二项式定理课件 完美版
合集下载
1.3.1二项式定理优秀课件
选做题: 1.求多项式:
2 3 4
(1 x ) (1 x )(1 x )(1 x )(1 x )
的展开式中 x 的系数. 2.求230除以9所得的余数.
2
5
谢谢指导!
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。 31、理想是美好的,但没有意志,理想不过是瞬间即逝的彩虹。 32、骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。——荀况 33、伟大的理想只有经过忘我的斗争和牺牲才能胜利实现。 34、为了将来的美好而牺牲了的人都是尊石质的雕像。 35、理想对我来说,具有一种非凡的魅力。 36、扼杀了理想的人才是最恶的凶手。 37、理想的书籍是智慧的钥匙。 人生的旅途,前途很远,也很暗。然而不要怕,不怕的人的面前才有路。—— 鲁 迅 2 人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定、冷静,学习如何从慌乱中找到生机。 —— 席慕蓉 3 做人也要像蜡烛一样,在有限的一生中有一分热发一分光,给人以光明,给人以温暖。—— 萧楚女 4 所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。—— 鲁 迅 5 人类的希望像是
6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)
n (0
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;
人教版高中数学选修2-3二项式定理 (共16张PPT)教育课件
人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
尘
口
罗
不
–■
① 项: a 3
a 2b ab 2 b 3
a3kbk
二项式定理ppt课件
01
在量子力学和统计物理学中,二项ห้องสมุดไป่ตู้定理可以用于计算一些物
理量的近似值。
在计算机科学中的应用
02
在算法设计和数据结构中,二项式定理可以用于解决一些优化
问题。
在经济学中的应用
03
在金融和经济学中,二项式定理可以用于研究资产价格的波动
和风险评估。
05
习题和思考题
关于二项式定理的基本计算题
总结词:掌握基础
发展历程
随着时间的推移,二项式 定理的应用范围不断扩大 ,逐渐涉及到概率论、统 计学等领域。
重要贡献
二项式定理在数学史上具 有重要地位,为后续数学 研究提供了基础。
二项式定理在数学中的地位和作用
地位
二项式定理是组合数学中 的核心定理之一,是解决 组合问题的重要工具。
作用
二项式定理的应用范围广 泛,不仅用于计算组合数 ,还可以用于解决概率论 、统计学中的问题。
要点三
归纳步骤
考虑k+1的情况,即(a+b)^(n+1) = (a+b) * (a+b)^n。根据归纳假设, 可以将右边的表达式展开为Σ C(n,k) * a^(n-k+1) * b^k + Σ C(n,k) * a^(n-k) * b^(k+1)。根据组合数的 性质,可以将右边的表达式进一步化 简为Σ C(n+1,k+1) * a^(n-k+1) * b^k + Σ C(n+1,k) * a^(n-k) * b^(k+1)。这就证明了二项式定理对 k+1的情况也成立。
与牛顿二项式定理的关系
牛顿二项式定理是二项式定理的一种特殊形式,适用于整数指数 幂的展开。
二项式定理ppt课件
二项式定理
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。
二项式定理优质课课件
二项式定理: 一般地,对于nN*,有:
这个公式叫做二项式定理,很显然二项式定理是研 究形如 (a b的)n展开式问题。
二项展开式的结构特征:
①项数: 共有n+1项
②次数: 各项的次数都等于n,
③展开式中项的排列方式如何?
字母a按降幂排列,次数由n递减到0 , 字母b按升幂排列,次数由0递增到n .
(a b)2 (a b)(a b)
aaabbabb
a2 2ab b2
项的形式: a 2
ab
问:合并同类项后的展 开式中,共有几项?
b2 每项的次数为几次?
项的系数: C20
C21
C2 展开式项的排列方式如 2 何?(按照a的降次幂
分析ab (a b)(a b) (a b)(a b)
b
3
探究3 仿照上述过程,推导 (a b)4的展开式.
(a b)2
(a b)3 (a b)4
(a b)n ?
问题6: 将(a b)n展开并整理后的多项式 ?
二项式定理
二项式定理:
1)公式右边的多项式叫做(a+b)n的 二项展开式 ,
其中Crn(r=0,1,2,……,n)叫做 二项式系数 ;
C32
C33
有几项? 每项的次数
分析a2b (a b)(a b)(a b)
为几次? 展开式项的
(a b)(a b)(a b)
C31
排列方式如 何?(按照a
(a b)(a b)(a b)
的降次幂还 是升次幂排
列的?)
展开式:
(a
b)3
C30a 3
C31a 2b
C 32 ab 2
C
3 3
2、思维拓展型作业:(查阅相关资料)
二项式定理课件
加深难度的综合题
01
02
03
04
总结
通过加深难度的综合题,可以 进一步巩固和拓展二项式定理
的应用能力。
题目1
利用二项式定理求 (x^2+2)^7展开式中x^4的系
数。
题目2
利用二项式定理求(a+b)^8展 开式中a^3b^5的系数。
题目3
利用二项式定理求(ax+by)^n 展开式中所有偶次方的系数之
与其他数学知识的交叉融合
总结词
二项式定理与其他数学知识有着密切的 联系,它可以与微积分、线性代数、数 论等学科进行交叉融合,扩展其应用范 围。
VS
详细描述
二项式定理与微积分中的泰勒级数展开、 线性代数中的矩阵计算、数论中的整数分 解等问题都有密切的联系。通过与其他学 科的交叉融合,二项式定理的应用范围得 到了进一步的扩展,为解决更为复杂的数 学问题提供了重要的工具和方法。
06
二项式定理的习题与思考题
关于二项式定理的基本应用题
总结
二项式定理是数学中的一个重要定理,它描述了 两个n次幂的组合数与n次幂的组合数之间的关系 。通过基本应用题,可以加深对二项式定理的理 解和掌握。
题目2
计算(2x+y)^6的展开式。
题目1
计算(a+b)^5的展开式。
题目3
计算(x^2+2)^7的展开式。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的重要工具。
二项式定理的意义与应用
01
02
03
04
二项式定理的意义在于它提供 了一种简便的方法来计算和展
〖2021年人教版〗《10.3 二项式定理》完整版教学课件PPT
4奇数项系数和与偶数项系数和;
5的奇次项系数和与的偶次项系数和
2k
8
C8k
8
x
4 3
k
,
令 8-43k=0,得 k=6,
则展开式中的常数项为(-1)626-8C68=7.
题型分类 深度剖析
题型一 二项展开式
命题点1 求二项展开式中的特定项或指定项的系数
例1 12016·全国乙卷2+ 5的展x开式中,3的系数是_______用数10字填写
答案
答案 解析
T (2x+ x)5 展开式的通项公式
思考辨析
判断下列结论是否正确请在括号中打“√”或“×”
1 anC-kn b是二项展开式的第项
×
2二项展开式中,系数最大的项为中间一项或中间两项 ×
3a+bn的展开式中某一项的二项式系数与a,b无关 4在1-9的展开式中系数最大的项是第五、第六两项
√ ×
5若3-17=a77+a66+…+a1+a0,则a7+a6+…+a1的值为128
跟踪训练1 1-+8的展开式中27的系数为________用数-字2填0 写答案
答案 解析
x2y7=x·(xy7),其系数为 C78, x2y7=y·(x2y6),其系数为-C68, ∴x2y7 的系数为 C78-C68=8-28=-20.
1 2+a10的展开式中,7的系数为15,则a=_______2_用数字填写答案
k1 C5k (2x)5k .(
x )k
C5k
25k
5
x
k 2
,
k∈{0,1,2,3,4,5},令 5-2k=3,解得 k=4,T 得Leabharlann 5C54254
5
x
4 2
新高考数学二项式定理精品课件
5. 在的展开式中,有理项共有 项.
课前基础巩固
4
[解析] 的展开式的通项为Tr+1=·(-1)r·36-r·,若6-r为整数,则r=0,2,4,6,故有理项共有4项.
6. 已知的展开式中,各项系数的和与二项式系数的和之比为64,则n等于 .
课前基础巩固
6
[解析] 二项式的展开式中各项系数的和为(1+3)n=4n,二项式系数的和为2n.因为各项系数的和与二项式系数的和之比为64,所以=2n=64,解得n=6.
课堂考点探究
ACD
将x=-1代入(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,得35=a0-a1+a2-a3+a4-a5,故C正确;二项式(1-2x)5的展开式的通项为Tr+1=(-2)rxr,所以当r为奇数时,(-2)r为负数,即ai<0(其中i为奇数),当r为偶数时,(-2)r为正数,即ai>0(其中i为偶数),所以a0-|a1|+a2-|a3|+a4-|a5|=a0+a1+a2+a3+a4+a5=-1,故D正确.故选ACD.
(2)在的展开式中,x2的系数为 .(用数字作答)
课堂考点探究
240
[解析]的展开式的通项为Tr+1=(2x)6-r=(-1)r×26-r,令6-2r=2,解得r=2,∴的展开式中x2的系数为24=240.
考向1 二项式系数例2 (1)[2021·衡水模拟] 已知二项式的展开式中第2项与第3项的二项式系数之比是2∶5,则x3的系数为 .
课前基础巩固
◈ 知识聚焦 ◈
an+an-1b1+…+an-kbk+…+bn
课前基础巩固
4
[解析] 的展开式的通项为Tr+1=·(-1)r·36-r·,若6-r为整数,则r=0,2,4,6,故有理项共有4项.
6. 已知的展开式中,各项系数的和与二项式系数的和之比为64,则n等于 .
课前基础巩固
6
[解析] 二项式的展开式中各项系数的和为(1+3)n=4n,二项式系数的和为2n.因为各项系数的和与二项式系数的和之比为64,所以=2n=64,解得n=6.
课堂考点探究
ACD
将x=-1代入(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,得35=a0-a1+a2-a3+a4-a5,故C正确;二项式(1-2x)5的展开式的通项为Tr+1=(-2)rxr,所以当r为奇数时,(-2)r为负数,即ai<0(其中i为奇数),当r为偶数时,(-2)r为正数,即ai>0(其中i为偶数),所以a0-|a1|+a2-|a3|+a4-|a5|=a0+a1+a2+a3+a4+a5=-1,故D正确.故选ACD.
(2)在的展开式中,x2的系数为 .(用数字作答)
课堂考点探究
240
[解析]的展开式的通项为Tr+1=(2x)6-r=(-1)r×26-r,令6-2r=2,解得r=2,∴的展开式中x2的系数为24=240.
考向1 二项式系数例2 (1)[2021·衡水模拟] 已知二项式的展开式中第2项与第3项的二项式系数之比是2∶5,则x3的系数为 .
课前基础巩固
◈ 知识聚焦 ◈
an+an-1b1+…+an-kbk+…+bn
第三节 二项式定理 课件(共36张PPT)
其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )
1.5.1二项式定理PPT优秀课件
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
二项式定理PPT教学课件
12n n
(2)当 3 q 1 时,求 lim An
n 2n
【思维点拨】:本题逆用了二项式定理及
C
0 n
C
1 n
C
n n
2n
例4、若 2x 3 4= a0 a1x a2 x 2 a3 x3 a4 x 4,
求(1) a0 a2 a4 2― a1 a3 2的值。
(2) a0 a1 a2 a3 的值。
【思维点拨】 用赋值法时要注意展开式的形式。
思考题:设
x 14x 25 a0 a1x 3 a2x 32 a9x 39
则 a0 a2 a4 a6 a8 ―2 a1 a3 a5 a7 a9 2
0
备用题:
例5已知( (1 2x)n ,
2 (1) 若展开式中第5项、第6项与第7项的二 项式系数成等差数列,求展开式中二项式系 数最大项的系数。
稚参培育环境
• 水温 • 光照 • 盐度 • PH值 • 溶解氧
稚参敌害与病害的防治技术
• 桡足类 • 细菌
x
1120 (3)求 (1 x)3 (1 x)4 (1 x)5 … (1 x)50
的展开式中 x 3的系数。 C541
例3(优化设计P180例3)、设an=1+q+q2+… +qn-1(n∈N*,q≠±1),
An= Cn1a1 Cn2a2 ...... Cnnan
(1) 用q 和n 表示An
即可求第五个元素。
③注意二项式系数与某一项系数的异同。
④当n不是很大,|x|比较小时可以用展开式的 前几项求 (1 x)n的近似值。
二、问题讨论
例1.(1) Cn1 3Cn2 9Cn3 3n1Cnn
等于 ( D )
A 、4n
二项式定理课件-完美版
变式: 若(2x+ )4=a0+a1x+a2x2+a3x3+a4x4,
则(a0+a2+a4)2-(a1+a3)2的值是( A )
A.1
B.-1 C.0
D.2
【规律小结】
对二项式展开式中系数、系数和问题,常用赋值法, 一般地,要使展开式中项的关系变为系数的关系,令x=0 得常数项,令x=1可得所有项系数和,令x=-1可得奇数 次项系数之和与偶数次项系数之和的差,而当二项展开式 中含负值项时,令x=-1则可得各项系数绝对值之和.
考点三 二项式定理的灵活应用
例4
求
1 x
1 x2
10的展开式的常数项。
变式:(1)求(x2+x+1)13展开式中x5的系数; (2)求(2x-1)6(3+x)5展开式中x3的系数.
考点四 整除或余数问题
例5 求9192除以100的余数
变式题 7777-7 被 19 除所得的余数是________.
数最大,则它比相邻两项的系数都不小,列出不等式组并 求解此不等式组求得.
考点二 二项式定课理展堂开互式的动应讲用练
利用二项展开式可以解决如整除、近似计算、不 等式证明、含有组合数的恒等式证明,以及二项式系 数性质的证明等问题.
例3 已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
(2)求展开式中含 的项;
(3)求展开式中所有的有理项;
(4)求展开式中系数最大的项和二项式系数最大的项.
【规律小结】 课堂互动讲练
1.根据二项式系数的性质,n为奇数时中间两项的二 项式系数最大,n为偶数时中间一项的二项式系数最大.
二项式定理 优秀课件
项的系数:二项式系数与数字系数的积.
(a b)n
C?n0a n
Cn1an1(b)
C
k n
a
nk
(b)n
(1 x)n ?Cn0 Cn1 x Cnk xk Cnn xn
此时,二项式系数就等于项的系数!!
(a b)n
C
1 4
a
3b
C42a 2b2
C
3 4
ab3
C
4 4
b
4
(a b)n ?
没有大胆的猜想,就不能有伟大的发现和发明。 ------牛顿
探究3:请分析 (a b)n 的展开过程,证明猜想.
(a b)n (a b)(ab)(ab)
n
①项: a n a n1b L a nkbk L bn
……
(a b)100 ? (a b)n ?
此法 有困难
多项式乘法的再认识
➢问题1: (a1 b1)(a2 b2 ) 的展开式是什么? 展开式有几项?每一项是怎样构成的?
➢问题2: (a1 b1)(a2 b2 )(a3 b3 ) 展开式中 每一项是怎样构成的?展开式有几项?
C n0a n
Cn1an1b
C
k n
a
nk
bk
Cnnbn(n
N*)
Tk1 Cnkankbk
例1:展开(x 2)5 .
解:(x 2)5 C50x5 20 C51x4 21 C52x3 22
C53x2 23 C54 x124 C55x0 25
②系数:Cn0 Cn1 Cnk Cnn
(a b)n
C?n0a n
Cn1an1(b)
C
k n
a
nk
(b)n
(1 x)n ?Cn0 Cn1 x Cnk xk Cnn xn
此时,二项式系数就等于项的系数!!
(a b)n
C
1 4
a
3b
C42a 2b2
C
3 4
ab3
C
4 4
b
4
(a b)n ?
没有大胆的猜想,就不能有伟大的发现和发明。 ------牛顿
探究3:请分析 (a b)n 的展开过程,证明猜想.
(a b)n (a b)(ab)(ab)
n
①项: a n a n1b L a nkbk L bn
……
(a b)100 ? (a b)n ?
此法 有困难
多项式乘法的再认识
➢问题1: (a1 b1)(a2 b2 ) 的展开式是什么? 展开式有几项?每一项是怎样构成的?
➢问题2: (a1 b1)(a2 b2 )(a3 b3 ) 展开式中 每一项是怎样构成的?展开式有几项?
C n0a n
Cn1an1b
C
k n
a
nk
bk
Cnnbn(n
N*)
Tk1 Cnkankbk
例1:展开(x 2)5 .
解:(x 2)5 C50x5 20 C51x4 21 C52x3 22
C53x2 23 C54 x124 C55x0 25
②系数:Cn0 Cn1 Cnk Cnn
高中数学二项式定理公开课精品PPT课件
1.3 二项式定理 第一课时 二项式定理
1.二项式定理 公式(a+b)n=Cn0an+Cn1an-1b+…+Cnran-rbr+…+Cnn-1abn- 1+Cnnbn所表示的规律叫作二项式定理. 2.(1)(a+b)n的二项展开式中共有n+1项; (2)二项式系数:Cnk(k∈N); (3)二项展开式的通项公式:Tk+1=Cnkan-kbk(其中0≤k≤n, k∈N,n∈N*)它是展开式的第k+1项.
3 2x2
)0+C51(2x)4(-
3 2x2
)+C52(2x)3(-
3 2x2
)2+C53(2x)2(-
3 2x2
)3+C54(2x)(-
3 2x2
)4+C55(-
3 2x2
)5=32x5-120x2
+18x0-1x345+480x57 -3224x310.
例4 已知在(3 x- 3 )n的展开式中,第6项为常数项. 3 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
【思路】 解答本题可先借助通项公式,利用第6项为常数项 求n,然后再根据通项公式即可求得(2),(3).
【解析】 (1)通项公式为 Tk+1=Cnkxn-3 k(-3)kx-k3=Cnk(-3)kxn-32k. ∵第6项为常数项,∴k=5时有n-32k=0,即n=10. (2)令n-32k=2,得k=12(n-6)=2. ∴所求的系数为C102(-3)2=405.
【答案】 C
探究3 (1)求二项展开式的特定项的常见题型: ①求第k项,Tk=Cnk-1an-k+1bk-1; ②求含xk的项(或xpyq的项); ③求常数项; ④求有理项. (2)求二项展开式的特定项的常用方法: ①对于常数项,隐含条件是字母的指数为0(即0次项);
1.二项式定理 公式(a+b)n=Cn0an+Cn1an-1b+…+Cnran-rbr+…+Cnn-1abn- 1+Cnnbn所表示的规律叫作二项式定理. 2.(1)(a+b)n的二项展开式中共有n+1项; (2)二项式系数:Cnk(k∈N); (3)二项展开式的通项公式:Tk+1=Cnkan-kbk(其中0≤k≤n, k∈N,n∈N*)它是展开式的第k+1项.
3 2x2
)0+C51(2x)4(-
3 2x2
)+C52(2x)3(-
3 2x2
)2+C53(2x)2(-
3 2x2
)3+C54(2x)(-
3 2x2
)4+C55(-
3 2x2
)5=32x5-120x2
+18x0-1x345+480x57 -3224x310.
例4 已知在(3 x- 3 )n的展开式中,第6项为常数项. 3 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
【思路】 解答本题可先借助通项公式,利用第6项为常数项 求n,然后再根据通项公式即可求得(2),(3).
【解析】 (1)通项公式为 Tk+1=Cnkxn-3 k(-3)kx-k3=Cnk(-3)kxn-32k. ∵第6项为常数项,∴k=5时有n-32k=0,即n=10. (2)令n-32k=2,得k=12(n-6)=2. ∴所求的系数为C102(-3)2=405.
【答案】 C
探究3 (1)求二项展开式的特定项的常见题型: ①求第k项,Tk=Cnk-1an-k+1bk-1; ②求含xk的项(或xpyq的项); ③求常数项; ④求有理项. (2)求二项展开式的特定项的常用方法: ①对于常数项,隐含条件是字母的指数为0(即0次项);
02教学课件_6.3.1 二项式定理
D.84x4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.(x- 2y)10 的展开式中 x6y4 的系数是
√A.840
B.-840
C.210
D.-210
解析 在通项 Tk+1=Ck10(- 2y)kx10-k 中,令 k=4,即得(x- 2y)10 的展开 式中 x6y4 项的系数为 C410×(- 2)4=840.
B.-60
C.250
D.-250
解析
x-2x6 的展开式中的常数项为 C26(
x)4·-2x2=60.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.x+1x9 的展开式中的第 4 项是
A.56x3
√B.84x3
C.56x4
解析 由通项知 T4=C39x61x3=84x3.
(2)(1+2x)3(1-x)4的展开式中,含x项的系数为
A.10
B.-10
√C.2
D.-2
解析 (1+2x)3(1-x)4的展开式中含x项的系数是由两个因式相乘而得到的, 即第一个因式的常数项和一次项分别乘第二个因式的一次项与常数项, 为 C03·(2x)0·C14·(-x)1+C13·(2x)1·C04·14·(-x)0, 其系数为 C03×C14×(-1)+C13×2×C04=-4+6=2.
反思 感悟
求多项式积的特定项的方法——“双通法”
所 谓 的 “ 双 通 法 ” 是 根 据 多 项 式 与 多 项 式 的 乘 法 法 则 得 到 (a + bx)n(s+tx)m 的展开式中一般项为:Tk+1·Tr+1=Cknan-k(bx)k·Crmsm-r(tx)r,再 依据题目中对指数的特殊要求,确定 r 与 k 所满足的条件,进而求 出 r,k 的取值情况.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.540
4.(2010·上海春)在 项是________.
答案:60
的二项展开式中,常数
二、题型与方法
考点一 通项公式的应用
通项公式中含有a,b,n,r,Tr+15个元素,只要知 道了其中的4个元素,就可以求出第5个元素,在求展开式 中的指定项问题时,一般是利用通项公式,把问题转化为 解方程(或方程组).这里必须注意隐含条件n,r均为非负 整数且r≤n.
例2 已知(3 x x2 )2n 的展开式的二项式系数和比(3x 1)n
的展开式的二项式系数和大992,求(2 式中:
x
1 x
)
2n
的展开
(1)二项式系数最大的项; (2)系数的绝对值最大的项.
变式:已知(
)n(n∈N*)的展开式中第五项的系数与第
三项的系数的比是10∶1,
(1)证明:展开式中没有常数项;
(2)原式 C50 (x 1)5C51(x 1)4C52 (x 1)3 C53(x 1)2C54(x 1)C55 C55
[(x 1) 1]5 1
x5 1
3.若(
)n的展开式中各项系数之和为64,
则 展开式的常数项为( A ) A.-540 B.-162 C.162
相等,即
C
r n
C nr n
(2)增减性即最大值
f
(r
)
C
r n
在[0,
n 2
]上是增函数
;
在[
n 2
,
n]上是减函数。
当n为偶数时,f (r)max
f
(
n 2
)
n
C2 n
当n为奇数时,f (r) (3)二项式系数和为
max
f ( n21)
n 1
f
(
n21)
C2 n
n 1
Cn2
数最大,则它比相邻两项的系数都不小,列出不等式组并 求解此不等式组求得.
考点二 二项式定课理展堂开互式的动应讲用练
利用二项展开式可以解决如整除、近似计算、不 等式证明、含有组合数的恒等式证明,以及二项式系 数性质的证明等问题.
例3 已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
, n)
叫做二项式系数
特点:
(1)共n+1有项;
(2)二项式系数是从n个不同元素中取出0,1,2,
3,…,n个元素的组合数,即
Cn0
,
C
1 n
,
,
C
n n
.
(3)a按降幂排列,b按升幂排列,每一项中a与b的
指数和为n。
注意:
(1)表示第r+1项;
(2)通项公式中的a与b的位置不能换.
余下n(-r3个)因要式得取到a。Cnr a nrbr即在(a+b)n中,有r个因式取b,
3.二项式系数与某项系数的区别:
二项式二中项a式,b系系数数及是常C数nr ,展某出项部的分系。数包括二项式系数和
4.二项式系数的性质
(1)对称性:到首末距离相等的两项的二项式系数
指数和为n。
一、知识梳理
1.二项式定理
一般地,对于任意正整数n
a b n Cn0an Cn1an1b1 Cnranrbr Cnnbn, n N
这个公式所表示的定理叫做二项式定理,
右边的多项式叫做(a+b)n的二项展开式,
其中
C
r n
(r
0,1,2,
一、知识梳理
1.二项式定理
一般地,对于任意正整数n
a b n Cn0an Cn1an1b1 Cnranrbr Cnnbn, n N
这个公式所表示的定理叫做二项式定理,
右边的多项式叫做(a+b)n的二项展开式,
其中
C
r n
(r
0,1,2,
, n)
叫做二项式系数
C
0 n
C
1 n
C
2 n
C
n n
2n
奇数项二项式系数和等于偶数项二项式系数和等于 2n-1,即
C
0 n
Cn2
C
4 n
Cn1
C
3 n
C n5
2n1
1.则若a0(+x-a2+1)4a=4的a0值+为a1(x+B
a2x2+ )
a3x3+
a4x4,
A.9
B.8 C.7
特点:
(1)共n+1有项;
(2)二项式系数是从n个不同元素中取出0,1,2,
3,…,n个元素的组合数,即
Cn0
,
C
1 n
,
,
C
n n
.
(3)a按降幂排列,b按升幂排列,每一项中a与b的
பைடு நூலகம்
指数和为n。
2.通项公式
式中的 表示。即
Cnr a nrbr 叫做二项展开式的通项,用
Tr 1
Tr1 Cnranrbr 第 r 1 项
求证:5151 1 能被7整除。
例6 求 0.9986 的近似值,使误差小于0.001
规律方法小结
(1)整除性问题,余数问题,主要根据二项式定理的 特点,进行添项或减项,凑成能整除的结构,展开后 观察前几项或后几项,再分析整除性或余数。这是解此 类问题的最常用技巧。余数要为正整数
C C C (2)由(1 x)n 1 1 x 2 x2 ... n xn ,当 x 的绝对值与1相比
nn
n
很小且 n 很大时,x2, x3,.... xn 等项的绝对值都很小,因此
在精确度允许的范围内可以忽略不计,因此可以用近 似计算公式:(1 x)n 1 nx,在使用这个公式时,要注意按 问题对精确度的要求,来确定对展开式中各项的取 舍,若精确度要求较高,则可以使用更精确的公式:
(1 x)n 1 nx n(n 1) x2 2
例1 已知在 项。
(3 x 1 )n的展开式中,第6项为常数 23 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
变式 求 x 3 x 9展开式中的有理项
【规律小结】 (1)对求指定项、常数项问题,常用 待定系数法,即设第r+1项是指定项(常数项),利用通 项公式写出该项,对同一字母的指数进行合并,根据所给 出的条件(特定项),列出关于r的方程(求解时要注意二项 式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r); 第二步是根据所求的指数,再求所求解的项;
(2)求二项展开式中的有理项,一般是根据通项公式所 得到的项,其所有的未知数的指数恰好都是整数的项.解 这种类型的问题必须合并通项公式中同一字母的指数,根 据具体要求,令其属于整数,再根据数的整除性来求 解.若求二项展开式中的整式项,则其通项公式中同一字 母的指数应是非负整数,求解方式与求有理项的方式一 致.
变式: 若(2x+ )4=a0+a1x+a2x2+a3x3+a4x4,
则(a0+a2+a4)2-(a1+a3)2的值是( A )
A.1
B.-1 C.0
D.2
【规律小结】
对二项式展开式中系数、系数和问题,常用赋值法, 一般地,要使展开式中项的关系变为系数的关系,令x=0 得常数项,令x=1可得所有项系数和,令x=-1可得奇数 次项系数之和与偶数次项系数之和的差,而当二项展开式 中含负值项时,令x=-1则可得各项系数绝对值之和.
(2)求展开式中含 的项;
(3)求展开式中所有的有理项;
(4)求展开式中系数最大的项和二项式系数最大的项.
【规律小结】 课堂互动讲练
1.根据二项式系数的性质,n为奇数时中间两项的二 项式系数最大,n为偶数时中间一项的二项式系数最大.
2.求展开式中系数最大项与求二项式系数最大项不 同,求展开式中系数最大项的步骤是:先假定第r+1项系
考点三 二项式定理的灵活应用
例4
求
1 x
1 x2
10的展开式的常数项。
变式:(1)求(x2+x+1)13展开式中x5的系数; (2)求(2x-1)6(3+x)5展开式中x3的系数.
考点四 整除或余数问题
例5 求9192除以100的余数
变式题 7777-7 被 19 除所得的余数是________.
D.6
2.计算并求值
(1) 1 2Cn1 4Cn2 L 2nCnn
(2) (x 1)5 5(x 1)4 10(x 1)3 10(x 1)2
5(x 1)
(1)原式 Cn01n Cn11n1g2 Cn21n2 g22 L Cnn 2n
(1 2)n 3n
这个公式所表示的定理叫做二项式定理,
右边的多项式叫做(a+b)n的二项展开式,
其中
C
r n
(r
0,1,2,
, n)
叫做二项式系数
特点:
(1)共n+1有项;
(2)二项式系数是从n个不同元素中取出0,1,2,
3,…,n个元素的组合数,即
Cn0
,
C
1 n
,
,
C
n n
.
(3)a按降幂排列,b按升幂排列,每一项中a与b的
特点:
(1)共n+1有项;
(2)二项式系数是从n个不同元素中取出0,1,2,