logistic回归模型总结
logistic回归模型结果解读
logistic回归模型结果解读
x
一、 logistic回归模型结果解读
Logistic回归模型是一种分类数据模型,主要用于对不同类别的输出结果进行预测,因此,其结果解读也要以分类的形式来解释。
1、系数与因变量之间的关系
Logistic回归模型通过对因变量的分析,来推断被解释变量的概率。
结果中的系数提供了因变量与被解释变量之间的关系,比如我们可以分析不同系数值大小,从而获得因变量对被解释变量的影响程度,正相关的影响是系数的正值,反之是负值。
2、P值
P值是从回归结果中获取的,它可以反映特定因变量对被解释变量的重要性,P值越小,表明相对于其它因变量,该因变量对被解释变量影响越明显,则说明该因变量是重要因素。
3、R-Square和平均绝对值
R-Square是可决系数,它反映回归结果的好坏,R-Square的值越大,表明模型的预测效果越好,也就是越能够准确的来预测被解释变量的值。
平均绝对值也是可以用来判断模型好坏的指标,它比较每个样本的预测值和实际值之间的误差,值越小则表示模型的预测精度越高。
4、改进模型
可以通过以上结果,来判断模型的预测效果好坏,从而思考如何改进模型:比如可以进行特征选择,去掉系数值较小或者P值较大的因变量;也可以使用其它模型,如决策树或神经网络模型来进行比较,看哪一个模型对被解释变量的预测效果更好。
logistic回归模型——方法与应用
logistic回归模型——方法与应用
logistic回归模型是一种广泛应用于分类问题的统计学习方法。
它主要用于预测二分类问题,但也可以通过多类logistic回归
处理多分类问题。
方法:
1. 模型定义:logistic回归模型是一种线性分类模型,它
使用一个Logistic函数(也称为sigmoid函数)将线性模型生成
的线性组合转换为概率分数。
Logistic函数将线性组合映射到
0到1之间的值,表示输入属于正面类别的概率。
2. 模型训练:logistic回归模型的训练目标是找到一个权
重向量,使得模型能够最大化正面类别的概率。
训练算法通常采用最大似然估计方法,通过迭代优化权重向量来最小化负对数似然损失函数。
3. 预测:给定一个测试样本,logistic回归模型通过计算
样本的得分(也称为Logit),将其映射到0到1之间的概率分数。
如果概率分数超过一个预先定义的阈值,则将测试样本分类为正面类别,否则将其分类为负面类别。
应用:
1. 二分类问题:logistic回归模型最常用于解决二分类问题,例如垃圾邮件过滤、欺诈检测等。
2. 多类问题:通过多类logistic回归模型,可以将多个类别映射到0到1之间的概率分数,然后根据概率分数将测试样本分配到不同的类别中。
3. 特征选择:logistic回归模型可以用于特征选择,通过计算每个特征的卡方得分,选择与类别最相关的特征。
4. 文本分类:logistic回归模型在文本分类问题中得到广泛应用,例如情感分析、主题分类等。
统计学中的Logistic回归分析
统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。
它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。
本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。
一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。
其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。
该非线性函数被称为logit函数,可以将概率转化为对数几率。
Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。
而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。
二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。
例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。
通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。
2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。
例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。
通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。
3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。
通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。
logistic回归模型统计描述
logistic回归模型统计描述在统计学中,logistic回归模型是一种常用的分类方法,它适用于将自变量与离散的二分类因变量相关联的情况。
本文将会详细介绍logistic回归模型的原理、概念以及应用,并解释如何利用该模型进行统计推断与预测。
一、logistic回归模型的原理与概念1.1 逻辑函数与S型曲线在logistic回归模型中,我们使用逻辑函数(logistic function)将自变量的线性组合转换为一个介于0和1之间的概率值。
逻辑函数(也称为sigmoid函数)是一个S型曲线,它可以表示如下:f(z) = 1 / (1 + e^(-z))其中,f(z)表示逻辑函数的输出值,e为自然对数的底,z为自变量的线性组合。
1.2 线性组合与logit函数在logistic回归模型中,自变量的线性组合表示为:z = β0 + β1x1 + β2x2 + ... + βnxn其中,zi表示第i个样本的线性组合值,β0、β1、β2...βn为模型的参数,xi为自变量的取值。
1.3 参数的解释与推断在logistic回归模型中,参数的解释通常使用odds ratio(比率几率)来进行推断。
比率几率表示的是某个事件的成功概率与失败概率之间的比值。
对于一个二分类事件,比率几率可以表示为:odds = p / (1 - p)其中,p为事件成功的概率。
通过对比两种不同情况下的比率几率,可以推断参数对于事件发生的影响程度。
二、logistic回归模型的应用2.1 数据准备在使用logistic回归模型时,首先需要准备好相关的数据。
通常情况下,我们将数据集分为训练集和测试集,用于模型的训练与验证。
2.2 模型拟合与参数估计使用logistic回归模型进行拟合时,通常采用最大似然估计法。
最大似然估计法旨在选择最适合观测到的数据的参数值,使得观测到的数据的概率最大化。
2.3 模型评估与优化在模型拟合完成后,我们需要对模型进行评估与优化。
logistic回归模型分析和总结
含有名义数据的logit
含有名义数据的logit
• 例:某地25岁及以上人中各类婚姻状况居民的死
亡情况见表,试建立死亡率关于年龄和婚姻状况
的logit模型。
ln p 1 p
A 1M1
2M 2
3M3
• 其中,A表示年龄(取中值),M1、M2、M3表示婚 姻状况
• 于是,估计的logit方程为:
多项logit模型
【例】研究三个学校、两个课程计划对学生偏好何 种学习方式的影响。调查数据见表:
• 其中,三个学校对应两个哑变量x1和x2,两个课 程计划为常规(x3=1)和附加(x3=0),学习方式分 为:自修(y=1)、小组(y=2)、上课(y=3)
• 从题目可以看出,响应变量是学习方式有三类, 属于多项逻辑斯蒂回归问题。于是,建模为:
ln ln
p1 p3 p2 p3
10 11x1 12 x2 13 x3 20 21x1 22 x2 23x3
多项logit模型
多项logit模型
• 应用统计软件可以得到模型的参数估计和回归方程:
ln
p1 p3
0.5931.134 x1 0.618 x3
ln
p2 p3
0.603 0.635 x3
ln p A E
1 p
• 其中A为年龄,E为文化程度
含有有序数据的logit
含有有序数据的logit
• 于是,估计的logit方程为:
ln p 11.637 0.124A 0.164E 1 p
• 其中,年龄的系数0.124,说明年龄越大死亡率会 越高;
• 文化程度的系数-0.164,说明文化程度与死亡率 呈负相关,文化程度越高,死亡率越低。
Logistic回归模型
Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT X T T eep X ppp Logit βββ+=⇒=-=11ln)( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x kxk x k k ee p x x p p βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(ln y E y E -是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为Logistic 线性回归。
Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
Logistic回归分析
Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
分类模型归纳总结
分类模型归纳总结在机器学习和数据挖掘领域,分类是一种常见的任务,它旨在根据给定的特征将数据点分为不同的类别。
分类模型是用于解决分类问题的数学模型。
本文将对一些常见的分类模型进行归纳总结,包括逻辑回归、决策树、支持向量机和随机森林等。
一、逻辑回归(Logistic Regression)逻辑回归是一种广泛应用于分类问题的线性模型。
它通过将输入特征与权重相乘,并通过一个激活函数(如sigmoid函数)将结果映射到[0, 1]的范围内,从而预测样本属于某个类别的概率。
逻辑回归具有简单、高效的特点,适用于二分类问题。
二、决策树(Decision Tree)决策树是一种基于树结构的分类模型。
它通过将特征空间划分为多个矩形区域,每个区域对应一个类别,从而实现对样本进行分类。
决策树具有易解释、易理解的特点,可处理离散和连续特征,并且具备较好的鲁棒性。
三、支持向量机(Support Vector Machine)支持向量机是一种经典的分类模型,通过在特征空间中构造最优超平面,将不同类别的样本分开。
支持向量机可处理线性可分和线性不可分的问题,在高维空间中表现出色,并具有一定的抗噪能力。
四、随机森林(Random Forest)随机森林是一种集成学习方法,由多个决策树组成。
它通过对训练集随机采样,并对每个采样子集构建一个决策树,最终通过投票或平均等方式得到分类结果。
随机森林具有较高的准确性和较好的泛化能力,对于处理高维数据和大规模数据集具有一定优势。
五、朴素贝叶斯分类器(Naive Bayes Classifier)朴素贝叶斯分类器是一种基于贝叶斯定理的概率分类模型。
它假设各个特征之间相互独立,并根据训练数据计算类别的先验概率和特征的条件概率,从而进行分类预测。
朴素贝叶斯分类器简单、高效,并在处理文本分类等领域表现突出。
六、神经网络(Neural Networks)神经网络是一类模拟人脑结构和功能的机器学习模型。
它包含输入层、隐藏层和输出层,通过不同层之间的连接权重进行信息传递和特征提取,最终实现分类任务。
二分类Logistic回归模型
⼆分类Logistic回归模型 Logistic回归属于概率型的⾮线性回归,分为⼆分类和多分类的回归模型。
这⾥只讲⼆分类。
对于⼆分类的Logistic回归,因变量y只有“是、否”两个取值,记为1和0。
这种值为0/1的⼆值品质型变量,我们称其为⼆分类变量。
假设在⾃变量x1,x2,⋯,x p作⽤下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发⽣的模率p与⾃变量x1,x2,⋯,x p 的关系。
Logistic回归模型①Logit变换 Logit 变换以前⽤于⼈⼝学领域,1970年被Cox引⼊来解决曲线直线化问题。
通常把某种结果出现的概率与不出现的概率之⽐称为称为事件的优势⽐odds,即假设在p个独⽴⾃变量x1,x2,⋯,x p作⽤下,记y取1的概率是p=P(y=1|X),取0概率是1−p,取1和取0的概率之⽐为p1−p。
Logit变换即取对数:λ=ln(odds)=lnp 1−p②Logistic函数 Logistic中⽂意思为“逻辑”,但是这⾥,并不是逻辑的意思,⽽是通过logit变换来命名的。
⼆元logistic回归是指因变量为⼆分类变量的回归分析,⽬标概率的取值会在0~1之间,但是回归⽅程的因变量取值却落在实数集当中,这个是不能够接受的,所以,可以先将⽬标概率做Logit变换,这样它的取值区间变成了整个实数集,采⽤这种处理⽅法的回归分析,就是Logistic回归。
Logistic函数为:Logit(p)=lnp1−p=Z,p=11+e−2 Logistic回归模型中的因变量只有1和0(如是和否、发⽣和不发⽣)两种取值。
对odds取⾃然对数即得Logistic变换Logit(p)=lnp1−p A。
当p在(0,1)之间变化时,odds的取值范围是(0,+oo),则Logistic函数的取值范围是(-oo,+oo)。
③Logistic回归模型 Logistic 回归模型是建⽴lnp1−p与⾃然变量的线性回归模型。
Logistic回归模型 (2)
欢迎共阅Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p究p Logit (1) (2)1的概率i 个(3)差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。
因此评价模型的拟合度的标准变为似然值而非离差平方和。
定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为OR=kx k x e pp βββ+++=- 1101 (4)定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称-2ˆln ()L β为估计值βˆ的拟合似然度,该值越小越好,如果模型完全拟合,则似然值ˆ()L β为1,而拟合似然度达到最小,值为0。
其中ˆ()lnL β表示βˆ的对数似然函数值。
定义3 记)ˆ(βVar 为估计值βˆ的方差-协方差矩阵,21)]ˆ([)ˆ(ββVar S =为βˆ的标准差矩阵,则称k i S w iii i ,,2,1,ˆ[2 ==β (5)为iβˆ (6) 1.22 2.1因变量(反应变量)分为两类,取值有两种,设事件发生记为y=1,不发生记为 y=0,设自变量T k x x x X ),,,(21 =是分组数据,取有限的几个值;研究事件发生的概率)|1(X y P =与自变量X 的关系,其Logistic 回归方程为:k k x x X y P X y P βββ+++=== 110)|0()|1(ln 或 kx k x kxk x ee X y P ββββββ+++++++== 1101101)|1( 例2.1.1 分组数据[1] 在一次住房展销会上,与房地产商签订初步购房意向书的有n=325人,在随后的3个月时间内,只有一部分顾客购买了房屋。
logistic回归模型的基本原理
logistic回归模型的基本原理Logistic回归模型的基本原理Logistic回归模型是一种常用的分类算法,它可以用于预测二元变量的概率。
该模型基于线性回归模型的基本思想,并通过使用逻辑函数(也称为sigmoid函数)将其结果转换为概率值。
一、逻辑函数的定义逻辑函数是一种S形曲线,可以将任意实数映射到区间(0,1)上。
它的数学表达式为:f(z) = 1 / (1 + e^(-z))其中,e为自然对数的底,z为输入变量。
逻辑函数具有以下特点:- 当z趋近于正无穷大时,f(z)趋近于1;- 当z趋近于负无穷大时,f(z)趋近于0;- 当z等于0时,f(z)等于0.5。
二、模型假设Logistic回归模型基于以下假设:1. 响应变量y是二元变量,取值为0或1;2. 假设y服从二项分布(Binomial distribution);3. 假设响应变量y的概率与输入变量x之间存在线性关系。
三、模型表达式假设我们有n个输入变量x1, x2, ..., xn,对应的系数为β1, β2, ..., βn。
那么Logistic回归模型的表达式为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn)其中,β0为截距。
四、模型参数估计为了得到Logistic回归模型的参数,我们需要使用最大似然估计(Maximum Likelihood Estimation)方法。
该方法的目标是选择一组参数值,使得根据模型预测的概率值与观测到的实际结果之间的差异最小化。
最大似然估计的核心思想是,找到一组参数值,使得在给定参数条件下,观测到的数据出现的概率最大。
对于Logistic回归模型,我们可以使用对数似然函数来进行最大似然估计。
五、模型训练与预测模型训练是指利用已知的训练数据来估计模型的参数。
在Logistic 回归模型中,可以使用梯度下降(Gradient Descent)等优化算法来最小化对数似然函数,从而得到模型的参数值。
Logistic回归模型
Logistic 回归模型一、 分组数据的Logistic 回归模型针对0-1型因变量产生的问题,我们对回归模型应该作两个方面的改进。
第一, 回归函数应该用限制在[0,1]区间内的连续曲线,而不能再沿用沿用直线回归方程。
限制在[0,1]区间内的连续曲线很多,例如所有连续变量的分布函数都符合要求,我们常用的是Logistic 函数与正如分布函数,Logistic 函数的形式为:()1xxe f x e =+Logistic 函数的中文名称逻辑斯蒂函数,简称逻辑函数 第二、因变量y 本身只取0、1两个离散值,不适合直接作为回归模型中的因变量,由于回归函数01()i i i E y x πββ==+表示在自变量为i x 的条件下i y 的平均值,而i y 是0-1型随机变量,因而()i i E y π=就是在自变量为i x 的条件下i y 等于1的比例.这就提示我们可以用i y 等于1的比例代替i y 本身作为因变量.二,例子 在一次住房展销会上,与房地产商签订初步购房意向书的共有325n =名顾客,在随后的3个月的时间内,只有一部分顾客确实购买了房屋.购买了房屋的顾客记为1,没有购买房屋的顾客记为0,以顾客的年家庭收入为自变量x,对下面表所示的数据,序号年家庭收入(万元)x 签订意向书人数n 实际购房人数m 实际购房比例p逻辑变换p′=ln(p/(1-p))权重w=np(1-p)1 1.52580.32-0.7537718 5.442 2.532130.40625-0.37948967.718753 3.558260.448276-0.207639414.344834 4.552220.423077-0.310154912.692315 5.543200.465116-0.139761910.697676 6.539220.5641030.257829119.58974477.528160.5714290.287682076.85714388.521120.5714290.287682075.14285799.515100.6666670.693147183.333333建立Logistic 回归模型:c i x x p i i i,,2,1,)exp(1)exp(1010 =+++=ββββ,其中,c 为分组数据的组数,本例中c=9.将以上回归方程作线性变换,令)1ln(iii p p p -=' 该变换称为逻辑变换,变换后的线性回归模型为 i i i x p εββ++='10该式是一个普通的一元线性回归模型。
logistic回归算法原理与特点
logistic回归算法原理与特点
logistic回归是一种分类算法,用于二值分类问题,用来预测特定样本属于某个群体的概率。
logistic回归算法是一种经典的机器学习算法,他利用当前的信息获取新的输出,并利用新的输出和原有的输入来调节当前的输入使它变得更好。
logistic回归算法模型表示如下:
y = 1 / (1 + e-(β0 + β1x1 + β2x2 + ... + βnxn)) 其中,y是预测结果,x1和x2分别代表两个特征,β0是常数项,β1~βn代表各个特征的权重。
logistic回归算法的特点:
1、logistic回归模型具有高效性:参数可以通过梯度下降的思想快速的迭代更新,求解过程比较简单,容易实现。
2、logistic回归具有较强的泛化能力:即使数据量较少,logistic模型也可以保持较好的预测效果,数据量很大也可以很好的利用。
3、logistic回归采用的是最大似然估计,可以得到参数值在较大程度上是正确的。
4、logistic回归模型可以处理多个变量,灵活性比较强,可以利用优化算法来拟合出最好的结果。
- 1 -。
logit回归模型解释
Logit回归模型(Logit model)也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”,是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。
逻辑分布(Logistic distribution)公式其中参数β常用极大似然估计。
具体解释如下:
逻辑分布:假设我们有一个线性回归模型,预测值是介于0和1之间的概率。
当这个线性回归模型的预测值被转换为分类标签时,它被称为逻辑回归模型。
逻辑回归模型的预测值通常通过将预测值与0.5阈值进行比较来转换为二进制分类标签。
参数β:在逻辑回归模型中,参数β被称为逻辑回归系数。
它表示线性回归模型中的斜率,用于解释输入特征对预测结果的影响。
极大似然估计:在统计推断中,极大似然估计是一种参数估计方法,它通过最大化样本数据的似然函数来估计参数的值。
在逻辑回归模型中,极大似然估计用于估计逻辑回归系数β的值。
总之,Logit回归模型是一种用于处理二元分类问题的统计模型,它通过逻辑函数将线性回归模型的预测值转换为介于0和1之间的概率,从而可以用于预测二元分类标签。
关于logistic回归模型以及probit模型的几点看法
1.logistic回归模型(包括有序和无序)操作:SPSS——分析——回归(若因变量只是定类数据,则选择二元logistic 或多元logistic;若因变量是定序数据,则需要选择“有序”),在出现的框框中,有因变量、因子、协变量三项。
其中,因变量即为被解释变量,因子和协变量即为解释变量,因子是分类数据,协变量是连续型变量。
注意:(1)做回归模型之前需要检验自变量之间有无多重共线性(方法就是运用因变量和自变量建立线性回归模型)具体如下:分析——回归——线性——因变量及自变量转进相应位置,之后点击“统计”,勾选“共线性诊断”,然后点击“确定”。
如果结果结果中Tolerance(容差或容忍度)小于0.1或者VIF(方差膨胀因子)大于10,或者特征根等于0,或者条件指数大于30,则表示存在共线性。
此时,再运用回归模型就不合适,需要先让共线性问题解决之后才能运用模型继续进行估计。
(2)做回归模型之前还需要做平行性检验。
(方法是分析——回归——有序——输出——勾选平行性检验,此检验的原假设为回归自变量系数相等,如果自变量系数相等则可以用有序logistic回归模型,所以最终需要接受原假设,即P大于0.05)结果分析(针对有序回归模型而言):在似然比检验中,只要P值小于0.05,就说明模型有效,反之无效在回归结果中只要P值小于0.05,同样说明,自变量对因变量的影响是显著的。
2.probit回归模型(包括有序和无序)操作:分析——回归——概率;若做的是有序probit模型,可以分析——广义线性模型——有序概率总结:SPSS做probit模型不太方便,可以用stata软件做3.联系与区别(1)联系:二者都可以应用于因变量为分类变量的情况,并且两种方法的结果比较接近。
(2)区别:probit回归是基于正态分布进行的,而logistic回归是基于二项分布。
(3)具体选择哪一种模型:当自变量中连续变量较多且符合正态分布时,可以考虑运用probit回归模型,而当自变量中分类变量较多时,可以考虑使用logistic回归模型。
Logistic回归模型
Logistic回归模型1. 简介Logistic回归是一种常用的分类算法,它可以用于预测二分类问题。
本文将介绍Logistic回归模型的原理、应用场景和建模步骤。
2. 原理Logistic回归模型基于逻辑函数(sigmoid函数)来建模,该函数可以将输入的线性组合映射到一个概率值。
具体而言,Logistic回归模型通过以下公式定义:$$P(y=1|x) = \frac{1}{1 + e^{-z}}$$其中,$P(y=1|x)$表示给定输入$x$时,预测输出为1的概率;$z$为输入$x$的线性组合,可以表示为:$$z = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n$$其中,$\beta_0, \beta_1, \beta_2, ..., \beta_n$为模型的参数。
3. 应用场景Logistic回归模型可应用于各种二分类问题,例如:- 邮件分类:将邮件分类为垃圾邮件或非垃圾邮件。
- 信用评分:预测借款人违约的概率。
- 疾病诊断:根据患者的临床特征预测患病的概率。
4. 建模步骤使用Logistic回归模型进行建模通常包括以下步骤:1. 数据准备:收集并整理用于建模的数据集。
2. 特征选择:根据业务需求选择合适的特征。
3. 数据划分:将数据集划分为训练集和测试集。
4. 归一化处理:对数据进行归一化处理,以提高模型的训练效果。
5. 模型训练:使用训练集对Logistic回归模型进行训练。
6. 模型评估:使用测试集对模型进行评估,计算准确率、精确率、召回率等指标。
7. 模型优化:根据评估结果对模型进行调参和优化。
5. 总结Logistic回归模型是一种常用的分类算法,适用于各种二分类问题。
通过理解模型原理、选择合适的特征和进行数据处理,可以构建准确可靠的Logistic回归模型。
在实际应用中,我们应根据具体的业务场景和需求进行适当的模型优化。
Logistic回归模型分析
Logistic回归模型一、Logistic分布的概率密度函数及图形:f(x)=exp(-x)/(1+exp(-x))^2;(选取的x值是-14至14)二、Logistic分布的分布函数及图形:F(x)=exp(x)/(1+exp(x));(选取的x值是-14至14)三、在clementine中建立logistic回归模型及输出结果分析:选取80%的数据,在clementine中,以工作状况,家庭住址,教育程度,所在地区,退休与否,婚姻状况,性别,年龄和收入9个变量为自变量,以电信客户流失状况为因变量,建立logistic模型。
以下为输出的结果分析。
1、变量重要性分析:如下图所示,9个变量对客户流失的影响作用不一样,其中工作状况是影响最大的变量,其比重为0.376。
另外,教育程度(比重为0.225)和家庭地址(比重为0.223)的影响也比较明显。
而年龄几乎不是影响因素。
2、单个变量显著性及系数经济意义分析:下图中,B为自变量的回归系数,若B为负则代表该自变量与因变量呈反向变动的关系。
S.E.是标准差;Wald指的是Wald统计量;df是指自由度;sig.指的是显著性(其值越小说明自变量对因变量的影响越显著);Exp(B)代表着各自变量的回归系数的经济意义,即在保持其他条件不变时,特定自变量变动1单位时,所影响到发生率的变化率为B单位。
从图中可以看出,工作状况对因变量的影响是完全显著,其系数为-0.064,说明了工作状况与客户流失之间的反向变动关系,且当其他自变量保持不变的条件下,消费者的工作状态每变动1单位,所带来的客户流失的发生率的变化率为0.064个单位。
这与实际情况相符合。
其次,教育程度,家庭住址和婚姻状况对因变量的影响也较显著,这可能与电信的宣传策略和信号覆盖以及状况相关。
然而,其他变量的显著性水平就比较低。
其中收入的显著性最差,可能是因为各个通信公司的服务价格与质量区别不大,收入水平对客户流失情况影响很小。
混合效应logistic回归模型
混合效应logistic回归模型1.引言1.1 概述混合效应logistic回归模型是一种广泛应用于统计学和数据分析领域的模型。
它结合了混合效应模型和logistic回归模型的特点,能够同时考虑个体间的随机变异和固定效应因素对于二分类问题的影响。
在传统的logistic回归模型中,我们通常将个体视为独立观测,并将各个个体的观测结果直接作为模型的输入。
然而,在实际应用中,个体间往往存在一定的相关性或者群体特征,这就需要我们引入混合效应模型来考虑个体间的随机变异和固定效应因素。
混合效应模型是一种统计模型,它将个体间的随机变异视作隐含变量,并通过引入混合效应来捕捉这种变异。
具体而言,混合效应模型中的混合效应可以表示个体间的差异,并且可以用于解释这种差异与观测结果之间的关系。
将混合效应模型与logistic回归模型相结合,我们可以得到混合效应logistic回归模型。
在这个模型中,我们既考虑了个体间的随机变异,也考虑了固定效应因素对于观测结果的影响。
通过引入混合效应,我们可以更准确地建模和预测二分类问题。
混合效应logistic回归模型在实际应用中具有广泛的应用场景。
它可以用于社会科学研究中的人类行为分析、医学研究中的疾病预测、金融领域中的风险评估等。
通过考虑个体间的随机变异和固定效应因素,该模型可以提供更可靠和准确的预测结果,帮助我们更好地理解和解释观测数据。
本文将详细介绍混合效应logistic回归模型的原理和应用,并通过实例分析展示其在实际问题中的效果。
在接下来的章节中,我们将先介绍混合效应模型的概念和方法,然后介绍logistic回归模型的基本原理和应用,最后将两个模型结合起来,探讨混合效应logistic回归模型的建模和预测过程。
通过本文的阅读,读者将能够全面了解混合效应logistic回归模型,并掌握其在实际问题中的应用方法。
最后,我们将总结本文的主要内容,并展望混合效应logistic回归模型在未来的研究和应用中的发展前景。
logistic回归模型
logistic回归模型一、模型简介在实际分析中,有时候因变量为分类变量,例如阴性阳性、性别、血型等,此时使用线性回归模型进行拟合会出现问题。
因此,我们需要找出其他解决思路,那就是logit变换(逻辑变换)。
逻辑变换将某种结果出现的概率和不出现的概率之比称为优势比P/(1-P),并取其对数,使之与自变量之间呈线性关系,从而解决了线性回归模型无法保证因变量只有两个取值的问题。
经过逻辑变换的线性模型称为logistic回归模型(逻辑回归模型),属于广义线性回归模型的范畴。
逻辑回归可以预测某个结果出现的概率,对因变量进行变换的方法很多,并不只有逻辑变换一种。
二、模型估计方法逻辑回归不能使用普通最小二乘估计,而使用极大似然估计或迭代重加权最小二乘法IRLS(XXX)。
使用极大似然估计的好处是,这是一种概率论在参数估计中的应用,正好和我们对因变量的概率预测相符合。
极大似然估计基于这样的思想:如果某些参数能使这个样本出现的概率最大,那就把这个参数作为估计的真实值。
三、优势比odds根据因变量的取值不同,逻辑回归可以分为四种:二分类逻辑回归、有序多分类逻辑回归、无序多分类逻辑回归、配对逻辑回归。
优势比odds是逻辑回归中的一个重要概念,指某种结果出现的概率和不出现的概率之比,通过逻辑变换,优势比可以被用作因变量进行拟合。
对于一些特殊情况,还需具体问题具体分析,不能一味地使用逻辑变换。
在二分类逻辑回归中,自变量可以是连续变量、二分类变量和多分类变量。
对于多分类变量,需要引入哑变量进行处理。
哑变量也称为虚拟变量,取值通常为0或1,代表参照分类和比较分类。
需要注意避免共线性,定义k-1个哑变量(包含截距)或k个哑变量(不包含截距)。
有序多分类变量指各因变量之间存在等级或程度差异。
对于因变量为有序分类变量的数据,可以通过拟合因变量个数-1个的逻辑回归模型,称为累积逻辑模型来进行。
这种方式依次将因变量按不同的取值水平分割成若干个二分类变量,然后再依次拟合二分类逻辑回归模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[转载]logistic回归模型总结logistic回归模型是最成熟也是应用最广泛的分类模型,通过学习和实践拟通过从入门、进阶到高级的过程对其进行总结,以便加深自己的理解也为对此有兴趣者提供学习的便利。
一、有关logistic的基本概念logistic回归主要用来预测离散因变量与一组解释变量之间的关系最常用的是二值型logistic。
即因变量的取值只包含两个类别例如:好、坏;发生、不发生;常用Y=1或Y=0表示X表示解释变量则P(Y=1|X)表示在X的条件下Y=1的概率,logistic回归的数学表达式为:log(p/1-p)=A+BX =L其中p/1-p称为优势比(ODDS)即发生与不发生的概率之比可以根据上式反求出P(Y=1|X)=1/(1+e^-L)根据样本资料可以通过最大似然估计计算出模型的参数然后根据求出的模型进行预测下面介绍logistic回归在SAS中的实现以及输出结果的解释二、logistic回归模型初步SAS中logistic回归输出结果主要包括预测模型的评价以及模型的参数预测模型的评价与多元线性回归模型的评价类似主要从以下几个层次进行(1)模型的整体拟合优度主要评价预测值与观测值之间的总体一致性。
可以通过以下两个指标来进行检验1、Hosmer-Lemeshowz指标HL统计量的原假设Ho是预测值和观测值之间无显著差异,因此HL指标的P-Value的值越大,越不能拒绝原假设,即说明模型很好的拟合了数据。
在SAS中这个指标可以用LACKFIT选项进行调用2、AIC和SC指标即池雷准则和施瓦茨准则与线性回归类似AIC和SC越小说明模型拟合的越好(2)从整体上看解释变量对因变量有无解释作用相当于多元回归中的F检验在logistic回归中可以通过似然比(likelihood ratiotest)进行检验(3)解释变量解释在多大程度上解释了因变量与线性回归中的R^2作用类似在logistic回归中可以通过Rsquare和C统计量进行度量在SAS中通过RSQ来调用Rsquare,C统计量自动输出(4)模型评价指标汇总<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font: minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:mi nor-latin">统计量<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:mi nor-latin">趋势<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font: minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:mi nor-latin">拟合<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font: minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">作用SAS<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-f ont-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">调用命令<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font: minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:mi nor-latin">备注AIC<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-f ont-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">、SC<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越小<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top"style="width:117.9pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的残差平方和<td width="177" valign="top"style="width:106.3pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">模型自动输出<td width="123" valign="top"style="width:73.75pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:mi nor-latin">似然比卡方<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top"style="width:117.9pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的回归平方和<td width="177" valign="top"style="width:106.3pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">自动输出<td width="123" valign="top"style="width:73.75pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">P<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-fo nt-family:Calibri;mso-hansi-theme-font:minor-latin">值越小越好RSQUARE<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top"style="width:117.9pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的R^2<td width="177" valign="top"style="width:106.3pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">用RSQ<spanstyle="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">选项调用<td width="123" valign="top"style="width:73.75pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">C<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-f ont-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">统计量<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top"style="width:117.9pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">度量观测值和条件预测的相对一致性<td width="177" valign="top"style="width:106.3pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">自动输出<td width="123" valign="top"style="width:73.75pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">HL<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-f ont-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">统计量<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越小<td valign="top"style="border-top:none;border-left:none;border-botto m:solid windowtext 1.0pt;border-right:solid windowtext1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solidwindowtext .5pt;mso-border-alt:solid windowtext .5pt; padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top"style="width:117.9pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">度量观测值和预测值总体的一致性<td width="177" valign="top"style="width:106.3pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-fa mily:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">用LACKFIT<spanstyle="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">选项调用<td width="123" valign="top"style="width:73.75pt;border-top:none;border-left: none;border-bottom:solid windowtext1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solidwindowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">P<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:min or-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-fo nt-family:Calibri;mso-hansi-theme-font:minor-latin">值越大越好。