED=∠D-∠B 。

“平⾏线间的折线问题”题型⼩结
第3题
1.原题的难点在于平⾏线间没有截线或截线不明显
2.添加辅助线的⽬的是构造截线或构造新的平⾏线
3.处理平⾏线间折线的问题,过所有折点作平⾏线是⼀种通法
4.加截线(连结两点、延长线段相交)构造三⾓形,应⽤三⾓形内⾓和定理,也是⼀种“转化”的数学思想。

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点概述说明以及解释1. 引言1.1 概述在几何学中,平行线是指在同一个平面内永远不会相交的两条直线。

对于平行线的研究,人们发现通过引入一些辅助线能够更好地理解和证明平行线的性质,从而简化许多几何问题的解决过程。

1.2 说明平行线的性质平行线具有一些重要的性质。

首先,它们具有共面性,即两条平行线存在于同一个平面上。

其次,在给定直线外,与该直线平行的直线只有唯一一条。

此外,在给定直线上,存在无数与该直线平行且互不相交的直线。

利用这些性质,我们可以快速判断两条直线是否平行,并进行相关推断和证明。

1.3 辅助线的重要性辅助线在几何推导和证明中起到了至关重要的作用。

通过合理选择和应用辅助线,我们可以将原本复杂的几何问题转化为更简单、直观且易于解决的形式。

辅助线还能够帮助我们揭示隐藏在复杂图形背后的规律和特点,并为后续分析提供有效途径。

总之,在本文中,我们将重点介绍平行线常用的辅助线知识点,并通过实例来解析其应用。

通过全面理解和熟练运用这些辅助线知识点,读者将能够更好地理解平行线的特性,并在几何学习和问题解决中获得更高的效率和成果。

2. 平行线的辅助线知识点:2.1 垂直平分线:垂直平分线是指一个线段的中垂线与另一个线段相交于垂直平分线上。

在平行线的几何证明中,使用垂直平分线可以帮助我们得到一些有用的性质和结论。

例如,如果两条平行线被一条垂直平分线所截断,则截断处所形成的各对应角相等。

2.2 角平分线:角平分线是指从一个角的顶点出发,将这个角划分为两个相等的角,并且其划分位置在这个角的内部。

在证明平行关系时,使用角平分线能够帮助我们找到具有特定性质的几何图形。

例如,在证明两条直线平行时,当一条辅助角平分线与已知直线及其延长线相交时,可以推导出其他相关性质。

2.3 对称线:对称线是指将一个图形折叠成两半时能完全重合的折痕所在的那根过对称中心点(通常为一条直线)。

在使用对称性进行几何证明时,对称辅助会被广泛应用。

数学添加辅助线口诀

数学添加辅助线口诀

平面几何添加辅助线口诀口决一遇中点,配中点,连点添边中位线口决二遇到一边有中线,只需将其一倍延,口决三遇到垂线、角分线,绕轴翻转来变换口决四遇到图中有等边,绕点旋转来变换口决一遇中点,配中点,连点添边中位线理论依据:三角形的中位线平行于第三边,并且等于第三边的一半。

使用方法:如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行且等于BC/2法一:过C作AB的平行线交DE的延长线于F点。

∵CF∥AD∴∠A=∠ACF∵AE=CE、∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵D为AB中点∴AD=BD∴BD=CF∴BCFD是平行四边形∴DF∥BC且DF=BC∴DE=BC/2∴三角形的中位线定理成立.例题:经典例题1:在△ABC中,AB=2AC,AF= 四分之一AB,D、E分别为AB、BC的中点,EF与CA的延长线交于点G,求证:AF=AG.证明:取AC的中点M,连接EM,∵E,M,分别是BC,AC的中点,∴EM是△ABC的中位线,又∵EM=二分之一AB,AF=四分之一AB,∴AF=二分之一EM又∵EM∥AB,∴GA:GM=AF:EM=1:2即AG=AM=二分之一AC∵AC=二分之一AB∴AG=四分之一AB∵AF=四分之一AB∴AG=AF.经典例题2:已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,BD=2BO.由已知BD=2AD,∴BO=BC.又E是OC中点,∴BE⊥AC.(2)由(1)BE⊥AC,又G是AB中点,∴EG是Rt△ABE斜边上的中线.∴EG=二分之一AB又∵EF是△OCD的中位线,∴EF=二分之一CD又AB=CD,∴EG=EF.练习:1:已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.求:AE:AC的值2:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.求证:GE:CE,GD:AD,的值是多少3:如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=四分之一DA ,并说明理由口决二遇到一边有中线,只需将其一倍延理论依据:全等三角形判定与性质或者平行四边形判定与性质使用方法:有中线时,一般作加倍中线构造全等三角形或者平行四边形,使分散的条件集中;例题:1.如图1,已知ΔABC中,D是BC的中点,DE⊥DF.求证:BE+CF>EF.方法一:如图2,延长ED到M,使DM=DE,连结MC和MF,易证ΔMCD≌ΔEBD,∴BE=CM.∵DE⊥DF, DM=DE,∴EF=MF.在ΔFCM中,∵CF+CM>MF.图1AB CME FD图2∴BE+CF>EF.说明:延长FD 到N,使DN=DF,连结BN 和NE 也可以.方法二:如图3,连结BF ,取BF 的中点M, 取EF 的中点H ,连结DM 、DH 、MH ,∴DM ,MH 为中位线. ∴DM=12CF ,MH=12BE.在Rt △EDF 中,H 为EF 的中点, ∴DH=12EF.在ΔDMH 中,MH+MD>DH, ∴BE+CF>EF.说明:连结CE ,取CE 的中点M, 取EF 的中点H ,连结DM 、MH 、DH也可以.2. 如图1,已知ΔABC 中,AB=5,AC=3,BC 上的中线AD=2。

初中数学关于添加辅助线的方法总结

初中数学关于添加辅助线的方法总结

初中数学关于添加辅助线的方法总结 辅助线对于同学们来说都不陌生,解几何题的时候经常用到。

当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。

一条巧妙的辅助线常常使一道难题迎刃而解。

所以我们要学会巧妙的添加辅助线。

添加辅助线的几种方法。

添辅助线有二种情况:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

▌2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此〝添线〞应该叫做〝补图〞!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边那么要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时那么添中位线,当有中位线三角形不完整时那么需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点那么可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,那么可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(完整版)初中数学添加辅助线的方法汇总

(完整版)初中数学添加辅助线的方法汇总

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法1添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

湘教版七年级数学下册解题技巧专题:平行线中作辅助线的方法

湘教版七年级数学下册解题技巧专题:平行线中作辅助线的方法

解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题【方法17】1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题【方法17】6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.8.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为______________.第8题图9.★如图①,AB∥CD,EOF是直线AB,CD间的一条折线.(1)试说明:∠EOF=∠BEO+∠DFO;(2)如果将平行线间的1个拐点改为2个拐点,如图②,则∠BEO,∠EOP,∠OPF,∠PFC 之间会满足怎样的数量关系,请说明理由.参考答案与解析1.A2.B解析:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF =40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.3.80° 4.50°5.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°,∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.6.A解析:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.7.140°解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.8.∠α+∠β-∠γ=180°解析:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.9.解:(1)过点O作OM∥AB,如图①,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:分别过点O,P作OM∥AB,PN∥CD,如图②.∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠EOP+∠PFC=∠BEO+∠OPF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授之以渔
ZU型辅助线的添加
题型一、“U”型中辅助线请安题号把图重新编号
已知:如图,AB∥CD,求证:∠BED=360°-(∠B+∠D)。

证明:过点E作EF∥AB,则∠B+∠1=180°()。

∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD()。

∴∠D+∠2=180°()。

∴∠B+∠1+∠D+∠2=180°+180°()。

又∵∠BED=∠1+∠2,
∴∠B+∠D+∠BED=360°()。

∴∠BED==360°-(∠B+∠D)()。

变式.已知:如图,AB∥CD,求∠BAE+∠AEF+∠EFC+∠FCD的度数.
题型二、“Z”型中辅助线
如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。

(选择一种辅助线)变式1 已知:如图9,AB∥CD,∠ABF=∠DCE。

求证:∠BFE=∠FEC。

变式2已知:如图,AB∥CD,求证:∠BED=∠D-∠B。

“平行线间的折线问题”题型小结
A B
C
E
F
第3题
1.原题的难点在于平行线间没有截线或截线不明显
2.添加辅助线的目的是构造截线或构造新的平行线
3.处理平行线间折线的问题,过所有折点作平行线是一种通法
4.加截线(连结两点、延长线段相交)构造三角形,应用三角形内角和定理,也是一种“转化”的数学思想。

相关文档
最新文档